Compact Tokamak Reactors
Part 2 (numerical results)

J. C. Wiley, A. J. Wootton, and D. W. Ross

Fusion Research Center
The University of Texas at Austin
Austin, TX 78712

October 21, 1996
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Compact Tokamak Reactors Part 2
(numerical results)

J. C. Wiley, A. J. Wootton and D. W. Ross
Fusion Research Center
The University of Texas at Austin
Austin, Texas 78712

October 21, 1996

Abstract

We describe a numerical optimization scheme for fusion reactors. The particular application described is to find the smallest copper coil 'spherical' tokamak, although the numerical scheme is sufficiently general to allow many other problems to be solved. The solution to the steady state energy balance is found by first selecting the fixed variables. The range of all remaining variables is then selected, except for the temperature. Within the specified ranges, the temperature which satisfies the power balance is then found. Test are applied to determine that remaining constraints are satisfied, and the acceptable results then stored. Results are presented for a range of auxiliary current drive efficiencies and different scaling relationships; for the range of variables chosen the machine encompassing volume increases or remains approximately unchanged as the aspect ratio is reduced.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
1 Introduction

A previous paper [1] presented an analytic model describing the minimum tokamak reactor size as a function of aspect ratio A. In particular the dependence of major radius R and machine encompassing volume V_m with A was discussed. In those analytic studies only two auxiliary current drive efficiencies ($\eta_{CD} = 0$ and ∞) and one scaling law were considered. In addition, the power to the grid P_{gr} remained unspecified (but ≥ 0). The analysis attempts to find plasma densities and temperatures, and corresponding reactor parameters which are consistent with the steady-state power balance equation and with a number of physical constraints. The power balance equation relates the power lost as described by the ratio of total contained energy to the energy containment time computed from an assumed scaling law to the power input due to fusion power, current drive, and auxiliary heating. While the equation is conceptually simple, it is nonlinear and contains over two dozen parameters which must simultaneously satisfy a number of additional and often nonlinear constraints. In the analytic model, a single scaling law and certain limiting assumptions were made to obtain an analytically tractable equation. Here we use a directly numerical search procedure which allows more general scaling laws and constraints to be considered. Figure 1 illustrates the power flows considered; detailed definitions are found in [1], and at the end of this document.

The mathematical problem is to solve a nonlinear equation, power balance, which contains approximately 24 variables subject to roughly seven nonlinear constraints to minimize either the major radius or volume. The exact number of variables and constraints depends on the particular problem and scaling law considered. The analytic technique in the previous paper fixed some of the parameters and looked at limiting cases in order to obtain an analytically tractable equation. Here we give up the closed analytic result in favor of examining the problem and constraints directly. In both the analytic and numerical treatment some parameters are held fixed for this study. The resulting problem requires a search in an eight or larger dimensional parameter space. We examine this space directly using a relatively coarse mesh rather than following a gradient using a differential approach. This coarse mesh search can be considered as an initial procedure to find good starting conditions for a minimization method; however, the coarse mesh search was adequate for the problem at hand. To date the only plasma losses considered
are those described by the scaling relationships considered (see Appendix 1). Appendix 2 lists the definitions and relations, with Appendix 3 defining the symbols used. Constants are found in Appendix 4.

Figure 1. Power flows considered.

The objective of the calculation is, given the plasma shape (aspect ratio A, triangularity δ, elongation κ), wall loading limit Γ_{n_0}, plasma content, Z_{eff}, Z_i, plasma profiles γ_n, γ_T, and exponents in confinement time scaling α_R, α_a, c, H,..., and certain conversion efficiencies, f_{el}, f_{CD}, etc., to find the smallest machine, where by smallest we mean either

- smallest major radius R_0,
- smallest machine encompassing volume V_m,

with the recirculating power fraction $\chi \leq \chi_0$ (e.g. 0.6) that satisfies the power balance equation

$$\frac{W}{\tau_E} = P_H + P_{CD} + P_\alpha,$$

(1)
subject to the restrictions:

Greenwald limit (density)
\[\bar{n}_e < f_n 10^{20} (I_p/10^6) / (\pi a^2), \]

Beta limit
\[\beta < \frac{\beta N_0}{\sqrt{A}} 10^{-8} \frac{I_p}{a B_{T_0}}, \]

