Development of Improved Processing and Evaluation Methods for High Reliability Structural Ceramics for Advanced Heat Engine Applications Phase II

PHASE II FINAL REPORT

V. K. Pujari
D. M. Tracey
M. R. Foley
A. B. Hardy
S. J. Lombardo
P. J. Pelletier
L. C. Sales
R. L. Yeckley

CERAMIC TECHNOLOGY PROJECT

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Development of Improved Processing and Evaluation Methods for High Reliability Structural Ceramics for Advanced Heat Engine Applications Phase II

V. J. Pujari
D. M. Tracey
M. R. Foley
A. B. Hardy
S. J. Lombardo
P. J. Pellitter
L. C. Sales
R. L. Yeckley

Date Published: February 1996

PHASE II - FINAL REPORT

Prepared by
Norton Company
Advanced Ceramics
Goddard Road
Northborough, Massachusetts 01532

Funded by
U.S. Department of Energy
Assistant Secretary for Energy Efficiency and Renewable Energy
Office of Transportation Technologies
Propulsion System Materials Program
EE 51 05 00 0

for
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6285
managed by
LOCKHEED MARTIN ENERGY RESEARCH CORPORATION
for the
U.S. DEPARTMENT OF ENERGY
under Contract DE-AC05-96OR22464

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
TABLE OF CONTENTS

LIST OF TABLES ... ii
LIST OF FIGURES ... iii
ABSTRACT ... 1
INTRODUCTION ... 2
FORMING USING HIGHLY LOADED SUSPENSIONS AND HOT ISOSTATIC PRESSING 3
CLOSED LOOP POWDER PROCESSING .. 3
POWDER SURFACE MODIFICATIONS 4
HIGH ENERGY ATTRITION MILLING .. 4
DENSITY GRADIENT CONTROL ... 5
CASTING PROCESS SIMULATION AND MODELING 7
EFFECT OF THE MOLD MATERIAL .. 9
ESTABLISHING NDE LIMITS FOR DENSITY GRADIENT IDENTIFICATION 10
TENSILE BAR FABRICATION AND TESTING 10
HIGH RELIABILITY COLLOIDAL PROCESSING OF GPS COMPOSITION 12
AQUEOUS PROCESSING AND HYDROLYSIS CONTROL OF MgO 12
GAS PRESSURE SINTERING (GPS) OPTIMIZATION 13
PROCESS SCALE UP AND VERIFICATION 14
COMPLEX SHAPE DEMONSTRATION 17
CONCLUSIONS ... 18
ACKNOWLEDGMENTS .. 19
REFERENCES ... 20

APPENDIX 1: AQUEOUS INJECTION MOLDING OF Si₃N₄ BY THERMAL GELATION ... 21
INTRODUCTION ... 21
GELCASTING HYPERLOADED ALUMINA SUSPENSION 21
PROCESSING OF HYPERLOADED Si₃N₄ SUSPENSIONS 23
Dispersion Studies on Uncoated Si₃N₄ 23
Dispersion Studies on Coated Si₃N₄ ... 25
REFERENCES ... 28

APPENDIX 2: HIGH ENERGY AGITATION MILLING OF SILICON NITRIDE POWDER ... 29
INTRODUCTION ... 29
OBJECTIVE ... 30
EXPERIMENTAL ... 30
Materials and Equipment ... 30
Milling Procedure .. 30
RESULTS AND DISCUSSIONS .. 31
Dispersants Evaluation ... 31
Milling of Silicon Nitride Powder .. 32
Evaluation of Milled Slips ... 36
SUMMARY AND CONCLUSIONS ... 37

Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the Ceramic Technology Project of the Propulsion Systems Materials Program, under contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation.
LIST OF TABLES

1: Surfactant Effects on Sedimentation Density 3
2: Green Densities Using Test Slurries 12
3: Flexure Strength of Surface and Bulk Samples 13
4: Data Showing Batch Improvement in Casting Performance 15
5: NCX 5400 Strength and Toughness Data 15
1-1: Aqueous Silicon Nitride Suspensions Using Substituted Dispersants ... 24
1-2: Summary of Dispersions Made Using Agarose as a Gelling Agent ... 26
2-1: Summary of Green Density Data for Two Dispersants at Different Concentrations 32
2-2: Summary of Experimental Parameters and the Resulting Powder Characteristics 36
2-3: Flexure Strength Data of HEAM Milled Slips 37
LIST OF FIGURES

1: Green Density vs. Powder Surface Area .. 6
2: Green Density vs. Slurry Weight % Solids ... 6
3: Tensile Bar Runout vs. Powder Surface Area 6
4: Tensile Bar Runout vs. Slurry Weight % Solids 7
5: Geometry of Cake Growth ... 8
6: Prediction of Low Density Region Near Mold Interface 8
7: Density Variation for Constant and Ramped Pressure Profiles 9
8: Effect of Mold Material on Casting Rate Profile 10
9: Cast Density vs. Aging Time of Test slurries 13
10: MOR Strength vs. Variable a Level ... 14
11: Weibull Plots of NCX 5400 Tensile Strength Data 16
12: Tensile vs. Flexure Strength of NCX5400 and Other Silicon Nitride Material ... 16
13: Vane Formed Using NCX-5102 Slurry ... 17
1-1: A Schematic of the Gel-Casting Method of Forming as Developed for Alumina Suspensions ... 22
1-2: Sintering Behavior of Alumina Processed by (i) Stabilization with Surfactant S3 and Agarose Gelation, (ii) Agarose/S2 Gelation, (iii) Dry Pressing, and (iv) Colloidal Casting of 60 Vol % Suspensions ... 23
1-3: The Surface Charge of A-Alumina Particles Prepared with 0.5% (Dry Weight Basis) Surfactant S3 at Different pH's 23
1-4: Comparison Between Aqueous and Non-Aqueous Processing of Silicon Nitride Suspensions ... 24
1-5: Schematic of Coating Silicon Nitride Powders Using Metal Nitrates ... 25
1-6: TEM Images of Alumina-Coated Silicon Nitride Particle 26
1-7: Electrophoretic Mobility of Silica Coated Silicon Nitride 27
1-8: FTIR Reflectance Measurements on As-Received, TEOS-Coated, and TEOS-Coated and Calcined Powders .. 27
2-1: Adsorption Isotherms of Darvan 821A at Three Different pH Values ... 33
2-2: Adsorption Isotherms of Daxad 32 at Three pH Values 33
2-3: Comparison of Particle Size Distribution
 at pH 9.0 Of SNE-3 Using Optimized Concentrations
 of Daxad 32 and Darvan 821A. 34
2-4: Titration of Darvan 821A and Daxad 32 at pH 4.0
 in Presence of SNE-3. Interception of Slopes at the
 Break Point Indicates Approximate Optimum Concentrations. 34
2-5: Schematic of Slip Preparation, Sampling and Milling
 Procedure. Note the addition points for powders............. 35
DEVELOPMENT OF IMPROVED PROCESSING AND EVALUATION METHODS FOR HIGH RELIABILITY STRUCTURAL CERAMICS FOR ADVANCED HEAT ENGINE APPLICATIONS, PHASE II

Vimal K. Pujari, Dennis M. Tracey, Michael R. Foley, Anne B. Hardy, Stephen J. Lombardo, Paul J. Pelletier, Lenny C. Sales, and Russell L. Yeckley

ABSTRACT

The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370°C.

In Phase I of the program a process was developed that resulted in a silicon nitride - 4 wt% yttria HIP'ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens.

The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions.

Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabrability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.
INTRODUCTION

Highlights of the silicon nitride processing methodology that was developed in Phase I of the program are discussed in a previous report. In Phase I, work focused on the attainment of high strength and reliability through the identification and subsequent control of strength degrading flaw populations. The material produced by the resultant process has been designated NCX-5102 and consists of silicon nitride - 4% yttria composition which is densified by use of glass encapsulating HIP'ing.

In the report, an account is provided of developmental efforts which resulted in a colloidal processing methodology for the production of high strength, high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370°C. The process includes an innovative closed-loop system of uninterrupted colloidal processing, from milling to shape forming, which effectively circumvents traditional sources of contamination. The effort concentrated on the near-net-shape fabrication of large-aspect-ratio, axisymmetric buttonhead tensile bars. This geometry served as a challenging forming requirement, sufficient for development of a general shape-forming capability and it also provided a direct means to assess tensile strength levels attributable to the process.

The process demonstration provided experience and data which suggest that NCX-5102 truly ranks as a world-class, structural silicon nitride material. The test program established a mean tensile strength of 997 MPa for a set of 320 tensile rods. Competing risk data analysis suggests that the strength distribution associated with process-related, intrinsic strength-impairing flaws is best represented by a 3-parameter Weibull model with a threshold strength equal to 665 MPa. Approximately one half of the data fall into this category. The other half primarily involved machining-damage-related failure origins and define a distinctly different strength distribution.

In Phase II of this advanced processing program, efforts were focused on refinement of the forming aspects of this reliable process and extension of the process to non-HIP sinterable compositions.

The Phase II plan was structured with three tasks:

Task 1 - Reliability optimization through density gradient reduction in aqueous colloidal forming and glass encapsulating HIP'ing.
Task 2 - Application of the high reliability colloidal processing technique to a gas pressure sinterable (GPS) composition.
Task 3 - Demonstration of representative complex component fabrication in the HIP system.

Key activities within Task 1 involved development of an understanding of the density gradient by examining the slurry properties and developing a mathematical model to simulate the casting process. Technical challenges with respect to Task 2 involved control of hydrolysis of the specific sintering aid in an aqueous medium and subsequent casting of this suspension. Accomplishments are discussed below in sections related to the three tasks.
FORMING USING HIGHLY LOADED SUSPENSIONS AND HOT ISOSTATIC PRESSING

The overall effort of this task was to help develop a robust net-shape-forming technology for complex-shape heat engine and gas turbine components. As identified earlier in Phase I of the Processing for Reliability Program, density gradients in the cast components resulted in overall lower process yield due to non-uniform shrinkage during drying (cracking) and HIP densification (part distortion). This problem was substantially addressed in the Phase I program through understanding and manipulation of the casting-rate behavior of the slip. In the current (Phase II) program, the effort was directed towards a more comprehensive and complete analysis of all factors that influence the casting behavior of an aqueous silicon nitride suspension. However, greater emphasis was placed on the development of a highly loaded suspension approaching solid content ~ 80W% (55V%). Use of a highly loaded suspension during shape forming is anticipated to alleviate spatial density gradients by a) minimizing particle segregation, b) controlling casting rate, and c) potentially totally eliminating drainage of fluid during green forming. Various factors that influence the solids content, namely, type of surfactant, particle size and surface area of the powder, powder surface chemistry, commutation procedure, etc. were examined throughout this investigation. The task was divided into the following four sub tasks: i) Powder Processing, ii) Density Gradient Control, iii) Casting Process Simulation and Modeling and iv) Effect of Mold Material. Progress towards each of these sub tasks is described below:

CLOSED LOOP POWDER PROCESSING

In order to obtain high solids loading, the sedimentation behavior of Si₃N₄ powder with five different surfactants (A, B, C, D, E) was measured with time. As seen in Table 1, the final sedimentation density was increased from 1.25 g/cc in the case of no surfactant to a value of approximately 1.50 - 1.55 g/cc with 3 of the surfactants. The optimum surfactants were utilized in the closed-loop processing methodology development during Phase I of this program. In addition, particle size distribution and the surface area of the powder were manipulated extensively to analyze their effects on solids loading achievable. The detailed results of this effort are described below under density gradient control.

Table 1: Surfactant effects on sedimentation density

<table>
<thead>
<tr>
<th>NO SURFACTANT</th>
<th>SURFACTANT A</th>
<th>SURFACTANT B</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt % Density g/cc</td>
<td>wt % Density g/cc</td>
<td>wt % Density g/cc</td>
</tr>
<tr>
<td>0.0 1.250</td>
<td>0.1 1.496</td>
<td>0.2 1.522</td>
</tr>
<tr>
<td>0.4 1.450</td>
<td>0.4 1.546</td>
<td></td>
</tr>
<tr>
<td>0.6 1.523</td>
<td>0.6 1.367</td>
<td></td>
</tr>
<tr>
<td>0.8 1.390</td>
<td>0.8 1.572</td>
<td></td>
</tr>
<tr>
<td>1.0 1.320</td>
<td>1.0 1.550</td>
<td></td>
</tr>
</tbody>
</table>
POWDER SURFACE MODIFICATIONS

The activities in this area were pursued at Princeton University under the supervision of Dr. Ilhan Aksay. The work was primarily focused towards surface modification of the silicon nitride powder in order to achieve highly loaded aqueous suspensions. Specifically, the surface of the silicon nitride powder was coated with Al₂O₃ or SiO₂ using colloidal based approaches. Alumina and silica, in general, exhibit greater compatibility and improved in aqueous medium as compared to silicon nitride.

In the subsequent effort, a gelling substance was incorporated in the surface-modified silicon nitride powder suspensions in order to develop a robust, aqueous-based forming process similar to injection molding. The details of this research effort are documented in Appendix 1.

HIGH ENERGY ATTRITION MILLING

The activity was pursued at the National Institute of Standards and Technology (NIST) under the direction of Dr. Subhas Malghan. Primary efforts were directed towards the development of data for the selection of type and concentration of a polyelectrolyte dispersant for high density suspensions preparation through HEAM. In addition, surface chemical characterization of constituent materials (silicon nitride, yttria, and polyelectrolyte) were also completed. Five different methods were used to evaluate two potential surfactants (S₁, S₂) as described below:

- Interface chemistry of powder in aqueous environment
- Effect of polyelectrolyte concentration
- Particle-size distribution
- Density of slip cast green body
- Adsorption isotherm

These data showed that both dispersants (S₁, S₂) provide the same amount of dispersion at pH 9.0, while the concentrations to achieve the maximum dispersion were different due to difference in their molecular weights. Based on these evaluations, we have selected 300 and 640 ppm (with respect to powder weight) as the most suitable concentration for the two surfactants to achieve the highest green density. The green densities of SNE-03 powder without milling were 61-63% theoretical.

All three powder components have been fully characterized and representative samples for milling have been prepared. The

<table>
<thead>
<tr>
<th>SURFACANT C</th>
<th>SURFACANT D</th>
<th>SURFACANT E</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt %</td>
<td>Density g/cc</td>
<td>wt %</td>
</tr>
<tr>
<td>0.2</td>
<td>0.549</td>
<td>0.5</td>
</tr>
<tr>
<td>0.4</td>
<td>0.524</td>
<td>1.0</td>
</tr>
<tr>
<td>0.6</td>
<td>0.550</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.548</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.667</td>
<td></td>
</tr>
</tbody>
</table>
overall purpose of these milling tests was to achieve as high a solids loading as possible. Our final target was 80-85% solids by weight. Therefore, initial tests on 75% solids as the base level and 80% as the high level were planned, with the specific surface area of the milled powder at 8 and 12 m²/g. Further details of this effort are included in Appendix 2.

