Development of chemical vapor composites, CVC materials. Final report

PDF Version Also Available for Download.

Description

Industry has a critical need for high-temperature operable ceramic composites that are strong, non-brittle, light weight, and corrosion resistant. Improvements in energy efficiency, reduced emissions and increased productivity can be achieved in many industrial processes with ceramic composites if the reaction temperature and pressure are increased. Ceramic composites offer the potential to meet these material requirements in a variety of industrial applications. However, their use is often restricted by high cost. The Chemical Vapor composite, CVC, process can reduce the high costs and multiple fabrication steps presently required for ceramic fabrication. CVC deposition has the potential to eliminate many difficult ... continued below

Physical Description

68 p.

Creation Information

Creator: Unknown. October 5, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Creator

  • We've been unable to identify the creator(s) of this report.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Industry has a critical need for high-temperature operable ceramic composites that are strong, non-brittle, light weight, and corrosion resistant. Improvements in energy efficiency, reduced emissions and increased productivity can be achieved in many industrial processes with ceramic composites if the reaction temperature and pressure are increased. Ceramic composites offer the potential to meet these material requirements in a variety of industrial applications. However, their use is often restricted by high cost. The Chemical Vapor composite, CVC, process can reduce the high costs and multiple fabrication steps presently required for ceramic fabrication. CVC deposition has the potential to eliminate many difficult processing problems and greatly increase fabrication rates for composites. With CVC, the manufacturing process can control the composites` density, microstructure and composition during growth. The CVC process: can grow or deposit material 100 times faster than conventional techniques; does not require an expensive woven preform to infiltrate; can use high modulus fibers that cannot be woven into a preform; can deposit composites to tolerances of less than 0.025 mm on one surface without further machining.

Physical Description

68 p.

Notes

OSTI as DE99001486

Source

  • Other Information: PBD: 5 Oct 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99001486
  • Report No.: DOE/GO/10020--T2
  • Report No.: TTC--4033-R
  • Grant Number: FG36-94GO10020
  • DOI: 10.2172/307968 | External Link
  • Office of Scientific & Technical Information Report Number: 307968
  • Archival Resource Key: ark:/67531/metadc679977

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 5, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 17, 2015, 5:57 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Development of chemical vapor composites, CVC materials. Final report, report, October 5, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc679977/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.