Wall loading limit
\[\Gamma_n < \Gamma_{n0}, \]

Safety factor (stability)
\[q > q_{\text{min}}, \]

Power production
\[P_{gr} > P_{gr{\text{min}}}, \]

and other additional constraints such as

maximum allowed field strength on the central column
\[B_{Tleg} < B_{Tleg_{\text{max}0}}, \]

and the maximum bootstrap fraction
\[f_{bs} \leq f_{bs_{\text{max}}}. \]
We have written a small computer code to perform this task. (The code, written in C++, can be obtained from the authors.) An outline of the computational procedure is as follows (details appear later):

1. Select the set of fixed variables.

2. Select the range of variation for all remaining variables except temperature.

3. Within the given range, solve for the temperature that satisfies the power balance.

4. Test if the remaining constraints are satisfied.

5. Store the acceptable set if R_0 (or V_m) less then current R_0 (orV_m).

Note that, to speed up the calculations, the energy released by the nuclear reactions is approximated by a simple dependence on temperature, which restricts $T \leq 25$ keV.
2 Computational Procedure

The computational procedure carries out a brute force search. Normally, such a procedure for the large number of variables involved in this study would be computationally prohibitive. By carefully organizing the nested loops and applying the constraints as early as possible, we have been able to examine problems in a reasonable time (a few minutes to a few hours on a desktop personal computer). The problem is coded as a series of nested loops which are outlined as follows:

Specify ranges: \(R_{0_{\text{min}}}, R_{0_{\text{max}}}, n_{0_{\text{min}}}, I_{p_{\text{min}}}, \kappa_{\text{min}}, T_{0_{\text{min}}}, T_{0_{\text{max}}}. \)

Fix \(\alpha_{98}, Z_{\text{eff}}, Z_i, \gamma_n, \gamma_T, \beta_{N_0}, \Gamma_{n_0}, \kappa_0, \alpha_R, \alpha_a, H, \alpha_p, \alpha_I, f_i, f_H, f_{TF}, f_{CD}, P_{\text{grid}_{\text{min}}}, \delta, \alpha_{98}, f_N, \) plus other coefficients needed for scaling law.

Calculate, plasma content factors:

\[
g = \frac{(Z_i - Z_{\text{eff}})}{(Z_i - 1)}, \tag{9}
\]

\[
s_p = \frac{g^2 \langle n^2 T^2 \rangle}{\langle n T \rangle^2}. \tag{10}
\]

Select an \(A, \) (results plotted as function of \(A \)).

Begin at \(R_0 = R_{0_{\text{min}}}, \) and increment \(R_0 \) until solution to energy balance found or \(R_{0_{\text{max}}} \) is reached.

Require \(R_0 \in [R_{0_{\text{min}}}, R_{0_{\text{max}}}] \) so that

\[
a = \frac{R_0}{A}. \tag{11}
\]

The upper range of \(B_{T_0} \) is limited by \(B_{T_{\text{leg}_{\text{max}}}} \) through

\[
B_{T_{0_{\text{max}}}} = B_{T_{\text{leg}_{\text{max}}}} \frac{(A - 1)}{A}. \tag{12}
\]

Fix \(\kappa_{\text{max}} = \kappa_0 \) (alternatively one could take, to further advantage low-\(A, \kappa_{\text{max}} = \frac{\kappa_0}{\sqrt{A}}. \)
Search over range: $\kappa \in [\kappa_{\text{min}}, \kappa_{\text{max}}]$, defining

$$V = 2\pi R_0 \kappa (1 - \frac{\delta^2}{8} - \frac{\delta}{4A}),$$ \hspace{1cm} (13)$$

$$S = 2\pi^2 R_0 a (1 + \kappa) (1.0 - 0.13\delta \frac{\kappa^{1/4}}{A}),$$ \hspace{1cm} (14)$$

$$f_{el} = f_{el0} \left[\frac{1}{2} + \frac{\kappa^{0.13}}{\pi A} \right] (1 + 0.34\delta \kappa^{-0.5}).$$ \hspace{1cm} (15)$$

The minimum q limits the maximum I_p through

$$I_{p_{\text{max}}} = \frac{g_q R_0 B_{T_{0_{\text{max}}}}}{q_{\text{min}}}. \hspace{1cm} (16)$$

Search over range: $I_p \in [I_{p_{\text{min}}}, I_{p_{\text{max}}}]$.