DENSITY GRADIENT CONTROL

A series of experiments was conducted to determine the effect of slip, mold, and casting characteristics on the green compact. The objective of the set of experiments was to evaluate and minimize density gradients in the cast components, and to examine how the control variables affect the performance variables. The control variables evaluated were the following:

Slip Variables
- Surface area
- Weight % solids

Mold Variable
- Mold material

Casting Variables
- Pressure profiles
- Orientation of filtration surface (up or down).

The performance variables examined in these experiments were:
- Density of the green compact
- Cracking during drying
- Density gradient after HIP (Total Indicated Runout).

As indicated by Figures 1 to 4, green densities and density gradients have been correlated with surface area and weight-percent solids of the slip. The casting rate of the slip has also been shown to have an effect on green densities and density gradients. The density gradient has been measured indirectly by observing the amount of bending (runout-TIR) in cast tensile rods after HIP. The higher the runout, the larger the density gradient. The orientation of the filtration surface was a significant variable only at low-weight-percent solids since with low-weight-percent solids there is enhanced segregation of the slip. This results in an increased density gradient if the component is cast with the filtration surface on top (segregation and casting rate act in concert to increase the density gradient), and reduced if the filtration surface is toward the bottom (density gradients due to segregation and casting rate are counteracting).

Process yield is reduced both by cracking during drying and by excessive bending during HIP'ing. These reject modes were found to depend upon green density in opposing fashions, with drying cracks more prevalent and bending less severe at higher green densities.
Figure 1: Green Density vs. Powder Surface Area

Figure 2: Green Density vs. Slurry Weight & Solids

Figure 3: Tensile Bar Runout vs. Powder Surface Area
CASTING PROCESS SIMULATION AND MODELING

The modeling of the colloidal consolidation process (pressure casting) was extended beyond the historical models of Aksay and Schilling\(^3\) and Adcock and MacDowall\(^4\) to include a spatial variation in density.

The model accounts for green body density gradients through the use of a porosity constitutive relationship. Experimental data suggest that the porosity that develops at the casting front, Figure 5, can be represented as a function of casting rate as follows:

\[
\varepsilon = \varepsilon^* + \Delta \varepsilon \tanh \left(\frac{d^2 \varepsilon}{dt} \right)
\]

(1)

The values \(\varepsilon^*\) and \(\varepsilon^* + \Delta \varepsilon\) represent the low and high rate porosity levels, respectively. The governing equation for the casting process is given by

\[
\frac{d\varepsilon}{dt} = \frac{\chi}{1 - \chi - \varepsilon} \frac{1}{\eta} \int^p_{\varepsilon} \alpha dx
\]

(2)

Where

\(\chi\) = solids volume fraction of slurry

\(\eta\) = filtrate viscosity

\(\alpha\) = cake specific resistance

Equation (2) was solved numerically subject to the porosity constitutive equation (1) for representative conditions. Solutions provide cake thickness and density (porosity) distribution as a function of time.
Figure 5: Geometry of Cake Growth

Results for density variations are shown in Figure 6 for the two cases of 60.6 and 68.9 w/o solids with 10 m²/gm surface area and 25 psi pressure. Notice that a low density region is predicted near the mold. This results from the very high growth rate that the cake initially experiences. With the parameters chosen here the low density region extends about 0.1 to 0.2 mm into the cake. The lowest density is about 5% less than the bulk value. These values are in general agreement with what has been observed in casting experiments. Figure 7 provides results which demonstrate that the density gradient at the mold can be controlled through manipulation of the pressure profile.

Figure 6: Prediction of Low Density Region Near Mold Interface
EFFECT OF THE MOLD MATERIAL

Casting of aqueous silicon nitride slurries using plaster of Paris molds has typically resulted in a 0.1 - 1.0 mm high density skin, as well as a 1-3 mm low density cast layer at the surface of the component. It is believed that the low density layer is caused by floccing of the slurry in contact with the mold, and that the high density skin is caused by diffusion of mold material into the cast body. In order to eliminate these undesirable effects, a ceramic mold material was investigated. In preliminary work (Phase I) density gradients were reduced by up to 75% using this material. To examine the properties of this mold in relation to a standard plaster mold, pucks were cast using a constant pressure of 30 psi. The plot of thickness vs. time from the Kozeny-Carman model should be of the form:

\[L = k \cdot t^m \]

where \(L \) is the thickness of the cast, \(t \) is the time, \(m = 0.5 \), and \(k \) is a constant which depends on parameters of the slurry and the applied pressure. Fitting the observed thickness vs. time data from the two pucks to the model (Figure 8), the estimated values for \(m \) were 0.485 for the plaster mold and 0.502 for the alternative mold material. This indicates that for the plaster mold we have a higher than expected initial casting rate, or a lower than expected final casting rate.
ESTABLISHING NDE LIMITS FOR DENSITY GRADIENT IDENTIFICATION

A Si$_3$N$_4$ step wedge was used as a tool to determine the detection limits of Microfocus X-ray on density gradients. The material used for the step wedge was dense (HIP’ed) NCX 5102. The wedge was machined with 10 steps that varied in thickness from 3.60 mm to 3.81 mm. These changes in thickness simulated density differences of 0.2, 0.3, 0.4, 0.5, 0.8 and 1%. The operating parameters of the X-ray unit were optimized in order to get the best contrast and resolution. Using film radiography, a 0.5% density difference was found to be the detection limit for Microfocus X-ray.

TENSILE BAR FABRICATION AND TESTING

As a demonstration of the mechanical properties associated with the above process, buttonhead tensile specimens were tested for RT fast fracture strength and flexure specimens were tested for 1370°C fast fracture strength and stress rupture life. A post-HIP crystallization heat treatment was used in the production of the specimens to accentuate the HT mechanical behavior. In Phase I it was established that the crystallization step enhances HT strength as well as creep resistance, although the RT strength suffers somewhat due to this process step. The results of the current tests confirmed past experience. The stress rupture tests were run at 300 MPa and 350 MPa. Exceptional creep resistance was found with 11 of 12 specimens surviving 200 hours at 1370°C. One specimen loaded to 350 MPa failed at 46 hours.

The NCX-5102 process developed in Phase I was found to yield material with 1 GPa level tensile strength (997 MPa mean for n=320). This is in contrast to 700 MPa level tensile strength of commercially available silicon nitride materials. A mean of 842 MPa was found for the tensile strength of 18 buttonhead specimens.
produced in the current experiments. The corresponding 2-parameter Weibull values are 895 MPa for characteristic strength and 10.1 for Weibull modulus. Compared to commercially available material, the 842 MPa mean strength is excellent. Compared to NCX-5102, 842 MPa represents a 16% mean strength reduction. This disparity can be viewed to be primarily a result of the crystallization step, a step that was not used in the NCX-5102 process.
HIGH RELIABILITY COLLOIDAL PROCESSING OF GPS COMPOSITION

AQUEOUS PROCESSING AND HYDROLYSIS CONTROL OF MgO

Three methods were identified to minimize the problems associated with the aqueous processing of magnesia-containing slurries: temperature control, pH control, and surfactant addition. Since previous results had demonstrated the importance of maintaining temperature control, a set of experiments was designed to assess the importance of pH and surfactant addition while slurry temperature was maintained at a predetermined level. A baseline silicon nitride plus yttria slurry was prepared and then cast after making additions of the magnesium sintering aids. As seen in Table 2, the baseline slurry attains a high green density upon casting, regardless of pH. Addition of magnesium sintering aid Mg(a) with surfactant, however, resulted in slurries which were too thick for casting. The addition of Mg(c) sintering aid resulted in a decrease in green density for both pH levels. The combination of Mg(c) plus surfactant at pH B yielded a cast body within 2% of the density of the baseline slurry. Thus, a combination of pH control and surfactant addition significantly reduces the problems associated with the processing of magnesium containing slurries.

Table 2: Green Densities Using Test Slurries

<table>
<thead>
<tr>
<th>Sample</th>
<th>Green Density (g/cc)</th>
<th>pH = A</th>
<th>pH = B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (Si₃N₄ + Y₂O₃)</td>
<td>1.95</td>
<td>2.08</td>
<td></td>
</tr>
<tr>
<td>Baseline + Mg(a) + Surfactant</td>
<td>uncastable</td>
<td>uncastable</td>
<td></td>
</tr>
<tr>
<td>Baseline + Mg(c)</td>
<td>1.61</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>Baseline + Mg(c) + Surfactant</td>
<td>1.75</td>
<td>2.05</td>
<td></td>
</tr>
</tbody>
</table>

The results of these bench-top experiments were scaled up to a 35-kg-batch of slurry. As seen in Figure 9, the baseline silicon nitride plus yttria slurry attains a high green density. Addition of magnesium-containing sintering aids resulted in a decrease in green density relative to the baseline when no aging was allowed. There was an indication, however, that a kinetic phenomenon was occurring and thus the slurries were allowed to age under continuous agitation. After four hours of aging, the green densities of the magnesium-containing slurries recovered to within 10% of the baseline value. Further aging of the slurry had no additional beneficial effect. Thus a scaled-up process has been developed whereby magnesium-containing slurries can be cast to obtain bodies with acceptable green densities.
Sintering runs were used to examine the effect of the sintering bed and degradation of mechanical properties due to the reaction layer. Reduction in strength at the surface relative to the bulk was found to range from a low of 2% to a high of 30%, Table 3.

The mill batches also showed variation in material properties with the differences in properties attributed to processing conditions. In order to understand the batch-to-batch variability, an evaluation was completed which sought possible correlation of strength with ten separate chemical and physical characteristics (variables) of 5 batches of powder (3 IPA-milled, 2 water-milled). Of the ten, only one (variable A) showed a significant correlation with strength, Figure 10. The process was modified to consistently attain the lower levels of variable A.

Table 3: Flexure Strength of Surface and Bulk Samples

<table>
<thead>
<tr>
<th>Bed</th>
<th>Location</th>
<th>Batch</th>
<th>Location</th>
<th>Bed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Surface</td>
<td>S004</td>
<td>S008</td>
<td>717</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>893</td>
<td>800</td>
<td>819</td>
</tr>
<tr>
<td>2</td>
<td>Surface</td>
<td>798</td>
<td>663</td>
<td>667</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>846</td>
<td>778</td>
<td>799</td>
</tr>
<tr>
<td></td>
<td>Batch Average</td>
<td>812</td>
<td>733</td>
<td>707</td>
</tr>
</tbody>
</table>
PROCESS SCALE UP AND VERIFICATION

The final batch (S012) of NCX 5400 was prepared according to the optimized process developed in the course of the program. Five techniques were used to facilitate the processing of S012:

1) Temperature Control
2) pH Control
3) Surfactant Additions
4) Form of MgO Addition
5) Si₃N₄ Powder Size Distribution

Approaches 1-4 address the solubility and, hence, dissolution of the magnesium sintering aid into Mg divalent cations. Controlling temperature and pH during milling seems to lower the magnesium ion concentration. The use of surfactants also inhibits the dissolution reactions of the sintering aid into the divalent cations. In addition, some chemical forms have an inherently lower solubility than MgO. Finally, controlling the size distribution of the Si₃N₄ powder leads to better powder packing.

In the early stages of the program, cast green densities of 1.2 - 1.4 g/cc and solids loadings of <60 weight percent were obtained. Using the 5 approaches outlined above, however, green densities above 2.0 g/cc were attained. Furthermore, the slurry could be concentrated to >70 w% and densified to >99% of theoretical density. A chronology of the progress is given in Table 4.
Table 4: Data Showing Batch Improvements in Casting Performance

<table>
<thead>
<tr>
<th>Batch</th>
<th>Filtered</th>
<th>Concentrated Weight % Solids</th>
<th>Green Density (g/cc)</th>
<th>Fired Density % TD</th>
</tr>
</thead>
<tbody>
<tr>
<td>S001</td>
<td>-</td>
<td>51</td>
<td>1.3</td>
<td>>99</td>
</tr>
<tr>
<td>S008</td>
<td>very fine</td>
<td>41</td>
<td>1.3</td>
<td>98.5</td>
</tr>
<tr>
<td>S010</td>
<td>medium</td>
<td>40</td>
<td>2.2</td>
<td>96</td>
</tr>
<tr>
<td>S012</td>
<td>very fine</td>
<td>72</td>
<td>2.0</td>
<td>>99</td>
</tr>
</tbody>
</table>

Batch S012 simultaneously achieved colloidal stability (as evidenced by the filtration step and concentration to 72 weight percent) and high green and fired density.

Cast tensile rods and CIP'ed tiles from S012 were air fired and then densified according to the GPS cycle. Buttonhead tensile specimens were machined following the machining procedure developed in the Processing Phase I program. Test data are summarized in Table 5.

Table 5: NCX 5400 Strength and Toughness Data

<table>
<thead>
<tr>
<th></th>
<th>Tensile Strength (MPa)</th>
<th>Flexure Strength (MPa)</th>
<th>KIC MPa m$^{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>625</td>
<td>773</td>
<td>8.28</td>
</tr>
<tr>
<td>S.D.</td>
<td>103</td>
<td>46</td>
<td>0.38</td>
</tr>
<tr>
<td>Characteristic Strength</td>
<td>667</td>
<td>775</td>
<td></td>
</tr>
<tr>
<td>Weibull Modulus</td>
<td>7.0</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

The tensile strength data were obtained from 27 buttonhead tensile specimens. Of the 27 rods tested, 13 failed from flaws located in the volume of the sample and 14 failed from surface flaws.

In Phase I of the program, it was demonstrated that the intrinsic flaw population of NCX 5102 was best described by a 3 parameter Weibull distribution. Since only a sampling of flaw origins for NCX 5400 was done, this grouping of the flaws was not performed in this case. The entire flaw population - both volume and surface - was therefore analyzed according to both 2- and 3-parameter Weibull statistics. As seen in Figure 11, both 2- and 3-parameter distributions describe the data reasonably well ($r^2 = 0.970$ and $r^2 = 0.979$, respectively).

The strength performance of NCX 5400 as compared to other silicon nitride materials is displayed in Figure 12 in which the tensile strength is plotted versus the flexure strength. Materials with superior volume properties lie in the upper half of the graph; materials with superior surface properties lie in the lower half. NCX 5400 is seen to be equivalent in tension to other gas-pressure sintered materials such as SN253 and NGK. Since the objective of this program was to demonstrate reliable volume properties, this can be assessed by observing how near to the upper half of the graph a material falls. NCX 5400 is seen to be the 3rd best material in this regard following NCX 5102 and SN253.
Figure 11: Weibull Plots of NCX 5400 Tensile Strength Data

Figure 12: Tensile vs. Flexure Strength of NCX5400 and Other Silicon Nitride Material
COMPLEX SHAPE DEMONSTRATION

Consistent with the objective of this task, complex-shape-forming capability of the NCX 5102 slurry was evaluated. Using the standard operating procedure (SOP) of the closed loop process, a 15 kg batch of NCX 5102 slurry was milled, filtered, and subsequently concentrated to a solids loading 72 w%. Shape-forming capability of this slurry was evaluated by pressure casting a complex shape vane (Figure 13) designed for an APU. Castings were performed using a standard mold being utilized currently by NAC (Norton Advanced Ceramics) for prototype production of these components. In excess of 30 components were pressure-cast and HIP'ed. The overall process yield for acceptable components was established to be greater than 85%.

