Structure and Electrochemical Properties of LiMn2O4 Thin Films

PDF Version Also Available for Download.

Description

The structure and electrochemical properties of LiMn{sub 2}O{sub 4} films depend upon the deposition and annealing conditions. Films which were deposited by rf magnetron sputtering of LiMn{sub 2}O{sub 4} in Ar + N{sub 2} gas mixtures and annealed in O{sub 2} at temperatures between 400 to 1000{degrees}C had the cubic spinel structure with an a-axis length that increased linearly from 8.13 to 8.25 {Angstrom} with increasing anneal temperature. Thin-film lithium cells with cathodes of different a-axis lengths exhibited marked differences in their voltage profiles. In particular, the ratio of the capacities at 4 V and 3 V increased with the ... continued below

Physical Description

4 Pages

Creation Information

Bates, J.B.; Ueda, A. & Zuhr, R.A. November 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The structure and electrochemical properties of LiMn{sub 2}O{sub 4} films depend upon the deposition and annealing conditions. Films which were deposited by rf magnetron sputtering of LiMn{sub 2}O{sub 4} in Ar + N{sub 2} gas mixtures and annealed in O{sub 2} at temperatures between 400 to 1000{degrees}C had the cubic spinel structure with an a-axis length that increased linearly from 8.13 to 8.25 {Angstrom} with increasing anneal temperature. Thin-film lithium cells with cathodes of different a-axis lengths exhibited marked differences in their voltage profiles. In particular, the ratio of the capacities at 4 V and 3 V increased with the a-axis length. A defect model of LiMn{sub 2}O{sub 4} which is consistent with the structural and electrochemical data is represented by [Li{sub 1-y+z}Mn{sup 2+}{sub y-z}]{sub 8a}[Mn{sup 2+}{sub z}]{sub 16c}[Li{sub x}Mn{sub 2-x}]{sub 16d}O{sub 4}. Based on this model and the results of in-situ XRD measurements, it is proposed that Mn ions migrate from 8(a) tetrahedral sites to 16(c) octahedral sites on charging the cells in the 5V plateau.

Physical Description

4 Pages

Source

  • Electrochemical Society Meeting, Boston, MA, Nov. 1-6, 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00002978
  • Report No.: ORNL/CP-100700
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 2978
  • Archival Resource Key: ark:/67531/metadc679979

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 4, 2015, 2:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 15

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bates, J.B.; Ueda, A. & Zuhr, R.A. Structure and Electrochemical Properties of LiMn2O4 Thin Films, article, November 1, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc679979/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.