The lower range of B_{T_0} is limited by q_{min} through

$$B_{T_{0_{\text{min}}}} = \frac{q_{\text{min}} I_p}{g_q R_0}. \hspace{1cm} (17)$$

Upper bound on n is set by the Greenwald limit

$$n_{0_{\text{max}}} = \frac{f_n 10^{20} (I_p/10^6)}{(\pi a^2)} \left(\frac{\sqrt{\pi}}{2} \frac{\Gamma(1 + \gamma_n)}{\Gamma(3/2 + \gamma_n)} \right)^{-1}. \hspace{1cm} (18)$$

Search over range: $n_0 \in [n_{0_{\text{min}}}, n_{0_{\text{max}}}]$ defining

$$\alpha_0^{\text{CD}} = \frac{n_0 R_0}{\eta_{\text{CD}} (1 + \gamma_n)} I_p, \hspace{1cm} (19)$$

$$\alpha_1^{\text{CD}} = -\alpha_0^{\text{CD}} \left(\frac{\alpha_b (2\pi a)^2 2 (1 + \kappa^2) k_b}{\sqrt{A} \mu_0 I_p^2} \right) \left(\frac{n_0}{1 + \gamma_n + \gamma_T} g_2 \right), \hspace{1cm} (20)$$

$$\alpha_1^{W} = 3g_2 \left(\frac{n_0 k_b}{1 + \gamma_n + \gamma_T} \right) V, \hspace{1cm} (21)$$

$$\alpha_2^2 = 1.5 \times 10^{-37} \left(\frac{n_0}{1 + \gamma_n + \gamma_T} \right)^2 V s_p. \hspace{1cm} (22)$$
Search over range: $B_{T_0} \in [B_{T_0\text{min}}, B_{T_0\text{max}}]$ computing

$$P_{TF} = \frac{8\pi \kappa B_{T_{1\text{leg}}}^2 R_0}{\mu_0^2 f_{Cu} A} \left(1 - \exp \left[-1.3\left(\frac{3 + 2\delta}{3 - 2\delta}\sqrt{A - 1}\right)\right]\right). \quad (23)$$

The maximum power available for heating is given by

$$P_{H_{\text{max}}} = f_H \left(f_{el} 4 P_{\alpha} - \frac{P_{CD}}{f_{CD}} - \frac{P_{TF}}{f_{TF}} - P_{\text{grid}min}\right). \quad (24)$$

Some fraction of this power is supplied as heating. Search over range: $\alpha_H \in [0, 1]$ calculating

$$\alpha_2^H = \alpha_H f_H f_{el} 4 \alpha_2^a, \quad (25)$$

$$\alpha_1^H = -\alpha_H f_H \alpha_1^{CD} \frac{P_{CD}}{f_{CD}}, \quad (26)$$

$$\alpha_0^H = -\alpha_H f_H \left(\frac{\alpha_0^{CD}}{f_{CD}} + \frac{P_{TF}}{f_{TF}} + P_{\text{grid}min}\right). \quad (27)$$

The upper T_0 is given either by the β limit (note the explicit A dependence has been included) through

$$T_{0\text{max}}^\beta = \frac{\beta N_0}{\sqrt{A}} 10^{-8} \frac{I_p B_{T_0}}{\mu_0^2 k_0 n_0 g_2} \left(1 + \gamma_s + \gamma_t\right), \quad (28)$$

or by the wall loading limit

$$T_{0\text{max}}^{\text{wall}} = \sqrt{\frac{\Gamma_{n_0} S}{4 \alpha_0^2}}, \quad (29)$$

so that

$$T_{0\text{max}} = \min(T_{0\text{max}}^\beta, T_{0\text{max}}^{\text{wall}}, T_{0\text{max}}^{\text{specified}}). \quad (30)$$

The inner loop is a search procedure to find a peak temperature that will provide power balance. Solve $W(T_0) = \tau_{\text{E}}(T_0) P_\Sigma(T_0)$ for T_0 where $T_0 \in [T_{0\text{min}}, T_{0\text{max}}]$ and where

$$P_{CD} = \alpha_0^{CD} + \alpha_1^{CD} T_0, \quad (31)$$
If a solution for T_0 is found, check to see if physically meaningful, i.e.