Net-shape castings were produced crack free with NCX 5102 slurry with and without binder addition. The quality of the NCX 5102 castings was found to be equivalent to that produced by the prototype process involving conventional powder processing and agglomerated powder.

Vanes were examined for presence of cracks and surface pits both in the green and dense (HIP'ed) states. Frequency of cracks was found to be equivalent compared to the conventional process. However, presence of surface pits in the HIP'ed component were minimized due to the use of non-agglomerated powder in the closed-loop NCX 5102 process.

The mechanical properties of the densified component could not be established using standard test specimens, due to the small size of the vane. Tile produced from two closed-loop-processed slurry batches (representative of the cast components) provided MOR bars for fast fracture strength and fracture toughness testing. Mean strength and toughness values resulted as 1009 MPa, 1011 MPa and 7.12 MPa•m, 6.87 MPa•m, respectively. These data are consistent with the superior intrinsic tensile strength of NCX 5102 established in Phase I of this program.

Figure 13: Vane Formed Using NCX 5102 Slurry
CONCLUSIONS

Work in the HIP composition (Task 1) centered on the optimum slurry and forming condition for high green density and minimal green density variation. Experiments established that casting rates increase with weight % solids and magnitude of applied pressure.

A casting model was developed which accounts for green body density gradients through the use of a porosity-constitutive relationship. Computer solutions provide cake thickness and density (porosity) distribution as a function of time.

A high solids loading (48 v%) suspension was developed by high energy attrition milling (HEAM). Also, surfactant evaluation was completed to achieve optimal slurry.

A major milestone demonstrated superior mechanical properties of the HIP composition processed for minimal density gradients. Tensile specimens were used for RT fast fracture strength and flexure specimens for stress rupture life. The crystallization treatment was used in the process to accentuate the HT mechanical behavior. Results were dramatic: 6/6 specimens survived 200 hours at 1370°C under 300 MPa and 5/6 specimens under 350 MPa survived. This superior HT performance was coupled with an excellent RT mean tensile strength of 842 MPa.

The shape forming capability of closed-loop-processed slurry was demonstrated through the casting of APU rotor vanes. These possessed superior surface quality relative to vanes produced using standard processing with agglomerated powder. Also, GPa level strength data of flexure specimens from associated slurry batches suggest that the vanes have superior strength as well.

In the GPS composition processing (Task 2), work focused on the role of pH and surfactant on green density. Kinetics of aqueous-based, magnesium-containing slurries showed that short-term slurry aging (4 hours) enhances green density to levels comparable to that of baseline Si₃N₄ - Y₂O₃ slurry. Thus, a suitable approach for full scale colloidal processing of the GPS composition was established. Strength data for the experimental material (NCX 5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.
ACKNOWLEDGMENTS

The research was sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the Ceramic Technology Project of the Propulsion Systems Materials Program, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

The success of the program resulted from the contributions of numerous individuals at Saint-Gobain/Norton, Department of Energy, and Martin Marietta/Oak Ridge National Laboratory. Special acknowledgment is directed to Robert B. Schulz, Manager of the Propulsion System Materials Program, D. Ray Johnson, Manager of the Ceramic Technology Project; and Ronald L. Beatty, Technical Monitor of this Processing for Reliability subcontract.

The program benefited from the efforts of numerous staff members besides the authors. These included Joseph N. Panzarino, Charles White, William Hackett, Gary Lambert, David Truedson, and Greg Watson.

The project team included an expert group of consultants and subcontractors which made significant contributions to the effort. Included in this group were Ilhan Aksay, Princeton University; Fred Lange, University of California - Santa Barbara; and Subbas Malghan, NIST.

The SG/NICC support team is acknowledged for their valuable assistance. This team included Frank Csillag, Tom DiMauro, Marie Longbottom, Teresa Mursick-Meyer, and Colleen Carhart.
REFERENCES

APPENDIX 1: AQUEOUS INJECTION MOLDING OF Si₃N₄ BY THERMAL GELATION

G. Steve Burpee, Hsien-Liang Ker, John S. Lettow, David L. Milius, Daniel M. Dabbs, and Ilhan A. Aksay

Department of Chemical Engineering and the Princeton Materials Institute
Princeton University
Princeton, New Jersey 08544-5263

INTRODUCTION

Processing silicon nitride monoliths using injection molding is limited by the surface chemistry of the silicon nitride particles which, in turn, prevents the use of environmentally benign surfactants in aqueous suspensions. Our goal in this project has been to develop methods for shape forming Si₃N₄ monoliths using hyperloaded aqueous suspensions. We have determined that coating the Si₃N₄ particles with an oxide layer provides a method with strong potential for successfully gelcasting silicon nitride. Adjunct to this work has been a study on the use of surfactants to passivate the surface of magnesium oxide particles in aqueous suspension.

Shape forming requires an effective method for controlling the liquid to solid transition; for this reason, we have emphasized the use of thermal casting (e.g., gelcasting) for processing hyperloaded suspensions. Our initial studies involved the gelcasting of alumina suspensions, which we use as a model system for determining the general process parameters important to gelcasting. Attempts to apply our results to the gelcasting of Si₃N₄ suspensions were disappointing, we thereupon determined that gelcasting was more likely to succeed when the surfaces of the Si₃N₄ particles were converted to an oxide. The use of an oxide surface should simplify the processing through the presence of a well understood surface. In addition to improving the processability, coating the surface of the Si₃N₄ particles is known to be an effective method for introducing additives into the particle suspension and thence into the final monolith.

GELCASTING HYPERLOADED ALUMINA SUSPENSIONS

Figure 1-1 is a schematic of the gelcasting process used to cast alumina suspensions from stabilized suspensions. Based on the success of using agarose solutions to gel high-solids-content alumina suspensions, a similar system was used to process aqueous silicon nitride suspensions. The dispersants used were S1, S2, and S3, all of which act to disperse alumina powders in water. The gelling polymer was agarose, also soluble in water. S1 and S2 are commonly used dispersants whose behavior in aqueous suspensions is understood. Dispersant S3 is biogenic in origin, environmentally benign, and burns out with little residue.

To successfully cast an alumina suspension, two approaches can be used to minimize the suspension viscosity: (i) a dispersant is used to prepare a low-viscosity suspension which is then gelled by the addition of the gelling solution (as shown in...
Figure 1-1), and (ii) a single polymeric or monomeric species is used that first stabilizes the suspension and then is itself gelled. In the first procedure, the key difficulty is the incompatibility of the dispersant with the gelling solution. In the second, the identification of an appropriate moiety is the necessary first step. Our work in this project has been concerned with finding appropriate gelling agents.

![Diagram](image)

Figure 1-1: A schematic of the gel-casting method of forming as developed for alumina suspensions.

We have demonstrated that alumina suspensions can be cast using agarose solutions, which reversibly gels at ~40°C as the temperature of the solution is lowered. However, when a suspension of S1-stabilized alumina particles is added to agarose solution above 45°C, the dispersant S1 was found to induce phase separation in the agarose solution resulting in (i) low packing densities (<55% by volume) in the green body, and (ii) increased sintering temperatures, Figure 1-2. The agarose/S3 system approaches the performance of colloidally cast, high-solids-content suspensions. Surface modification using short, highly charged molecules imparts the necessary anionic surface to the particles while maintaining miscibility with agarose gelling solution.

To eliminate the phase separation behavior, either of two strategies can be used: (i) decrease the molecular weight of the dispersant, or (ii) modify the agarose through the addition of anionic side groups. Dispersant S3 is seen to be an effective dispersant for alumina in aqueous suspensions and its use results in higher densitites at lower temperature (Figure 1-2). Suspensions stabilized with S3 are fluid at solid loadings above 55 volume %, but the reasons behind this observation are not well understood. We do know that dispersant S3 strongly adsorbs onto the alumina surface and imparts a strong negative surface charge, Figure 1-3.
Figure 1-2: Sintering behavior of alumina processed by
(i) stabilization with surfactant S3 and agarose
gelation, (ii) agarose/S2 gelation, (iii) dry pressing, and
(iv) colloidal casting of 60 vol % suspensions.

Figure 1-3: The surface charge of a-alumina particles prepared
with 0.5% (dry weight basis) surfactant S3 at
different pH’s.

PROCESSING OF HYPERLOADED Si₃N₄ SUSPENSIONS

Dispersion Studies on Uncoated Si₃N₄.

The use of gelcasting to process alumina provided necessary
but not sufficient guidelines for using the same process with
silicon nitride powders in aqueous suspensions. Past studies
indicate that surface coating is required to achieve high solids
loading in such systems. For example, a solids loading of 47.5
vol% is reported for aqueous Si₃N₄ suspensions containing Dolapix
PC33 polyelectrolyte (an anionic polyacrylate similar to S1) as
the dispersant and Y₃Al₅O₁₂ as an additive. However, nonaqueous
systems are far more successful in preparing highly concentrated suspensions.17,18 In Figure 1-4 the results of using polyguluronic acid dispersant (S4) in water and a fluorinated polyester in paraffin are compared; the non-aqueous system is clearly seen to be the more successful in preparing high density green bodies.

![Graph showing relative green density (%) for different surfactants in water and paraffin.](image)

Figure 1-4: Comparison between aqueous and non-aqueous processing of silicon nitride suspensions.

Bergstrom1 has described the surface of silicon nitride in non-aqueous suspensions as consisting primarily of silanol groups with a few secondary amine groups. He notes that the surface is amphoteric and used different probe molecules in non-aqueous solvents to demonstrate that highly acidic or basic molecules had the highest amount adsorbed on the surface, confirming the amphoteric nature of the silicon nitride surface in such systems. In an attempt to replicate Bergstrom's results in aqueous suspensions, a number of similar probe molecules were used to prepare aqueous silicon nitride suspensions. It is apparent from the results shown in Table 1-1 that the solid volume fractions were not improved relative to loadings achieved by simple electrostatic stabilization of Si\textsubscript{3}N\textsubscript{4} in water. Although the amphoteric surface of silicon nitride tightly adsorbs either strongly acidic or basic molecules in non-aqueous suspensions, the deleterious effect of water is apparent in the values for solids loadings.

Table 1-1: Aqueous silicon nitride suspensions using substituted dispersants.

<table>
<thead>
<tr>
<th>Surfactant</th>
<th>Vol %</th>
<th>pH</th>
<th>drops NH\textsubscript{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>44</td>
<td>10.0</td>
<td>as required</td>
</tr>
<tr>
<td>S4</td>
<td>43</td>
<td>10.1</td>
<td>30</td>
</tr>
<tr>
<td>S5</td>
<td>44</td>
<td>10.3</td>
<td>51</td>
</tr>
<tr>
<td>S6*</td>
<td>39</td>
<td>10.1</td>
<td>33</td>
</tr>
<tr>
<td>S3</td>
<td>30</td>
<td>9.5</td>
<td>36</td>
</tr>
<tr>
<td>S7</td>
<td>44</td>
<td>10.1</td>
<td>76</td>
</tr>
<tr>
<td>S8</td>
<td>42.8</td>
<td>6.6</td>
<td>2</td>
</tr>
<tr>
<td>Agarose</td>
<td>41</td>
<td>10.1</td>
<td>as required</td>
</tr>
</tbody>
</table>
Dispersion Studies on Coated Si$_3$N$_4$

Although the above work was not an exhaustive survey of potential surfactants, the failure of the probe molecules in water indicates that the hydration of the silicon nitride surface prevents effective electrosteric stabilization with polymeric agents. It is known that the surface of the silicon nitride can be readily reduced using either weak organic acids or by heat treatment in an reducing atmosphere, thereby increasing its hydrophobicity. On the other hand, the surface can be oxidized using either oxide coatings or heat treating in an oxidizing atmosphere. Since coating offers the dual advantages of providing a surface that is like that of silica or alumina and a method by which other metal oxides may be added to the powder to improve sintering and/or densification, we chose to coat the surface of as-received Si$_3$N$_4$ powders with either aluminum or silicon oxide.

Initially, as-received silicon nitride powders were coated using a method based on the procedure of Tewari. Yttrium nitrate was dissolved in a stabilized aqueous suspension of Si$_3$N$_4$ to coat the particles and the nitrate layer was then converted to oxide, Figure 1-5. TEM imaging has shown the presence of an amorphous layer on the surface of particles, but, as shown in Table 1-2, the resulting loadings in aqueous suspension were not high. Samples of powders coated with metal nitrates performed no better in suspension than powders that had been electrostatically stabilized without dispersant. The coating is not complete nor fully converted to oxide as shown by high-resolution TEM analysis.

![Diagram of coating process](image)

Figure 1-5: Schematic of coating silicon nitride powders using metal nitrates.
Table 1-2: Summary of suspensions made using agarose as a gelling agent

<table>
<thead>
<tr>
<th>Dispersant</th>
<th>pH</th>
<th>Coating</th>
<th>Vol % agarose added</th>
<th>Vol % Si₃N₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>10.1</td>
<td>None</td>
<td>1.1</td>
<td>40.0</td>
</tr>
<tr>
<td>1.1 Wt % S3</td>
<td>8.0</td>
<td>None</td>
<td>2.0</td>
<td>35.5</td>
</tr>
<tr>
<td>None</td>
<td>9.5</td>
<td>Yes</td>
<td>2.0</td>
<td>34.9</td>
</tr>
<tr>
<td>1 Wt % S4</td>
<td>5.0</td>
<td>Yes</td>
<td>2.0</td>
<td>38.8</td>
</tr>
<tr>
<td>0.8 Wt % S3</td>
<td>8.5</td>
<td>Yes</td>
<td>2.0</td>
<td>34.0</td>
</tr>
</tbody>
</table>

To improve the quality of the oxide layer on the Si₃N₄ particles, we modified Tewari's procedure using aluminum sec-butoxide for alumina coatings and tetraethoxysilane (TEOS) for silica coatings. As shown in Figure 1-6, alumina was successfully deposited on the dispersed silicon nitride particles.

![Figure 1-6: TEM Images of alumina-coated silicon nitride particle.](image)

In Figure 1-7, the change in the ξ-potential of Si₃N₄ suspensions containing increasing amounts of TEOS indicates that the silicon nitride particles begin to resemble silicon oxide particles in suspension. An increasing amount of TEOS added tends to make the silicon nitride act more like silica until 0.09 grams is reached.
Figure 1-7: Electrophoretic mobility of silica-coated silicon nitride.

Diffuse reflectance IR spectroscopy of the silica-coated powder further indicates the existence of a silica layer on the silicon nitride particles, Figure 1-8. The presence of the shoulder near 1000 cm\(^{-1}\) indicates a modification of the surface of the powder. The decrease in hydroxyl content after calcining is apparent above 3000 cm\(^{-1}\); the absence of free silica indicates that the TEOS condensed on the surface of the silicon nitride and did not form silica particles in the original solution.

Figure 1-8: FTIR reflectance measurements on as-received, TEOS-coated, and TEOS-coated and calcined powders.
REFERENCES

INTRODUCTION

One of the key issues in the production of high-density, ceramic green bodies has been the development of slips with high-solids content. High energy agitation milling (HEAM) has been shown to be an effective and technically superior method in the preparation of high-solids-content slips. Since a large number of variables can affect the properties of a milled slip, an experimental program was developed to investigate the critical variables that influence the production of silicon nitride slips containing greater than 75% solids by weight (%wt). The milling process and resultant green bodies were studied to gain better understanding of the overall process. The physical aspects of milling have been coupled with continuing investigations into the surface chemistry of silicon nitride in various milling environments to develop a more complete view of the physico-chemical processes that are involved in the production of high solids content slips.

The production of ceramic green bodies with a high density (>67% of theoretical density) from a highly loaded slip is of considerable importance. Of further importance is the consistent production of high-solids-content slips with specific physical properties that will enhance the production of parts with desired mechanical properties. The particle size distribution (PSD), specific surface area (SSA), and interface chemistry parameters of the powder were measured for all tests that were conducted to determine the ultimate loading of the slip and density of the green ceramic. The tailoring of a particular size distribution can be greatly enhanced by the selection of surfactants type and concentration, and milling parameters. Previous work in our laboratory has shown that the choice of feed rate, mill speed, media size, media loading, solids loading, type of media, and duration of milling will affect the physical properties of the milled powder. The present work has been focused on using these data as the basis and build upon the study of two dispersants to obtain high solids loading for a specific set of milling parameters, and to evaluate the resulting slips and green ceramics. In addition to this, we have attempted to produce a slip with narrowly defined physical properties by tracking the median particle size measurements as a function of milling time. Correlation of the apparent spherical diameter with the specific surface area measured on milled powder has allowed the milling to be terminated and the resulting slip to be cast based on a predetermined specification of the median particle diameter and SSA.
OBJECTIVE

The objective of this investigation was the development of high density, fully dispersed, Si₃N₄ aqueous slips by the application of surface and colloid chemical characterization techniques to slips produced by HEAM. The SSA, PSD, and electrokinetic sonic amplitude (ESA) measurements were used to provide a detailed description of the complex physico-chemical interactions of the powders during the milling and casting processes.

EXPERIMENTAL

MATERIALS AND EQUIPMENT

A horizontally mounted high energy agitation ball mill (Model LME-1, Netzch Industries) loaded at 75% by mill volume with 2 mm hot pressed Si₃N₄ media (Tosch Industries) was used during the experiments. The slurry was prepared with a pre-blended mixture of SN-E-3, SN-E-5, and SN-E-10 (Ube Industries). The powder was mixed in a borosilicate beaker with distilled water using a constant velocity, high-shear mixer (Pioneer Mfg. Co.). A 4% by weight of Y₂O₃ (5600, Molycorp) was added as a sintering aid. The pH of the slurry was measured and adjusted as necessary with reagent grade HNO₃ or NH₄(OH). The slurry from the mill discharge was pumped through a 9-mm-ID (0.375 in.) urethane tubing (Nalgene) by a variable-speed peristaltic pump (Masterflex-Cole Palmer Co.) and was returned directly to the beaker.

The slurry was sampled at various pre-determined intervals during the milling process and dilute sub-samples were analyzed for their PSD using a laser light scattering instrument (LA-900, Horiba Instruments Company). The remaining sample not used for sizing was dried for SSA determination using an automated volumetric type BET instrument (Autosorb-1, Quantachrome Corp).

Surfactant concentrations were chosen based on residual total carbon analysis (Rosemont DC-80, Rosemont Instruments), Figures 2-1 and 2-2, from dilute slurries prepared at a specific pH and surfactant concentration. An ammonium salt of polyacrylic acid (PAA), Darvan 921A, (R. T. Vanderbilt Co.), and an ammonium salt of polymethacrylic acid (PMA), Daxad 32, (W. R. Grace) were used as dispersants.

MILLING PROCEDURE

A 2-kg-batch of the silicon nitride powder mixture was subdivided into 1 kg, 500 g, and two 250-g-samples for ease of addition. Five hundred cm³ of distilled water was mixed with ammonium hydroxide to increase the pH to 9.3. Next, the dispersant was added. Initially, 1 kg of the pre-blended powder was added while constantly stirring to produce a slurry of 66 wt% solids. The milling was begun with the mill rotational speed at an arbitrary low value until the slurry had made one pass through the mill. At this time the rotor speed was increased quickly to a predetermined set point, which was 2800 rpm in most tests. As the milled slurry thinned, due to particle size reduction and/or deagglomeration, the smaller sub-samples were added as quickly as
possible without causing a substantial decrease in either pumping rate or rotor speed. The Y$_2$O$_3$ was added either in a dry form or as an aged slurry in water after 20 minutes of silicon nitride powder milling. The aged slurry form of Y$_2$O$_3$ was prepared by adding the required amount of distilled water to the pre-weighed Y$_2$O$_3$ and shaking overnight. As the solids content to the slurry increased, more time was required between the additions of the additional silicon nitride. Extreme care was needed during the final additions as the viscosity of the slip could increase quickly, especially when the solids loading exceeded 75 wt%. Samples of the milled slurry were taken at predetermined intervals during each milling test and were either analyzed immediately or placed in a sample shaker overnight for PSD measurement. Subsamples were also dried for SSA analysis. Milling was conducted as quickly as possible in spite of the above mentioned constraint. When the desired median particle size was reached, milling was stopped and the slurry was removed for shipment to Saint-Gobain/Norton Industrial Ceramics. At NIST, the slip was cast into 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter pucks and 76.2 X 12.7 mm (3x0.5") bars.

RESULTS AND DISCUSSIONS

DISPERSCANTS EVALUATION

The two dispersants, Darvan 821 A and Daxad 32, were evaluated using ESA, particle size distribution, adsorption isotherms, and slip casting of the resulting suspensions. These studies were conducted using Ube SNE-3 as the model powder at 2% by volume in aqueous environment. The goal of this activity was to decide on which of these dispersants gives improved dispersion, and the most appropriate concentration of the dispersant to provide an optimum dispersion. The results of these tests indicated the following:

1. Very little adsorption of these dispersants took place at pH 9.0. At lower pH values, significantly more of the added dispersant adsorbed on the silicon nitride. Based on these and other results, we concluded that in alkaline pH range of 9.0, the primary stabilization mechanism is electrosteric. The results of adsorption isotherms at three pH values for the two dispersants are presented in Figures 2-1 and 2-2. According to these data, even at pH 3.5 only a small fraction of the dispersant added to the slip gets adsorbed on the particles.

2. The degree of dispersion was about the same irrespective of which one of these dispersants was used. An example of the degree of dispersion from the two dispersants is shown in Figure 2-3. At the appropriate concentration levels, both dispersants yield the same particle size distribution. Below these concentration levels the particle size distribution was coarser, and higher concentrations did not provide enhanced dispersion.

3. The optimum concentration for attaining the maximum dispersion or the finest particle size distribution for these dispersants was different. The respective optimum concentrations for Daxad 32 and
Darvan 821A were in the range of 300 and 640 ppm based on the weight of the powder suspension. The optimum concentration was determined from ESA and green density data. The ESA response of the powder-dispersant system as a function of the dispersant concentration is shown in Figure 2-4, while the green density data are presented in Table 2-1. Slips were prepared from 30% weight suspensions. The optimum concentration data obtained from ESA results is strictly true only when the adsorption of dispersants is governed strictly by the electrostatic interactions. We know at this time that adsorption in the alkaline pH range is not entirely due to electrostatic interactions. Therefore, these data provide only an indication of the optimum concentration for maximum dispersion. However, these data in conjunction with the green-density data in Table 2-1 confirm that the range of concentrations is approximately correct.

Table 2-1: Summary of green density data for two dispersants at different concentrations.

<table>
<thead>
<tr>
<th>Dispersant Conc. ppm</th>
<th>Green density, % Th.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Darvan 821A</td>
</tr>
<tr>
<td>240</td>
<td>62.3</td>
</tr>
<tr>
<td>640</td>
<td>63.0</td>
</tr>
<tr>
<td>800</td>
<td>63.4</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
</tr>
</tbody>
</table>

*Repeatability not as good as that for 821A

MILLING OF SILICON NITRIDE POWDER

Based on these data, we carried out the milling tests using Daxad 32 and Darvan 821A as dispersants at appropriate concentrations (300 ppm and 650 ppm for Daxad 32 and Darvan 821A, respectively) based on the weight of solids in the slip. A schematic of the experimental procedure shown in Figure 2-5 was used to gradually build the solids loading in the mill. As shown in this illustration, we start with approximately 65% by weight solids in the slip before any milling is initiated. The remaining powder is added to the slip during milling as the slip continues to deagglomerate. Therefore, depending on the amount of the powder to be added, longer milling time is needed to achieve higher solids loading. A number of variables were studied to achieve as high a solids loading as possible. The test results are summarized in Table 2-2. One of the early problems was related to more than desired decrease in the particle size distribution or higher than desired specific surface area of the final powder. This result was related to the requirement of longer milling times to add the extra powder to increase the solids loading to 80% by weight.
Figure 2-1. Adsorption isotherms of Darvan 821A at three different pH values.

Figure 2-2. Adsorption isotherms of Daxad 32 at three pH values.
Figure 2-3. Comparison of particle size distribution at pH 9.0 of SNE-3 using optimized concentrations of Daxad 32 and Darvan 821A.

Figure 2-4. Titration of Darvan 821A and Daxad 32 at pH 4.0 in presence of SNE-3. Interception of slopes at the break point indicates approximate optimum concentrations.
Figure 2-5. Schematic of slip preparation, sampling, and milling procedure. Note the addition points for powders.
Table 2-2. Summary of experimental parameters and the resulting powder characteristics.

<table>
<thead>
<tr>
<th>Test #</th>
<th>Final Solids % wt</th>
<th>Rotor Speed, rpm</th>
<th>Green Density, g/cm³</th>
<th>Dispersant, ppm</th>
<th>Size Data D25</th>
<th>D50</th>
<th>D75</th>
<th>SSA m²/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>74.8</td>
<td>2800</td>
<td>-</td>
<td>Daxad-32, 300</td>
<td>0.40</td>
<td>0.58</td>
<td>0.81</td>
<td>10.6</td>
</tr>
<tr>
<td>62</td>
<td>75</td>
<td>2800</td>
<td>2.28</td>
<td>Daxad-32, 300</td>
<td>0.40</td>
<td>0.58</td>
<td>0.82</td>
<td>10.1</td>
</tr>
<tr>
<td>63</td>
<td>75</td>
<td>2800</td>
<td>2.22</td>
<td>Daxad-32, 300</td>
<td>0.40</td>
<td>0.57</td>
<td>0.81</td>
<td>9.8</td>
</tr>
<tr>
<td>64</td>
<td>80</td>
<td>2800</td>
<td>2.22</td>
<td>Daxad-32, 300</td>
<td>0.39</td>
<td>0.38</td>
<td>0.79</td>
<td>11.3</td>
</tr>
<tr>
<td>65</td>
<td>75.3</td>
<td>2800</td>
<td>2.27</td>
<td>Daxad-32, 440</td>
<td>0.36</td>
<td>0.50</td>
<td>0.72</td>
<td>11.4</td>
</tr>
<tr>
<td>67</td>
<td>75.8, 77.5</td>
<td>2800</td>
<td>2.22</td>
<td>Daxad-32, 300</td>
<td>0.43</td>
<td>0.63</td>
<td>0.87</td>
<td>8.4</td>
</tr>
<tr>
<td>68</td>
<td>75.3</td>
<td>2800</td>
<td>2.22</td>
<td>Daxad-32, 300</td>
<td>0.59</td>
<td>0.88</td>
<td>1.24</td>
<td>9.7</td>
</tr>
<tr>
<td>69</td>
<td>75.6, 77.5</td>
<td>2800</td>
<td>1.95</td>
<td>Daxad-32, 1000</td>
<td>0.40</td>
<td>0.59</td>
<td>0.83</td>
<td>10.9</td>
</tr>
<tr>
<td>70</td>
<td>75.8</td>
<td>2800</td>
<td>2.13</td>
<td>Darvan-821A, 650</td>
<td>0.40</td>
<td>0.54</td>
<td>0.78</td>
<td>9.8</td>
</tr>
<tr>
<td>72</td>
<td>80.0, 74.9</td>
<td>1850, 1650</td>
<td>2.04</td>
<td>Darvan-821A, 350</td>
<td>0.50</td>
<td>0.79</td>
<td>0.94</td>
<td>7.4</td>
</tr>
</tbody>
</table>

EVALUATION OF MILLED SLIPS

The resulting slips were evaluated by the measurement of PSD, SSA, ESA, and green density. A summary of the properties of these slips is shown in Table 2-2. One special feature of these results is the high green density which is an evidence of a higher degree of dispersion of the slip milled in the HEAM. The slips were slip cast or CIPed followed by HIPing at St. Gobain-Norton. The flexural strength data from two of the tests are shown in Table 2-3. These values are smaller than those reported for this material by the St. Gobain Industrial Ceramics. The primary reason for the lower strength values is that HIP parameters may be different for green ceramics prepared by HEAM.
Table 2-3. Flexure strength data of HEAM milled slips.

<table>
<thead>
<tr>
<th>Test #</th>
<th>Flexural Strength, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NIST</td>
</tr>
<tr>
<td>1</td>
<td>690</td>
</tr>
<tr>
<td>2</td>
<td>603</td>
</tr>
<tr>
<td>56</td>
<td>-</td>
</tr>
<tr>
<td>59</td>
<td>-</td>
</tr>
</tbody>
</table>

SUMMARY AND CONCLUSIONS

The dispersant optimization tests conducted at low concentrations indicated that both Darvan 821A and Daxad 32 provide the same amount of dispersion. However, the optimum concentration to obtain the best dispersion was different for these dispersants due to the differences in their chemical compositions.

Using these results, milling tests were conducted using HEAM on a silicon nitride powder provided by Saint-Gobain/Norton Industrial Ceramics. In a number of tests, depending on the milling parameters, high solids concentration, as high as 80% by weight, was obtained.