$$P_H \geq 0, \quad (37)$$

and

$$f_{bs} \leq f_{bs max}, \quad (38)$$

and that remaining constraints are satisfied. Namely,

$$P_{\text{grid}} \geq P_{\text{grid min}}, \quad (39)$$

and

$$\chi < \chi_0, \quad (40)$$

where

$$\chi = \frac{P_{TF}/f_{TF} + P_{CD}/f_{CD} + P_H/f_H}{P_{cl}}. \quad (41)$$

Store the result.
3 Power balance equation

The procedure requires that the power balance equation,

$$W(T_0) = \tau_E(T_0) P_\Sigma(T_0),$$ (42)

which at that point in the calculation is only a function of T_0 (all other parameters fixed) be solved for T_0. Note that most of the single term scaling laws can be expressed as

$$\tau_E = \tau_{E_0} P_\Sigma^{-(1/2+\gamma)}$$ (43)

with

$$P_\Sigma = \alpha_2^E T_0^2 + \alpha_1^E T_0 + \alpha_0^E,$$ (44)

where the α_i^Es are obtained from the expressions for P_{CD}, P_H, P_Σ. The γ exponent is either zero or small for most of the scaling laws. The equation for T_0 becomes

$$\left(\frac{\alpha_1^W}{\tau_{E_0}} \right)^2 T_0^2 - (\alpha_2^E T_0^2 + \alpha_1^E T_0 + \alpha_0^E)^{1-2\gamma} = 0,$$ (45)

which for $\gamma = 0$ is a quadratic and can be solved directly. For the case in which $\gamma \neq 0$, the quadratic roots are used as initial guesses for a simple iterative Newton’s method. The Rebut-Lallia scaling law, which does not fit the pattern, can be expressed in the form

$$\tau_E = (\tau_{E_0} + \tau_{E_1}/P_\Sigma),$$ (46)

which also reduces a quadratic equation for T_0

$$\alpha_1^W T_0 = \tau_{E_0}(\alpha_2^E T_0^2 + \alpha_1^E T_0 + \alpha_0^E) + \tau_{E_1}. $$ (47)

For the case in which $\gamma \neq 0$, Newton’s method was applied to the equation

$$f(y) = ay^2 - [by^2 + cy + d]^{1-2\gamma}$$ (48)

to obtain a general iterative method for these cases.
4 Results

We show here the results of the optimization for tokamak reactors with copper toroidal field coils with no space made available for a nuclear shield or blanket at the inner equator. The objective is to complement the analytic results presented in [1]. The values considered for the optimization are given in Appendix 5 ‘Nominal values’. The main differences between the numerical results presented here and the analytic results are:

1. Different energy confinement scaling relations are used here.

2. Arbitrary auxiliary current drive efficiencies are used. This means that a driven system is implied.

3. The power to the grid P_{gr} is specified. In the examples shown below, $P_{gr} \geq 0.5$ GW was specified.

4. Various parameters are allowed to change, rather than fixed values being chosen.

Figure 2 shows the smallest major radius R as a function of aspect ratio A for the four confinement relations used to date (see section ‘Scaling Laws’). Figure 3 shows the machine encompassing volume/103 for the same data. Results from other relationships can be provided if required. In the legend the first number refers to the scaling law used, with ITER89P =1, KayeAll = 2, GoldstonL = 3, DIIIJet = 4. For each scaling relationship, results assuming two values of current drive efficiency are shown, namely $\eta_{CD} = 1 \times 10^{19}$ (pessimistic) and 10×10^{19} (optimistic). In the legend the second number refers to the auxiliary current drive efficiency (1 or 10). For each scaling relationship and current drive efficiency results were obtained with $\delta = 0.2, 0.3$ and 0.9, but very little difference in the major radius was found. Shown are data obtained with $\delta = 0.3$. The results show that there is ≈ 40 % reduction in the major radius of the smallest device as A is reduced from 3 to ≈ 1. However, there is no associated reduction in V_m even with the most optimistic auxiliary current drive efficiency.
Other general observations include:

1. Optimising on the smallest R or smallest V_m gives the same device.

2. There is little dependency of the smallest R on δ.

3. The optimum (i.e. smallest) device generally operates at the maximum allowed elongation and neutron wall loading limit.