The slips were evaluated at NIST and Saint-Gobain/Norton Industrial Ceramics. These slips produced high density green compacts. However, the HIP'ed densities and mechanical properties were not as high as those obtained from the conventionally milled slips. This difference is attributed to the fact that the HIP parameters used for these samples may not be the best for this purpose.
INTERNAL DISTRIBUTION

Central Research Library (2)
Document Reference Section
Laboratory Records Department (2)
Laboratory Records, ORNL RC
ORNL Patent Section
M&C Records Office (3)
L. F. Allard, Jr.
L. D. Armstrong
P. F. Becher
R. F. Bernal
T. M. Besmann
P. J. Blau
R. A. Bradley
K. Breder
C. R. Brinkman
V. R. Bullington
G. M. Caton
S. J. Chang
A. Choudhury
D. D. Conger
R. H. Cooper, Jr.
S. A. David
J. L. Ding
M. K. Ferber
R. L. Graves
D. L. Greene
H. W. Hayden, Jr.
E. E. Hoffman
C. R. Hubbard
M. A. Janney
D. R. Johnson (5)
D. Joslin
R. R. Judkins
M. A. Karnitz
B. L. Keyes
H. D. Kimrey, Jr.
W. Y. Lee
K. C. Liu
E. L. Long, Jr.
W. D. Manly
R. W. McClung
D. J. McGuire
T. A. Nolan
A. E. Pasto
K. P. Plucknett
M. H. Rawlins
M. L. Santella
A. C. Schaffhauser
E. J. Soderstrom
D. P. Stinton
R. W. Swindeman
T. N. Tiegs
B. H. West
S. G. Winslow
J. M. Wyrick
EXTERNAL DISTRIBUTION

Pioneering Research Info. Ctr.
E.I. DuPont de Nemours & Co.
Experimental Station
P.O. Box 80302
Wilmington DE 19880-0302

Jeffrey Abboud
U.S. Advanced Ceramics Assoc.
1600 Wilson Blvd., Suite 1008
Arlington VA 22209

James H. Adair
University of Florida
Materials Science & Engineering
317 MAE Bldg.
Gainesville FL 32611-2066

Donald F. Adams
University of Wyoming
Mechanical Engineering Dept.
P.O. Box 3295
Laramie WY 82071

Andrzej Aeamski
Materials Conversion Group
236-B Egidi Drive
Wheeling IL 60090

Jalees Ahmad
AdTech Systems Research Inc.
Solid Mechanics
1342 N. Fairfield Road
Dayton OH 45432-2698

Yoshio Akimune
NISSAN Motor Co., Ltd.
Materials Research Laboratory
1 Natsushima-Cho
Yokosuka 237
JAPAN

Mufit Akinc
Iowa State University
322 Spedding Hall
Ames IA 50011

Ilhan A. Aksay
Princeton University
A313 Engineering Quadrangle
Princeton NJ 08544-5263

Charles Aldridge
Heany Industries, Inc.
249 Briarwood Lane
Scottsville NY 14546

Joseph E. Amaral
Instron Corporation
Corporate Engineering Office
100 Royale Street
Canton MA 02021

Edward M. Anderson
Aluminum Company of America
N. American Industrial Chemical
P.O. Box 300
Bauxite AR 72011

Norman C. Anderson
Ceradyne, Inc.
Ceramic-to-Metal Division
3169 Redhill Avenue
Costa Mesa CA 92626

Don Anson
BCL
Thermal Power Systems
505 King Avenue
Columbus OH 43201-2693

Thomas Arbanas
G.B.C. Materials Corporation
580 Monastery Drive
Latrobe PA 15650-2698

Frank Armatis
3M Company
Building 60-1N-01
St. Paul MN 55144-1000
Everett B. Arnold
Detroit Diesel Corporation
Mechanical Systems Technology
13400 Outer Drive West
Detroit MI 48239-4001

Bertil Aronsson
Sandvik AB
S-12680
Stockholm Lerkrogsven 19
SWEDEN

Dennis Assanis
University of Michigan
Dept. of Mechanical Engineering
321 W.E. Lay, N.C.
Ann Arbor MI 48109

V. S. Avva
North Carolina A&T State Univ.
Dept. of Mechanical Engineering
Greensboro NC 27411

Patrick Badgley
Sky Technologies, Inc.
2815 Franklin Drive
Columbus IN 47201

Sunggi Baik
Pohang Institute Sci. & Tech.
P.O. Box 125
Pohang 790-600
KOREA

John M. Bailey
Consultant
Caterpillar, Inc.
P.O. Box 1875
Peoria IL 61656-1875

Bob Baker
Ceradyne, Inc.
3169 Redhill Avenue
Costa Mesa CA 92626

Frank Baker
Aluminum Company of America
Alcoa Technical Center
Alcoa Center PA 15069

Clifford P. Ballard
AlliedSignal Aerospace Company
Ceramics Program
P.O. Box 1021
Morristown NJ 07962-1021

B. P. Bandyopadhyay
ELID Team
Wako Campus
2-1 Hirosawa Wako-shi
Saitama 351-01
JAPAN

P. M. Barnard
Ruston Gas Turbines Limited
P.O. Box 1
Lincoln LN2 5DJ
ENGLAND

Harold N. Barr
Hittman Corporation
9190 Red Branch Road
Columbia MD 21045

Renald D. Bartoe
Vesuvius McDanel
510 Ninth Avenue
Box 560
Beaver Falls PA 15010-0560

David L. Baty
Babcock & Wilcox - LRC
P.O. Box 11165
Lynchburg VA 24506-1165

Donald F. Baxter, Jr.
ASM International
Advanced Materials & Processes
Materials Park OH 44073-0002

M. Brad Beardsley
Caterpillar Inc.
Technical Center Bldg. E
P.O. Box 1875
Peoria IL 61656-1875
John C. Bell
Shell Research Limited
Thornton Research Centre
P.O. Box 1
Chester CH1 3SH
ENGLAND

Larry D. Bentsen
BFGoodrich Company
R&D Center
9921 Brecksville Road
Brecksville OH 44141

Tom Bernecki
Northwestern University
1801 Maple Avenue
Evanston IL 60201-3135

Charles F. Bersch
Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria VA 22311

Ram Bhatt
NASA Lewis Research Center
21000 Brookpark Road
Cleveland OH 44135

Deane I. Biehler
Caterpillar Inc.
Engineering Research Materials
P.O. Box 1875, Bldg. E
Peoria IL 61656-1875

William D. Bjorndahl
TRW, Inc.
One Space Park, MS:R6-2188
Building 01, Room 2040
Redondo Beach CA 90278

Keith A. Blakely
Advanced Refractory Technologies, Inc.
699 Hertel Avenue
Buffalo NY 14207

Edward G. Blanchard
Netzsch Inc.
119 Pickering Way
Exton PA 19341

Bruce Boardman
Deere & Company Technical Ctr.
3300 River Drive
Moline IL 61265

Lawrence P. Boesch
EER Systems Corp.
1593 Spring Hill Road
Vienna VA 22182-2239

Donald H. Boone
Boone & Associates
2412 Cascade Drive
Walnut Creek CA 94598-4313

Tom Booth
AlliedSignal, Inc.
AiResearch Los Angeles Division
2525 West 190th Street
Torrance CA 90509-2960

Raj Bordia
University of Washington
Roberts Hall
Box 35212
Seattle WA 98195-2120

Tibor Bornemisza
Energy Technologies Applications, Inc.
5064 Caminito Vista Lujo
San Diego CA 92130-2846

J.A.M. Boulet
University of Tennessee
Engineering Science & Mechanics
Knoxville TN 37996-2030

Leslie J. Bowen
Materials Systems
53 Hillcrest Road
Concord MA 01742

Steven C. Boyce
Air Force Office of Scientific Research
AFOSR/NA Bldg. 410
Bolling ABF DC 20332-6448
Steve Bradley
UOP Research Center
50 E. Algonquin Road
Des Plaines IL 60017-6187

Michael C. Brands
Cummins Engine Company, Inc.
P.O. Box 3005, Mail Code 50179
Columbus IN 47201

Raymond J. Bratton
Westinghouse Science & Technology
1310 Beulah Road
Pittsburgh PA 15235

John J. Brennan
United Technologies Corporation
Silver Lane, MS:24
East Hartford CT 06108

Terrence K. Brog
Golden Technologies Company
4545 McIntyre Street
Golden CO 80403

Gunnar Broman
317 Fairlane Drive
Spartanburg SC 29302

Alan Brown
P.O. Box 882
Dayton NJ 08810

Jesse J. Brown
VPI & SU
Blacksburg VA 24061-0256

Sherman D. Brown
University of Illinois
Materials Science & Engineering
105 South Goodwin Avenue
Urbana IL 61801

S. L. Bruner
Ceramatec, Inc.
2425 South 900 West
Salt Lake City UT 84119

Walter Bryzik
U.S. Army Tank Automotive
Command
R&D Center, Propulsion Systems
Warren MI 48397-5000

Curt V. Burkland
AMERCOM, Inc.
8928 Fullbright Avenue
Chatsworth CA 91311

Bill Bustamante
AMERCOM, Inc.
8928 Fullbright Avenue
Chatsworth CA 91311

Oral Buyukozturk
Massachusetts Institute of
Technology
77 Massachusetts Ave., Rm 1-280
Cambridge MA 02139

David A. Caillet
Ethyl Corporation
451 Florida Street
Baton Rouge LA 70801

Roger Cannon
Rutgers University
P.O. Box 909
Piscataway NJ 08855-0909

Scott Cannon
P.O. Box 567254
Atlanta GA 30356

Harry W. Carpenter
1844 Fuerte Street
Fallbrook CA 92028

David Carruthers
Kyocera Industrial Ceramics
P.O. Box 2279
Vancouver WA 98668-2279

Calvin H. Carter, Jr.
Cree Research, Inc.
2810 Meridian Parkway
Durham NC 27713
J. David Casey
35 Atlantis Street
West Roxbury MA 02132

Jere G. Castor
J. C. Enterprise
5078 N. 83rd Street
Scottsdale AZ 85250

James D. Cawley
Case Western Reserve University
Materials Science & Engineering
Cleveland OH 44106

Thomas C. Chadwick
Den-Mat Corporation
P.O. Box 1729
Santa Maria CA 93456

Ronald H. Chand
Chand Kare Technical Ceramics
2 Coppage Drive
Worcester MA 01603-1252

William Chapman
Williams International Corp.
2280 W. Maple Road
Walled Lake MI 48390-0200

Ching-Fong Chen
LECO Corporation
3000 Lakeview Avenue
St. Joseph MI 49085

William J. Chmura
Torrington Company
59 Field Street
Torrington CT 06790-4942

Tsu-Wei Chou
University of Delaware
201 Spencer Laboratory
Newark DE 19716

R. J. Christopher
Ricardo Consulting Engineers
Bridge Works
Shoreham-By-Sea W. Sussex
BN435FG ENGLAND

Joel P. Clark
Massachusetts Institute of Technology
Room 8-409
Cambridge MA 02139

Giorgio Clarotti
Commission of the European Comm
DGXII-C3, MO75, 1-53;
200 Rue de la Loi
B-1049 Brussels
BELGIUM

W. J. Clegg
ICI Advanced Materials
P.O. Box 11, The Heath
Runcorn Cheshire WA7 4QE
ENGLAND

William S. Coblenz
Adv. Research Projects Agency
3701 N. Fairfax Drive
Arlington VA 22203

Gloria M. Collins
ASTM
1916 Race Street
Philadelphia PA 19103

William C. Connors
Sundstrand Aviation Operations
Materials Science & Engineering
4747 Harrison Avenue
Rockford IL 61125-7002

John A. Coppola
Carborundum Company
Niagara Falls R&D Center
P.O. Box 832
Niagara Falls NY 14302

Normand D. Corbin
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545
<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Department</th>
<th>Address</th>
<th>City, State, Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Corey</td>
<td>AlliedSignal, Inc.</td>
<td>2525 West 190th Street, MS:T52</td>
<td>Torrance CA 90504-6099</td>
</tr>
<tr>
<td>Keith P. Costello</td>
<td>Chand/Kare Technical Ceramics</td>
<td>2 Coppage Drive</td>
<td>Worcester MA 01603-1252</td>
</tr>
<tr>
<td>Ed L. Courtright</td>
<td>Pacific Northwest Laboratory</td>
<td>MS:K3-59</td>
<td>Richland WA 99352</td>
</tr>
<tr>
<td>Anna Cox</td>
<td>Mitchell Market Reports</td>
<td>P.O. Box 23</td>
<td>Monmouth Gwent NP5 4YG</td>
</tr>
<tr>
<td>J. Wesley Cox</td>
<td>BIRL</td>
<td>1801 Maple Avenue</td>
<td>Evanston IL 60201-3135</td>
</tr>
<tr>
<td>Art Cozens</td>
<td>Instron Corporation</td>
<td>3414 Snowden Avenue</td>
<td>Long Beach CA 90808</td>
</tr>
<tr>
<td>Mark Crawford</td>
<td>New Technology Week</td>
<td>4604 Monterey Drive</td>
<td>Annandale VA 22003</td>
</tr>
<tr>
<td>Richard A. Cree</td>
<td>Markets & Products, Inc.</td>
<td>P.O. Box 14328</td>
<td>Columbus OH 43214-0328</td>
</tr>
<tr>
<td>Les Crittenden</td>
<td>Vesuvius McDanel</td>
<td>Box 560</td>
<td>Beaver Falls PA 15010</td>
</tr>
<tr>
<td>M. J. Cronin</td>
<td>Mechanical Technology, Inc.</td>
<td>968 Albany-Shaker Road</td>
<td>Latham NY 12110</td>
</tr>
<tr>
<td>Gary M. Crosbie</td>
<td>Ford Motor Company</td>
<td>20000 Rotunda Drive</td>
<td>Dearborn MI 48121-2053</td>
</tr>
<tr>
<td>Floyd W. Crouse, Jr.</td>
<td>U.S. Department of Energy</td>
<td>Morgantown Energy Tech. Ctr.</td>
<td>P.O. Box 880</td>
</tr>
<tr>
<td>John Cuccio</td>
<td>AlliedSignal Engines</td>
<td>P.O. Box 52180, MS:1302-2Q</td>
<td>Phoenix AZ 85072-2180</td>
</tr>
<tr>
<td>Stephen C. Danforth</td>
<td>Rutgers University</td>
<td>P.O. Box 909</td>
<td>Piscataway NJ 08855-0909</td>
</tr>
<tr>
<td>Sankar Das Gupta</td>
<td>Electrofuel Manufacturing Co.</td>
<td>9 Hanna Avenue</td>
<td>Toronto Ontario MGK-1W8</td>
</tr>
<tr>
<td>Frank Davis</td>
<td>AlliedSignal Aerospace Company</td>
<td>7550 Lucerne Drive, #203</td>
<td>Middleburg Heights OH 44130</td>
</tr>
<tr>
<td>Robert F. Davis</td>
<td>North Carolina State University</td>
<td>Materials Engineering Department</td>
<td>Raleigh NC 27695</td>
</tr>
<tr>
<td>George C. DeBell</td>
<td>Ford Motor Company</td>
<td>Scientific Research Lab</td>
<td>P.O. Box 2053, Room S2023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dearborn MI 48121-2053</td>
</tr>
</tbody>
</table>
Michael DeLuca
RSA Research Group
1534 Claas Ave.
Holbrook NY 11741