The results described above were obtained by first choosing A, the scaling relationship for energy confinement, η_{CD} and δ, and then varying R, I_p, B_T, κ, η, etc. Typically for each A, η_{CD}, and δ, approximately 10^7 cases were run, from which those which satisfy the constraints are first chosen, and then within that subset those with the minimum size are recorded.
Figure 2. The major radius R of the smallest copper toroidal field coil tokamak reactor as a function of aspect ratio A. Results using four different energy confinement scaling relationships are shown. The first digit of the legend refers to the scaling relationship (ITER89P = 1, KayeAll = 2, GoldstonL = 3, DIIIJet = 4) and the second digit refers to the auxiliary current drive efficiency used ($\eta_{CD} = 1 \times 10^{19}$ and 10×10^{19}). $\delta = 0.3$, with other parameters and variations found in the text (see ‘Nominal values’).
Figure 3. The machine encompassing volume $V_m/10^3 \text{ m}^3$ of the smallest copper toroidal field coil tokamak reactor as a function of aspect ratio A. Results using four different energy confinement scaling relationships are shown. The first digit of the legend refers to the scaling relationship (ITER89P =1, KayeAll = 2, GoldstonL = 3, DIIIJet = 4) and the second digit refers to the auxiliary current drive efficiency used ($\eta_{CD} = 1. \times 10^{19}$ and $10. \times 10^{19}$). $\delta = 0.3$, with other parameters and variations found in the text (see ‘Nominal values’).
5 Summary and Conclusions

We have presented a numerical technique for optimizing a given energy confinement scaling relationship, together with given ranges of variables and fixed constraints, to find the smallest tokamak reactor. Results were presented for a range of auxiliary current drive efficiencies and different scaling relationships; for the range of variables chosen the machine encompassing volume increases or remains approximately unchanged as the aspect ratio is reduced. These results were consistent with the results obtained using the analytic method in [1].

References

Appendix 1. Scaling laws [2]

Data from the first four scaling laws are discussed in this paper, although all those listed (and any others provided) can be used if required.

\(a(m), R(m), B(T), I_p(A), \tau_E(s), P_\Sigma(W), n(m^{-3})\)

ITER89-P (L-mode)

\[
\tau_E = \left(0.048H \sqrt{A_i a^{0.3} R_0^{1.2}} \left(\frac{I_p}{10^6}\right)^{0.85} \kappa^{0.5} B^{0.2} \left(\frac{n}{10^{20}}\right)^{0.1}\right) \left(\frac{P_\Sigma}{10^6}\right)^{-0.5}
\]

Kaye-all-complex (L-mode)

\[
\tau_E = \left(0.067H \sqrt{A_i a^{0.3} R_0^{0.85}} \left(\frac{I_p}{10^6}\right)^{0.85} \kappa^{0.25} B^{0.3} \left(\frac{n}{10^{20}}\right)^{0.1}\right) \left(\frac{P_\Sigma}{10^6}\right)^{-0.5}
\]

Goldston (L-mode, H/D)

\[
\tau_E = \left(0.037H \sqrt{A_i a^{-0.37} R_0^{1.75}} \left(\frac{I_p}{10^6}\right)^{0.85} \kappa^{0.5}\right) \left(\frac{P_\Sigma}{10^6}\right)^{-0.5}
\]

DIII-Jet (H-mode)

\[
\tau_E = \left(0.053H R_0^{1.48} \left(\frac{I_p}{10^6}\right)^{1.03}\right) \left(\frac{P_\Sigma}{10^6}\right)^{-0.46}
\]

Lackner-Gottardi (L-mode)

\[
\tau_E = \left(0.12H \sqrt{\frac{A_i}{2} a^{0.4} R_0^{1.8}} \left(\frac{I_p}{10^6}\right)^{0.8} \kappa (1+\kappa)^{0.4} \left(\frac{n}{10^{20}}\right)^{0.6}\right) \left(\frac{P_\Sigma}{10^6}\right)^{-0.6}
\]

\[
q = \frac{2\pi (1 + \kappa^2)}{\mu_0} \frac{a^2 B}{2 R_0(I_p/10^6)}
\]

Kaye-Goldston (L-mode)

\[
\tau_E = \left(0.055H \sqrt{\frac{A_i}{1.5} a^{-0.49} R_0^{1.65}} \left(\frac{I_p}{10^6}\right)^{1.24} \kappa^{0.28} B^{-0.09} \left(\frac{n}{10^{20}}\right)^{0.26}\right) \left(\frac{P_\Sigma}{10^6}\right)^{-0.58}
\]
Rebut-Lallia (L-mode, D)

\[\tau_E = \left(2H \sqrt{\frac{A_i}{2}} 0.012 \left(\frac{I_p}{10^6} \right)^2 (a^2 R_0 \kappa Z_{ef}^{-1})^{-1/2} \right) + \]
\[\left(2H \sqrt{\frac{A_i}{2}} 0.146 \left(B \left(\frac{I_p}{10^6} \right) \right)^{1/2} (a^2 R_0 \kappa)^{11/12} \left(\frac{I_p}{10^6} \right)^{3/4} Z_{ef}^{1/4} \right) \left(\frac{P_\Sigma}{10^6} \right)^{-1} \]

Goldston-quadrature (OH, L-mode H/D)

\[\tau_E = \left(\frac{1}{\tau_{E,OH}} + \frac{1}{\tau_{E,AUX}} \right)^{-1/2} \]

where

\[\tau_{E,OH} = 0.1026 n_{20} a^{1.04} R^{2.04} q^{0.50} \]

\[\tau_{E,AUX} = 0.037 H \sqrt{\frac{A_i}{1.5}} a^{-0.37} R_0^{1.75} \kappa^{1/2} \left(\frac{I_p}{10^6} \right) \left(\frac{P_\Sigma}{10^6} \right)^{-0.5} \]
Appendix 2. Definitions and Relations

We assume that the plasma contains one hydrogen-like main ion, n_i and one impurity, n_I, with charge Z_I. Using charge neutrality $n_i + Z_In_I = n_e$, and the definition of Z_{eff}, $Z_{eff}n_e = n_i + n_I Z_I^2$, we can define two factors $g = n_i/n_e$ and $g_2 = (1/2)(1 + n_i/n_e + n_I/n_e)$ in terms of Z_I and Z_{eff} as

\begin{align*}
g &= \frac{(Z_I - Z_{eff})}{(Z_I - 1)}, \\
g_2 &= \frac{1 + 2Z_I - Z_{eff}}{2Z_I},
\end{align*}

so that the pressure $p = (n_e + n_i + n_I)kT$,

\begin{equation}
P = 2ng_2kT,
\end{equation}

and energy content $W = (3/2)(n_e + n_i + n_I)kT$,

\begin{equation}
W = 3ng_2kT
\end{equation}

are expressed only in terms of g_2. Where we assume $T_e = T_i = T$ and $n = n_e$.

The plasma profiles are assumed to have the forms:

\begin{equation}
n, T = n_0, T_0 \left[1 - (r/a)^2\right]^{\gamma_n, \gamma_T},
\end{equation}

so that

\begin{align*}
\langle n \rangle &= \frac{n_0}{1 + \gamma_n}, \\
\bar{n} &= n_0 \frac{\sqrt{\pi}}{2} \frac{\Gamma(1 + \gamma_n)}{\Gamma(3/2 + \gamma_n)}, \\
\langle n^2T^2 \rangle &= \frac{n_0^2 T_0^2}{1 + 2(\gamma_n + \gamma_T)}, \\
\langle nT \rangle &= \frac{n_0 T_0}{1 + \gamma_n + \gamma_T}.
\end{align*}

It is convenient to define a plasma profile and impurity content factor as

\begin{equation}
s_p = \frac{g_2^2 \langle n^2T^2 \rangle}{\langle nT \rangle^2}.
\end{equation}
Additional definitions include:

Plasma volume

\[V = 2\pi R_0 \pi \kappa a (1 - \frac{\delta^2}{8} - \frac{\delta}{4\kappa}) \] \hspace{1cm} (69)

Machine-encompassing volume

\[V_m = \pi (R_0 + a)^2 2\kappa a \] \hspace{1cm} (70)