Gerald L. DePoorter
Colorado School of Mines
Metallurgical & Materials Engr
Golden CO 80401

J. F. DeRidder
Omni Electro Motive, Inc.
12 Seely Hill Road
Newfield NY 14867

Nick C. Dellow
Materials Technology Publications
40 Sotheron Road
Watford Herts WD1 2QA
UNITED KINGDOM

L. R. Dharani
University of Missouri-Rolla
224 M.E.
Rolla MO 65401

Douglas A. Dickerson
Union Carbide Specialty Powders
1555 Main Street
Indianapolis IN 46224

John Dodsworth
Vesuvius Research & Development
Technical Ceramics Group
Box 560
Beaver Falls PA 15010

B. Dogan
Institut fur Werkstoffforschung
GKSS-Forschungszentrum Geestacht
Max-Planck-Strasse
D-2054 Geestacht
GERMANY

Alan Dragoo
U.S. Department of Energy
ER-131, MS:F-240
Washington DC 20817

Jean-Marie Drapier
FN Moteurs S.A.
Material and Processing
B-4041 Milmort (Herstal)
BELGIUM

Kenneth C. Dreitlein
United Technologies Res. Ctr.
Silver Lane
East Hartford CT 06108

Robin A. L. Drew
McGill University
3450 University Street
Montreal Quebec H3A 2A7
CANADA

Winston H. Duckworth
BCL
Columbus Division
505 King Avenue
Columbus OH 43201-2693

Ernest J. Duwell
3M Abrasive Systems Division
3M Center
St. Paul MN 55144-1000

Chuck J. Dziedzic
GTC Process Forming Systems
4545 McIntyre Street
Golden CO 80403

Robert J. Eagan
Sandia National Laboratories
Engineered Mater. & Proc.
P.O. Box 5800
Albuquerque NM 87185-5800

Harry E. Eaton
United Technologies Corporation
Silver Lane
East Hartford CT 06108

Harvill C. Eaton
Louisiana State University
240 Thomas Boyd Hall
Baton Rouge LA 70803
J. J. Eberhardt
U.S. Department of Energy
Office of Transportation Mater.
CE-34, Forrestal Building
Washington DC 20585

Jim Edler
Eaton Corporation
26201 Northwestern Highway
P.O. Box 766
Southfield MI 48037

G. A. Eisman
Dow Chemical Company
Ceramics and Advanced Materials
52 Building
Midland MI 48667

William A. Ellingson
Argonne National Laboratory
Energy Technology Division
9700 S. Cass Avenue
Argonne IL 60439

Anita Kaye M. Ellis
Machined Ceramics
629 N. Graham Street
Bowling Green KY 42101

Glen B. Engle
Nuclear & Aerospace Materials
16716 Martincoit Road
Poway CA 92064

Kenneth A. Epstein
Dow Chemical Company
2030 Building
Midland MI 48674

Art Erdemir
Argonne National Laboratory
9700 S. Cass Avenue
Argonne IL 60439

E. M. Erwin
Lubrizol Corporation
17710 Riverside Drive
Lakewood OH 44107

John N. Eustis
U.S. Department of Energy
Industrial Energy Efficiency
CE-221, Forrestal Building
Washington DC 20585

W. L. Everitt
Kyocera International, Inc.
8611 Balboa Avenue
San Diego CA 92123

Gordon Q. Evison
332 S. Michigan Avenue
Suite 1730
Chicago IL 60604

John W. Fairbanks
U.S. Department of Energy
Office of Propulsion Systems
CE-322, Forrestal Building
Washington DC 20585

Tim Fawcett
Dow Chemical Company
Advanced Ceramics Laboratory
1776 Building
Midland MI 48674

Robert W. Fawley
Sundstrand Power Systems
Div. of Sundstrand Corporation
P.O. Box 85757
San Diego CA 92186-5757

Jeff T. Fenton
Vista Chemical Company
900 Threadneedle
Houston TX 77079

Larry Ferrell
Babcock & Wilcox
Old Forest Road
Lynchburg VA 24505

Raymond R. Fessler
BIRL
1801 Maple Avenue
Evanston IL 60201
D. Gerster
CEA-D.COM
33 Rue De La Federation
Paris 75015
FRANCE

John Ghinazzi
Coors Technical Ceramics Co.
1100 Commerce Park Drive
Oak Ridge TN 37830

Robert Giddings
General Electric Company
P.O. Box 8
Schenectady NY 12301

A. M. Glaeser
University of California
Lawrence Berkeley Laboratory
Hearst Mining Building
Berkeley CA 94720

Joseph W. Glatz
510 Rocksville Road
Holland PA 18966

W. M. Goldberger
Superior Graphite Company
R&D
2175 E. Broad Street
Columbus OH 43209

Allan E. Goldman
U.S. Graphite, Inc.
907 W. Outer Drive
Oak Ridge TN 37830

Stephen T. Gonczy
Allied Signal Research
P.O. Box 5016
Des Plaines IL 60017

Robert J. Gottschall
U.S. Department of Energy
ER-131, MS:G-236
Washington DC 20585

Earl Graham
Cleveland State University
Dept. of Chemical Engineering
Euclid Avenue at East 24th St.
Cleveland OH 44115

John W. Graham
Astro Met, Inc.
9974 Springfield Pike
Cincinnati OH 45215

G. A. Graves
U. of Dayton Research Institute
300 College Park
Dayton OH 45469-0001

Robert E. Green, Jr.
Johns Hopkins University
Mater. Sci. and Engineering
Baltimore MD 21218

Alex A. Greiner
Plint & Partners
Oaklands Park
Wokingham Berkshire RG11 2FD
UNITED KINGDOM

Lance Groseclose
Allison Engine Company
P.O. Box 420, MS:W-5
Indianapolis IN 46206

Thomas J. Gross
U.S. Department of Energy
Transportation Technologies
CE-30, Forrestal Building
Washington DC 20585

Mark F. Gruninger
Union Carbide Corporation
Specialty Powder Business
1555 Main Street
Indianapolis IN 46224

Ernst Gugel
Cremer Forschungsinstitut GmbH&Co.KG
Oeslauer Strasse 35
D-8633 Roedental 8633
GERMANY
John P. Gyekenyesi
NASA Lewis Research Center
21000 Brookpark Road, MS:6-1
Cleveland OH 44135

Nabil S. Hakim
Detroit Diesel Corporation
13400 Outer Drive West
Detroit MI 48239

Philip J. Haley
Allison Engine Company
P.O. Box 420, MS:T12A
Indianapolis IN 46206-0420

Judith Hall
Fiber Materials, Inc.
Biddeford Industrial Park
5 Morin Street
Biddeford ME 04005

Y. Hamano
Kyocera Industrial Ceramics
5713 E. Fourth Plain Blvd.
Vancouver WA 98661-6857

Y. Harada
IIT Research Institute
10 West 35th Street
Chicago IL 60616

Norman H. Harris
Hughes Aircraft Company
P.O. Box 800520
Saugus CA 91380-0520

Alan M. Hart
Dow Chemical Company
1776 Building
Midland MI 48674

Pat E. Hart
Battelle Pacific Northwest Labs
Ceramics and Polymers Development
P.O. Box 999
Richland WA 99352

Michael H. Haselkorn
Caterpillar Inc.
Technical Center, Building E
P.O. Box 1875
Peoria IL 61656-1875

Debbie Haught
U.S. Department of Energy
Off. of Transportation Mater.
EE-34, Forrestal Bldg.
Washington DC 20585

N. B. Havewala
Corning Inc.
SP-PR-11
Corning NY 14831

John Haygarth
Teledyne WAA Chang Albany
P.O. Box 460
Albany OR 97321

Norman L. Hecht
U. of Dayton Research Institute
300 College Park
Dayton OH 45469-0172

Peter W. Heitman
Allison Engine Company
P.O. Box 420, MS:W-5
Indianapolis IN 46206-0420

Robert W. Hendricks
VPI & SU
210 Holden Hall
Blacksburg VA 24061-0237

Thomas P. Herbell
NASA Lewis Research Center
21000 Brookpark Road, MS:49-3
Cleveland OH 44135

Robert L. Hershey
Science Management Corporation
1255 New Hampshire Ave., N.W.
Suite 1033
Washington DC 20036
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hendrik Heystek</td>
<td>Bureau of Mines</td>
<td>Tuscaloosa Research Center, P.O. Box L, University AL 35486</td>
</tr>
<tr>
<td>Robert V. Hillery</td>
<td>GE Aircraft Engines</td>
<td>One Neumann Way, M.D. H85, Cincinnati OH 45215</td>
</tr>
<tr>
<td>Arthur Hindman</td>
<td>Instron Corporation</td>
<td>100 Royall Street, Canton MA 02021</td>
</tr>
<tr>
<td>Shinichi Hirano</td>
<td>Mazda R&D of North America</td>
<td>1203 Woodridge Avenue, Ann Arbor MI 48105</td>
</tr>
<tr>
<td>Tommy Hiraoka</td>
<td>NGK Locke, Inc.</td>
<td>1000 Town Center, Southfield MI 48075</td>
</tr>
<tr>
<td>Fu H. Ho</td>
<td></td>
<td>5645 Soledad Mtn. Road, San Diego, CA 92037-7256</td>
</tr>
<tr>
<td>John M. Hobday</td>
<td>U.S. Department of Energy</td>
<td>Morgantown Energy Tech. Ctr., P.O. Box 880, Morgantown WV 26507</td>
</tr>
<tr>
<td>Clarence Hoenig</td>
<td>Lawrence Livermore National Lab</td>
<td>P.O. Box 808, Mail Code L-369, Livermore CA 94550</td>
</tr>
<tr>
<td>Thomas Hollstein</td>
<td>Fraunhofer-Institut fur Werkstoffmechanik</td>
<td>Wohlerstrasse 11, D-79108 Freiburg, GERMANY</td>
</tr>
<tr>
<td>Richard Holt</td>
<td>Natl. Research Council Canada</td>
<td>Structures and Materials Lab, Ottawa Ontario K1A OR6, CANADA</td>
</tr>
<tr>
<td>Woodie Howe</td>
<td>Coors Technical Ceramics</td>
<td>1100 Commerce Park Drive, Oak Ridge TN 37830</td>
</tr>
<tr>
<td>Stephen M. Hsu</td>
<td>NIST</td>
<td>Gaithersburg MD 20899</td>
</tr>
<tr>
<td>Hann S. Huang</td>
<td>Argonne National Laboratory</td>
<td>9700 S. Cass Avenue, Argonne IL 60439-4815</td>
</tr>
<tr>
<td>Gene Huber</td>
<td>Precision Ferrites & Ceramics</td>
<td>5576 Corporate Drive, Cypress CA 90630</td>
</tr>
<tr>
<td>Fred R. Huettic</td>
<td>Advanced Magnetics Inc.</td>
<td>45 Corey Lane, Mendham NJ 07945</td>
</tr>
<tr>
<td>Brian K. Humphrey</td>
<td>Lubrizol Petroleum Chemicals</td>
<td>3000 Town Center, Suite 1340, Southfield MI 48075-1201</td>
</tr>
<tr>
<td>Robert M. Humrick</td>
<td>Dylon Ceramic Technologies</td>
<td>3100 Edgehill Road, Cleveland Heights OH 44118</td>
</tr>
<tr>
<td>Michael S. Inoue</td>
<td>Kyocera International, Inc.</td>
<td>8611 Balboa Avenue, San Diego CA 92123-1580</td>
</tr>
</tbody>
</table>
Osama Jadaan
U. of Wisconsin-Platteville
1 University Plaza
Platteville WI 53818

Said Jahannmir
NIST
Materials Bldg., Room A-237
Gaithersburg MD 20899

Curtis A. Johnson
General Electric Company
P.O. Box 8
Schenectady NY 12301

Sylvia Johnson
SRI International
333 Ravenswood Avenue
Menlo Park CA 94025

Thomas A. Johnson
Lanxide Corporation
P.O. Box 6077
Newark DE 19714-6077

Walter F. Jones
AFOSR/NA
110 Duncan Ave., Ste. B115
Washington DC 20332-0001

Jill E. Jonkouski
U.S. Department of Energy
9800 S. Cass Avenue
Argonne IL 60439-4899

L. A. Joo
Great Lakes Research Corporation
P.O. Box 1031
Elizabethtown TN 37643

Adam Jostsons
Australian Nuclear Science & Technology
New Illawarra Road
Lucas Heights New South Wales
AUSTRALIA

Lyle R. Kallenbach
Phillips Petroleum
Mail Drop:123AL
Bartlesville OK 74004

Nick Kamiya
Kyocera Industrial Ceramics Corp.
25 NW Point Blvd., #450
Elk Grove Village IL 60007

Roy Kamo
Adiabatics, Inc.
3385 Commerce Park Drive
Columbus IN 47201

Chih-Chun Kao
Industrial Technology Research Institute
195 Chung-Hsing Road, Sec. 4
Chutung Hsinchu 31015 R.O.C.
TAIWAN

Keith R. Karasek
AlliedSignal Aerospace Company
50 E. Algonquin Road
Des Plaines IL 60017-5016

Robert E. Kassel
Ceradyne, Inc.
3169 Redhill Avenue
Costa Mesa CA 92626

Allan Katz
Wright Laboratory
Metals and Ceramics Division
Wright-Patterson AFB OH 45433

R. Nathan Katz
Worcester Polytechnic Institute
100 Institute Road
Worcester MA 01609

Ted Kawaguchi
Tokai Carbon America, Inc.
375 Park Avenue, Suite 3802
New York NY 10152
Noritsugu Kawashima
TOSHIBA Corporation
4-1 Ukishima-Cho
Kawasaki-Ku Kawasaki, 210
JAPAN

Lisa Kempfer
Penton Publishing
1100 Superior Avenue
Cleveland OH 44114-2543

Frederick L. Kennard, III
Delphi Energy & Engine Mgmt. Systems
Division of General Motors
1300 N. Dort Highway
Flint MI 48556

David O. Kennedy
Lester B. Knight Cast Metals
549 W. Randolph Street
Chicago IL 60661

George Keros
Photon Physics
3175 Penobscot Building
Detroit MI 48226

Thomas Ketcham
Corning, Inc.
SP-DV-1-9
Corning NY 14831

Pramod K. Khandelwal
Allison Engine Company
P.O. Box 420, MS:T10B
Indianapolis IN 46206

Jim R. Kidwell
AlliedSignal Engines
P.O. Box 52180
Phoenix AZ 85072-2180

Shin Kim
The E-Land Group
19-8 ChangJeon-dong
Mapo-gu, Seoul 121-190
KOREA

W. C. King
Mack Truck, Z-41
1999 Pennsylvania Avenue
Hagerstown MD 21740

Carroll Kirkpatrick
MSE, Inc.
P.O. Box 3767
Butte MT 59702

Tony Kim
Caterpillar Inc.
Defense Products Dept., JB7
Peoria IL 61629

James D. Kiser
NASA Lewis Research Center
21000 Brookpark Road, MS:49-3
Cleveland OH 44135

Max Klein
900 24th Street, N.W., Unit G
Washington DC 20037

Richard N. Kleiner
Golden Technologies Company
4545 McIntyre Street
Golden CO 80403

Stanley J. Klima
NASA Lewis Research Center
21000 Brookpark Road, MS:6-1
Cleveland OH 44135

Albert S. Kobayashi
University of Washington
Mechanical Engineering Dept.
Mail Stop:FU10
Seattle WA 98195

Shigeki Kobayashi
Toyota Central Research Labs
Nagakute Aichi, 480-11
JAPAN

Richard A. Kole
Z-Tech Corporation
8 Dow Road
Bow NH 03304
Joseph A. Kovach
Eaton Corporation
32500 Chardon Road
Willoughby Hills OH 44094

Kenneth A. Kovaly
Technical Insights Inc.
P.O. Box 1304
Fort Lee NJ 07024-9967

Edwin H. Kraft
Kyocera Industrial Ceramics
5713 E. Fourth Plain Boulevard
Vancouver WA 98661

Arthur Kranish
Trends Publishing Inc.
1079 National Press Building
Washington DC 20045

A. S. Krieger
Radiation Science, Inc.
P.O. Box 293
Belmont MA 02178

Pieter Krijgsman
Ceramic Design International Holding
B.V.
P.O. Box 68
Hattem 8050-AB
THE NETHERLANDS

Waltraud M. Kriven
University of Illinois
105 S. Goodwin Avenue
Urbana IL 61801

Edward J. Kubel, Jr.
ASM International
Advanced Materials & Processes
Materials Park OH 44073

Dave Kupperman
Argonne National Laboratory
9700 S. Cass Avenue
Argonne IL 60439

Oh-Hun Kwon
North Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

W. J. Lackey
GTRI
Materials Science and Tech. Lab
Atlanta GA 30332

Jai Lala
Tenmat Ltd.
40 Somers Road
Rugby Warwickshire CV22 7DH
ENGLAND

Hari S. Lamba
General Motors Corporation
9301 West 55th Street
LaGrange IL 60525

Richard L. Landingham
Lawrence Livermore National Lab
P.O. Box 808, L-369
Livermore CA 94550

James Lankford
Southwest Research Institute
6220 Culebra Road
San Antonio TX 78228-0510

Stanley B. Lasday
Business News Publishing Co.
1910 Cochran Road, Suite 630
Pittsburgh PA 15220

S. K. Lau
Carborundum Company
Technology Division
P.O. Box 832, B-100
Niagara Falls NY 14302

J. Lawrence Lauderdale
Babcock & Wilcox
1525 Wilson Blvd., #100
Arlington VA 22209-2411
Jean F. LeCostoulec
Textron Specialty Materials
2 Industrial Avenue
Lowell MA 01851

Benson P. Lee
Technology Management, Inc.
4440 Warrensville Rd., Suite A
Cleveland OH 44128

Burtrand I. Lee
Clemson University
Olin Hall
Clemson SC 29634-0907

June-Gunn Lee
KIST
P.O. Box 131, Cheong-Ryang
Seoul 130-650
KOREA

Stan Levine
NASA Lewis Research Center
21000 Brookpark Road, MS:49-3
Cleveland OH 44135

David Lewis, III
Naval Research Laboratory
Code 6370
Washington DC 20375-5343

Ai-Kang Li
Materials Research Labs., ITRI
195-5 Chung-Hsing Road, Sec. 4
Chutung Hsinchu 31015 R.O.C.
TAIWAN

Robert H. Licht
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

E. Lilley
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

Chih-Kuang Lin
National Central University
Dept. of Mechanical Engineering
Chung-Li 32054
TAIWAN

Laura J. Lindberg
AlliedSignal Aerospace Company
Garrett Fluid Systems Division
P.O. Box 22200
Tempe AZ 85284-2200

Hans A. Lindner
Cremer Forschungsinstitut GmbH&Co.KG
Oeslauer Strasse 35
D-8633 Rodental 8866
GERMANY

Ronald E. Loehman
Sandia National Laboratories
Chemistry & Ceramics Dept. 1840
P.O. Box 5800
Albuquerque NM 87185

Bill Long
Babcock & Wilcox
P.O. Box 11165
Lynchburg VA 24506

L. A. Lott
EG&G Idaho, Inc.
Idaho National Engineering Lab
P.O. Box 1625
Idaho Falls ID 83415-2209

Raouf O. Loufty
MER Corporation
7960 S. Kolb Road
Tucson AZ 85706

Lydia Luckevich
Ortech International
2395 Speakman Drive
Mississauga Ontario L5K 1B3
CANADA
James W. MacBeth
Carborundum Company
Structural Ceramics Division
P.O. Box 1054
Niagara Falls NY 14302

George Maczura
Aluminum Company of America
3450 Park Lane Drive
Pittsburgh PA 15275-1119

David Maginnis
Tinker AFB
OC-ALC/LIIRE
Tinker AFB OK 73145-5989

Frank Maginnis
Aspen Research, Inc.
220 Industrial Boulevard
Moore OK 73160

Tai-il Mah
Universal Energy Systems, Inc.
4401 Dayton-Xenia Road
Dayton OH 45432

Kenneth M. Maillar
Barbour Stockwell Company
83 Linskey Way
Cambridge MA 02142

S. G. Malghan
NIST
1-270 & Clopper Road
Gaithersburg MD 20899

Lars Malmrup
United Turbine AB
Box 13027
Malmo S-200 44
SWEDEN

John Mangels
Ceradyne, Inc.
3169 Redhill Avenue
Costa Mesa CA 92626

Murli Manghnani
University of Hawaii
2525 Correa Road
Honolulu HI 96822

Russell V. Mann
Matec Applied Sciences, Inc.
75 South Street
Hopkinton MA 01748

William R. Manning
Champion Aviation Products Div
P.O. Box 686
Liberty SC 29657

Ken Marnoch
Amercom, Inc.
8928 Fullbright Avenue
Chatsworth CA 91311

Robert A. Marra
Aluminum Company of America
Alcoa Technical Center
Alcoa Center PA 15069

Steve C. Martin
Advanced Refractory Technologies
699 Hertel Avenue
Buffalo NY 14207

Kelly J. Mather
William International Corp.
2280 W. Maple Road
Walled Lake MI 48088

James P. Mathers
3M Company
3M Center, Bldg. 201-3N-06
St. Paul MN 55144

Ron Mayville
Arthur D. Little, Inc.
15-163 Acorn Park
Cambridge MA 02140

F. N. Mazadarany
General Electric Company
Bldg. K-1, Room MB-139
P.O. Box 8
Schenectady NY 12301
James W. McCauley
Alfred University
Binns-Merrill Hall
Alfred NY 14802

Colin F. McDonald
McDonald Thermal Engineering
1730 Castellana Road
La Jolla CA 92037

B. J. McEntire
Norton Company
10 Airport Park Road
East Granby CT 06026

Chuck McFadden
Coors Ceramics Company
600 9th Street
Golden CO 80401

Thomas D. McGee
Iowa State University
110 Engineering Annex
Ames IA 50011

James McLaughlin
Sundstrand Power Systems
4400 Ruffin Road
P.O. Box 85757
San Diego CA 92186-5757

Matt McMonigle
U.S. Department of Energy
Improved Energy Productivity
CE-231, Forrestal Building
Washington DC 20585

J. C. McVickers
AlliedSignal Engines
P.O. Box 52180, MS:9317-2
Phoenix AZ 85072-2180

D. B. Meadowcroft
"Jura," The Ridgeway
Oxshott
Leatherhead Surrey KT22 OLG
UNITED KINGDOM

Joseph J. Meindl
Reynolds International, Inc.
6603 W. Broad Street
P.O. Box 27002
Richmond VA 23261-7003

Michael D. Meiser
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

George Messenger
National Research Council of Canada
Building M-7
Ottawa Ontario K1A OR6
CANADA

Arthur G. Metcalfe
Arthur G. Metcalfe & Assoc.
2108 East 24th Street
National City CA 91950

R. Metselaar
Eindhoven University
P.O. Box 513
Endhoven 5600 MB
THE NETHERLANDS

David J. Michael
Harbison-Walker Refractories
P.O. Box 98037
Pittsburgh PA 15227

Ken Michaels
Chrysler Motors Corporation
P.O. Box 1118, CIMS:418-17-09
Detroit MI 48288

Bernd Michel
Institute of Mechanics
P.O. Box 408
D-9010 Chemnitz
GERMANY
D. E. Miles
Commission of the European Community
rue de la Loi 200
B-1049 Brussels
BELGIUM

Carl E. Miller
AC Rochester
1300 N. Dort Highway, MS:32-31
Flint MI 48556

Charles W. Miller, Jr.
Centorr Furnaces/Vacuum Industries
542 Amherst Street
Nashua NH 03063

R. Minimmi
Enichem America
2000 Cornwall Road
Monmouth Junction NJ 08852

Michele V. Mitchell
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

Howard Mizuhara
WESGO
477 Harbor Boulevard
Belmont CA 94002

Helen Moeller
Babcock & Wilcox
P.O. Box 11165
Lynchburg VA 24506-1165

Francois R. Mollard
Concurrent Technologies Corp.
1450 Scalp Avenue
Johnstown PA 15904-3374

Phil Mooney
Panametrics
221 Crescent Street
Waltham MA 02254

Geoffrey P. Morris
3M Company
3M Traffic Control Materials
Bldg. 209-BW-10, 3M Center
St. Paul MN 55144-1000

Jay A. Morrison
Rolls-Royce, Inc.
2849 Paces Ferry Rd., Suite 450
Atlanta GA 30339-3769

Joel P. Moskowitz
Ceradyne, Inc.
3169 Redhill Avenue
Costa Mesa CA 92626

Brij Moudgil
University of Florida
Material Science & Engineering
Gainesville FL 32611

Christoph J. Mueller
Sprechsaal Publishing Group
P.O. Box 2962, Mauer 2
D-8630 Coburg
GERMANY

Thomas W. Mullan
Vapor Technologies Inc.
345 Route 17 South
Upper Saddle River NJ 07458

Theresa A. Mursick-Meyer
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

M. K. Murthy
MkM Consultants International
10 Avoca Avenue, Unit 1906
Toronto Ontario M4T 2B7
CANADA

David L. Mustoe
Custom Technical Ceramics
8041 W I-70 Service Rd. Unit 6
Arvada CO 80002
Curtis V. Nakaishi
U.S. Department of Energy
Morgantown Energy Tech. Ctr.
P.O. Box 880
Morgantown WV 26507-0880

Yoshio Nakamura
Faicera Research Institute
3-11-12 Misono
Sagamihara, Tokyo
JAPAN

K. S. Narasimhan
Hoeganaes Corporation
River Road
Riverton NJ 08077

Robert Naum
Applied Resources, Inc.
P.O. Box 241
Pittsford NY 14534

Malcolm Naylor
Cummins Engine Company, Inc.
P.O. Box 3005, Mail Code 50183
Columbus IN 47202-3005

Fred A. Nichols
Argonne National Laboratory
9700 S. Cass Avenue
Argonne IL 60439

H. Nickel
Forschungszentrum Juelich (KFA)
Postfach 1913
D-52425 Juelich
GERMANY

Dale E. Niesz
Rutgers University
Center for Ceramic Research
P.O. Box 909
Piscataway NJ 08855-0909

Paul W. Niskanen
Lanxide Corporation
P.O. Box 6077
Newark DE 19714-6077

David M. Nissley
United Technologies Corporation
Pratt & Whitney Aircraft
400 Main Street, MS:163-10
East Hartford CT 06108

Daniel Oblas
50 Meadowbrook Drive
Bedford MA 01730

Don Ohanehi
Magnetic Bearings, Inc.
1908 Sussex Road
Blacksburg VA 24060

Hitoshi Ohmori
ELID Team
Itabashi Branch
1-7 13 Kaga Itabashi
Tokyo 173
JAPAN

Robert Orenstein
General Electric Company
55-112, River Road
Schenectady NY 12345

Richard Palicka
Cercom, Inc.
1960 Watson Way
Vista CA 92083

Joseph N. Panzarino
379 Howard Street
P. O. Box 652
Northboro MA 01532-1545

Pellegrino Papa
Corning Inc.
MP-WX-02-1
Corning NY 14831

Terry Paquet
Boride Products Inc.
2879 Aero Park Drive
Traverse City MI 49684
E. Beth Pardue
MPC
8297 Williams Ferry Road
Lenior City TN 37771

Soon C. Park
3M Company
Building 142-4N-02
P.O. Box 2963
St. Paul MN 55144

Vijay M. Parthasarathy
Caterpillar/Solar Turbines
2200 Pacific Highway
P.O. Box 85376
San Diego CA 92186-5376

Harmut Paschke
Schott Glaswerke
Christoph-Dorner-Strasse ’29
D-8300 Landshut
GERMANY

James W. Patten
Cummins Engine Company, Inc.
P.O. Box 3005, Mail Code 50183
Columbus IN 47202-3005

Robert A. Penty
Penty & Associates
38 Oakdale Drive
Rocester NY 14618

Robert W. Pepper
Textron Specialty Materials
2 Industrial Avenue
Lowell MA 01851

Peter Perdue
Detroit Diesel Corporation
13400 Outer Drive West,
Speed Code L-04
Detroit MI 48239-4001

John J. Petrovic
Los Alamos National Laboratory
Group MST-4, MS:G771
Los Alamos NM 87545

Frederick S. Pettit
University of Pittsburgh
Pittsburgh PA 15261

Richard C. Phoenix
Ohmtek, Inc.
2160 Liberty Drive
Niagara Falls NY 14302

Bruce J. Pletka
Michigan Technological Univ.
Metallurgical & Materials Engr.
Houghton MI 49931

John P. Pollinger
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

P. Popper
High Tech Ceramics Int. Journal 22
Pembroke Drive - Westlands
Newcastle-under-Lyme
Staffs ST5 2JN
ENGLAND

F. Porz
Universitat Karlsruhe
Institut fur Keramik Im Maschinendau
Postfach 6980
D-76128 Karlsruhe
GERMANY

Harry L. Potma
Royal Netherlands Embassy
Science and Technology
4200 Linnean Avenue, N.W.
Washington DC 20008

Bob R. Powell
General Motors Corporation
Metallurgy Department
Box 9055
Warren MI 48090-9055
Michel Rigaud
Ecole Polytechnique
Campus Universite De Montreal
P.O. Box 6079, Station A
Montreal, P.Q. Quebec H3C 3A7
CANADA

John E. Ritter
University of Massachusetts
Mechanical Engineering Department
Amherst MA 01003

W. Eric Roberts
Advanced Ceramic Technology
990 "F" Enterprise Street
Orange CA 92667

Y. G. Roman
TNO TPD Keramick
P.O. Box 595
Eindhoven 5600 AN
HOLLAND

Michael Rossetti
Arthur D. Little, Inc.
15 Acorn Park
Cambridge MA 01240

Barry Rossing
Lanxide Corporation
P.O. Box 6077
Newark DE 19714-6077

Steven L. Rotz
Lubrizol Corporation
29400 Lakeland Boulevard
Wickliffe OH 44092

Robert Ruh
Wright Laboratory
WL/MLLM
Wright-Patterson AFB OH 45433

Robert J. Russell
Riverdale Consulting, Inc.
24 Micah Hamlin Road
Centerville MA 02632-2107

Jon A. Salem
NASA Lewis Research Center
21000 Brookpark Road
Cleveland OH 44135

W. A. Sanders
NASA Lewis Research Center
21000 Brookpark Road, MS:49-3
Cleveland OH 44135

J. Sankar
North Carolina A&T State Univ.
Dept. of Mechanical Engineering
Greensboro NC 27406

Yasushi Sato
NGK Spark Plugs (U.S.A.), Inc.
1200 Business Center Dr., #300
Mt. Prospect IL 60056

Maxine L. Savitz
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

Ashok Saxena
GTRI
Materials Engineering
Atlanta GA 30332-0245

David W. Scanlon
Instron Corporation
100 Royall Street
Canton MA 02021

Charles A. Schacht
Schacht Consulting Services
12 Holland Road
Pittsburgh PA 15235

Robert E. Schafrik
Natl Materials Advisory Board
2101 Constitution Ave., N.W.
Washington DC 20418

James Schienle
AlliedSignal Engines
P.O. Box 52180, MS:1302-2P
Phoenix AZ 85072-2180
Gary Schnittgrund
PyroPacific Processes
16401 Knollwood Drive
Granada Hills, CA 91344

Mark Schomp
Lonza, Inc.
17-17 Route 208
Fair Lann NJ 07410

Joop Schoonman
Delft University of Technology
P.O. Box 5045
2600 GA Delft
THE NETHERLANDS

Robert B. Schulz
U.S. Department of Energy
Office of Transportation Mater.
CE-34, Forrestal Building
Washington DC 20585

Murray A. Schwartz
Materials Technology Consulting
30 Orchard Way, North
Potomac MD 20854

Peter Schwarzkopf
SRI International
333 Ravenswood Avenue
Menlo Park CA 94025

William T. Schwessinger
Multi-Arc Scientific Coatings
1064 Chicago Road
Troy MI 48083-4297

W. D. Scott
University of Washington
Materials Science Department
Mail Stop:FB10
Seattle WA 98195

Nancy Scoville
Thermo Electron Technologies
P.O. Box 9046
Waltham MA 02254-9046

Thomas M. Sebestyen
U.S. Department of Energy
Advanced Propulsion Division
CE-322, Forrestal Building
Washington DC 20585

Brian Seegmiller
Coors Ceramics Company
600 9th Street
Golden CO 80401

T. B. Selover
AICRE/DIPPR
3575 Traver Road
Shaker Heights OH 44122

Charles E. Semler
Semler Materials Services
4160 Mumford Court
Columbus OH 43220

Thomas Service
Service Engineering Laboratory
324 Wells Street
Greenfield MA 01301

Kish Seth
Ethyl Corporation
P.O. Box 341
Baton Rouge LA 70821

William J. Shack
Argonne National Laboratory
9700 S. Cass Avenue, Bldg. 212
Argonne IL 60439

Peter T.B. Shaffer
Shaffer Associates
3225 Chimney Cove Drive
Cumming GA 30131

Richard K. Shaltens
NASA Lewis Research Center
21000 Brookpark Road, MS:302-2
Cleveland OH 44135

Robert S. Shane
1904 NW 22nd Street
Stuart FL 34994-9270
Ravi Shankar
Chromalloy
Research and Technology
Blaisdell Road
Orangeburg NY 10962

Terence Sheehan
Alpex Wheel Company
727 Berkley Street
New Milford NJ 07646

Dinesh K. Shetty
University of Utah
Materials Science and Engineering
Salt Lake City UT 84112

Masahide Shimizu
New Ceramics Association
Shirasagi 2-13-1-208, Nakano-ku
Tokyo, 165
JAPAN

Thomas Shreves
American Ceramic Society, Inc.
735 Ceramic Place
Westerville OH 43081-8720

Jack D. Sibold
Coors Ceramics Company
4545 McIntyre Street
Golden CO 80403

Johann Siebels
Volkswagen AG
Werkstofftechnologie
Postfach 3180
Wolfsburg 1
GERMANY

George H. Siegel
Point North Associates, Inc.
P.O. Box 907
Madison NJ 07940

Richard Silbergliedt
FM Technologies, Inc.
10529-B Braddock Road
Fairfax VA 22032

Mary Silverberg
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

Gurpreet Singh
Department of the Navy
Code 56X31
Washington DC 20362-5101

Maurice J. Sinnott
University of Michigan
5106 IST Building
Ann Arbor MI 48109-2099

John Skildum
3M Company
3M Center
Building 224-2S-25
St. Paul MN 55144

Richard H. Smoak
Smoak & Associates
3554 Holyslope Road
Altadena CA 91001-3923

Jay R. Smyth
AlliedSignal Engines
111 S. 34th Street, MS:503-412
Phoenix AZ 85034

Rafal A. Sobotowski
British Petroleum Company
Technical Center, Broadway
3092 Broadway Avenue
Cleveland OH 44115

S. Somiya
Nishi Tokyo University
3-7-19 Seijo, Setagaya
Tokyo, 157
JAPAN

Boyd W. Sorenson
DuPont Lanxide Composites
1300 Marrows Road
Newark DE 19711
Yo Tajima
NGK Spark Plug Company
2808 Iwasaki
Komaki-shi Aichi-ken, 485
JAPAN

Fred Teeter
5 Tralee Terrace
East Amherst NY 14051

Victor J. Tennery
113 Newell Lane
Oak Ridge TN 37830

Monika O. Ten Eyck
Carborundum Microelectronics
P.O. Box 2467
Niagara Falls NY 14302-2467

David F. Thompson
Corning Glass Works
SP-DV-02-1
Corning NY 14831

T. Y. Tien
University of Michigan
Materials Science & Engineering
Dow Building
Ann Arbor MI 48103

D. M. Tracey
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

Marc Tricard
Norton Company, WGTC
1 New Bond Street, MS-413-201
Worcester MA 01615-0008

L. J. Trostel, Jr.
Box 199
Princeton MA 01541

W. T. Tucker
General Electric Company
P.O. Box 8, Bldg. K1-4C35
Schenectady NY 12301

Masanori Ueki
Nippon Steel Corporation
1618 Ida
Nakahara-Ku Kawasaki, 211
JAPAN

Filippo M. Ugolini
ATA Studio
Via Degli Scipioni, 268A
ROMA, 00192
ITALY

Donald L. Vaccari
Allison Gas Turbines
P.O. Box 420, Speed Code S49
Indianapolis IN 46206-0420

Carl F. Van Conant
Boride Products, Inc.
2879 Aero Park Drive
Traverse City MI 49684

John F. Vander Louw
3M Company
3M Center, Bldg. 60-1N-01
Saint Paul MN 55144

Marcel H. Van De Voorde
Commission of the European Community
P.O. Box 2
1755 ZG Petten
THE NETHERLANDS

O. Van Der Biest
Katholieke Universiteit Leuven
Dept. Metaalkunde en Toegepaste de Croylaan 2
B-3030 Leuven
BELGIUM

Michael Vannier
Washington University,
St. Louis
510 S. Kings Highway
St. Louis MO 63110
Stan Venkatesan
Southern Coke & Coal Corp.
P.O. Box 52383
Knoxville TN 37950

V. Venkateswaran
Carborundum Company
Niagara Falls R&D Center
P.O. Box 832
Niagara Falls NY 14302

Ted Vojnovich
U.S. Department of Energy
Office of Energy Research, 3F077P
Washington DC 20585

John D. Volt
E.I. Du Pont de Nemours & Co.
P.O. Box 80262
Wilmington DE 19880

John B. Wachtman
Rutgers University
P.O. Box 909
Piscataway NJ 08855

Shigetaka Wada
Toyota Central Research Labs
Nagakute Aichi, 480-11
JAPAN

Janet Wade
AlliedSignal Engines
P.O. Box 52180, MS:1303-2
Phoenix AZ 85072-2180

Richard L. Wagner
Ceramic Technologies, Inc.
537 Turtle Creek South Dr.
Indianapolis IN 46227

J. Bruce Wagner, Jr.
Arizona State University
Center for Solid State Science
Tempe AZ 85287-1704

Daniel J. Wahlen
Kohler, Co.
444 Highland Drive
Kohler WI 53044

Ingrid Wahlgren
Royal Institute of Technology
Studsvik Library
S-611 82 Nykoping
SWEDEN

Ron H. Walecki
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

Michael S. Walsh
Vapor Technologies Inc.
6300 Gunpark Drive
Boulder CO 80301

Chien-Min Wang
Industrial Technology Research Institute
195 Chung-Hsing Road, Sec. 4
Chutung Hsinchu 31015 R.O.C.
TAIWAN

Robert M. Washburn
ASMT
11203 Colima Road
Whittier CA 90604

Karen E. Weber
Detroit Diesel Corporation
13400 Outer Drive West
Detroit MI 48239-4001

Kevin Webber
Toyota Technical Center, U.S.A.
1410 Woodridge, RR7
Ann Arbor MI 48105

James K. Weddell
Du Pont Lanxide Composites Inc.
P.O. Box 6100
Newark DE 19714-6100

R. W. Weeks
Argonne National Laboratory
MCT-212
9700 S. Cass Avenue
Argonne IL 60439
Ludwig Weiler
ASEA Brown Boveri AG
Eppelheimer Str. 82
D-6900 Heidelberg
GERMANY

James Wessel
127 Westview Lane
Oak Ridge TN 37830

Robert D. West
Therm Advanced Ceramics
P.O. Box 220
Ithaca NY 14851

Thomas J. Whalen
1845 Cypress Pointe Court
Ann Arbor MI 48108

Ian A. White
Hoeganaes Corporation
River Road
Riverton NJ 08077

Sheldon M. Wiederhorn
NIST
Building 223, Room A329
Gaithersburg MD 20899

John F. Wight
Alfred University
McMahon Building
Alfred NY 14802

D. S. Wilkinson
McMaster University
1280 Main Street, West
Hamilton Ontario L8S 4L7
CANADA

James C. Williams
General Electric Company
One Neumann Way, Mail Drop:H85
Cincinnati OH 45215-6301

Steve J. Williams
RCG Hagler Bailly, Inc.
1530 Wilson Blvd., Suite 900
Arlington VA 22209-2406

Thomas A. Williams
National Renewable Energy Lab
1617 Cole Boulevard
Golden CO 80401

Craig A. Willkens
Norton Company
SGNICC/NRDC
Goddard Road
Northiboro MA 01532-1545

Roger R. Wills
Ohio Aerospace Institute (OAI)
22800 Cedar Point Road
Brook Park OH 44142

David Gordon Wilson
Massachusetts Institute of Technology
77 Massachusetts Ave., Rm 3-455
Cambridge MA 02139

J. M. Wimmer
AlliedSignal Ceramic Components
Department 27000, MS:T21
2525 W. 190th Street
Torrance CA 90509

Matthew F. Winkler
Seaworthy Systems, Inc.
P.O. Box 965
Essex CT 06426

Gerhard Winter
Hermann C. Starck Berlin GmbH
P.O. Box 25 40
D-3380 Goslar 3380
GERMANY

Thomas J. Wissing
Eaton Corporation
Engineering and Research Center
P.O. Box 766
Southfield MI 48037

James C. Withers
MER Corporation
7960 S. Kolb Road
Building F
Tucson AZ 85706
Dale E. Wittmer
Southern Illinois University
Mechanical Engineering Dept.
Carbondale IL 62901

Warren W. Wolf
Owens Corning Fiberglass
2790 Columbus Road, Route 16
Granville OH 43023

Egon E. Wolff
Caterpillar Inc.
Technical Center
P.O. Box 1875
Peoria IL 61656-1875

George W. Wolter
Howmet Turbine Components Corp.
Technical Center
699 Benston Road
Whitehall MI 49461

Wayne L. Worrell
University of Pennsylvania
3231 Walnut Street
Philadelphia PA 19104

John F. Wosinski
Corning Inc.
ME-2 E-5 H8
Corning NY 14830

Ruth Wroe
ERDC
Capenhurst Chester CH1 6ES
ENGLAND

Bernard J. Wrona
Advanced Composite Materials
1525 S. Buncombe Road
Greer SC 29651

Carl C. M. Wu
Naval Research Laboratory
Ceramic Branch, Code 6373
Washington DC 20375

David C. Wu
AlliedSignal Engines
P.O. Box 52181, MS:301-227
Phoenix AZ 85072-2181

John C. Wurst
U. of Dayton Research Institute
300 College Park
Dayton OH 45469-0101

Neil Wyant
ARCH Development Corp.
9700 S. Cass Avenue, Bldg. 202
Argonne IL 60439

Roy Yamamoto
Texaco Inc.
P.O. Box 509
Beacon NY 12508-0509

John Yamanis
AlliedSignal Aerospace Company
P.O. Box 1021
Morristown NJ 07962-1021

Harry C. Yeh
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

Hiroshi Yokoyama
Hitachi Research Lab
4026 Kuji-Cho
Hitachi-shi Ibaraki 319-12
JAPAN

Thomas M. Yonushonis
Cummins Engine Company, Inc.
P.O. Box 3005, Mail Code 50183
Columbus IN 47202-3005

Jong Yung
Sundstrand Aviation Operations
4747 Harrison Avenue
Rockford IL 61125

C. S. Yust
106 Newcrest Lane
Oak Ridge TN 37830
A. L. Zadoks
Caterpillar Inc.
Technical Center, Building L
P.O. Box 1875
Peoria IL 61656-1875

Avi Zangvil
University of Illinois
104 S. Goodwin Avenue
Urbana IL 61801

Charles H. Zenk
Transtech
6662 E. Paseo San Andres
Tucson AZ 85710-2106

Carl Zweben
General Electric Company
P. O Box 8555, VFSC/V4019
Philadelphia PA 19101

Department of Energy
Oak Ridge Operations Office
Asst. Manager for Energy
Research and Development
P.O. Box 2001
Oak Ridge, TN 37871-8600

Department of Energy
Office of Scientific and
Technical Information
Office of Information Services
P.O. Box 62
Oak Ridge, TN 37831?