First wall surface area

\[S = 2\pi^2 R_0 a (1 + \kappa)(1.0 - 0.13\delta^{1/4}) \] \hspace{1cm} (71)

Elongation

\[\kappa = \frac{\kappa_0}{\sqrt{A}} \] \hspace{1cm} (72)

Maximum toroidal field on axis

\[B_{T_0} = B_{T_{reg}} \frac{(A - 1)}{A} \] \hspace{1cm} (73)

Safety factor(s)

\[q = q_{cyl}(1.22 - \frac{0.68}{A}) (1 - A^{-2})^{-2} \] \hspace{1cm} (74)

\[q_{cyl} = \frac{2\pi a^2 B_{T_0}}{\mu_0 I_p R_0} \left(\frac{1 + \kappa^2 (1 + 2\delta^2 - 1.2\delta^3)}{2} \right) \] \hspace{1cm} (75)

or

\[g_q = \frac{2\pi}{\mu_0} \left(\frac{1 + \kappa^2 (1 + 2\delta^2 - 1.2\delta^3)}{2} \right) \frac{(1.22 - \frac{0.68}{A})}{A^2(1 - A^{-2})^2} \] \hspace{1cm} (76)

\[q = g_q B_{T_0} R_0 / I_p \] \hspace{1cm} (77)

Averaged poloidal field

\[B_p = \frac{\mu_0 I_p}{2\pi a} \sqrt{\frac{2}{1 + \kappa^2}} \] \hspace{1cm} (78)

Beta

\[\beta = 4\mu_0 \kappa g_2 (nT) / B_{T_0}^2 \] \hspace{1cm} (79)
Beta poloidal
\[\beta_p = \beta \left(\frac{B_{r_0}}{B_p} \right)^2 \] (80)

Bootstrap fraction
\[f_{bs} = \alpha_{bs} \frac{\beta_p}{\sqrt{A}} \] (81)

Bootstrap current
\[I_{bs} = f_{bs} I_p \] (82)

Total heating power, external plus alpha
\[P_\Sigma = P_\alpha + P_H + P_{CD} \] (83)

Neutron power
\[P_n = 4 P_\alpha \] (84)

Alpha power
\[P_\alpha = 1.5 \times 10^{-37} (\langle nT \rangle^2 V s_p \] (85)

Power consumed by the TF coil
\[P_{TF} = \frac{8 \eta \pi \kappa B_{r_{eg}}^2 R_0}{\mu_0 \rho f_{Cu} A} \left(1 - \exp(-1.3) \left(\frac{1 + 2/3 \delta}{1 - 2/3 \delta} \right) \sqrt{A - 1} \right) \] (86)

Power consumed by current drive
\[P_{CD} = \frac{\langle n \rangle R_0}{\eta_{CD}} I_p (1 - f_{bs}) \] (87)

Electric power generated
\[P_{el} = P_n f_{el} \] (88)

Total stored energy
\[W = 3g_2 \langle nT \rangle V \] (89)

Recirculating power fraction
\[\chi = \frac{P_{TF}/f_{TF} + P_{CD}/f_{CD} + P_H/f_H}{P_{el}} \] (90)

Wall loading
\[\Gamma_n = \frac{P_n}{S} \] (91)

20
Conversion efficiency

\[f_{el} = f_{elo} \left[\frac{1}{2} + \frac{\kappa^{0.13}}{\pi A} \right] (1 + 0.34\delta\kappa^{-0.5}) \] (92)

Power to grid

\[P_{grid} = f_{el}P_n - \frac{P_H}{f_H} - \frac{P_{CD}}{f_{CD}} - \frac{P_{TF}}{f_{TF}} \] (93)
Appendix 3. Symbols

\begin{itemize}
 \item a: plasma minor radius (m)
 \item κ: vertical elongation
 \item δ: triangularity
 \item R_0: major radius (m)
 \item A: aspect ratio
 \item V: plasma volume (m^3)
 \item V_m: machine encompassing volume(m^3)
 \item S: plasma surface area (m^2)
 \item B_{T_0}: vacuum toroidal field at plasma geometric axis (T)
 \item $B_{T_{\text{leg}}}$: magnetic field at inner toroidal-field-coil leg (T)

 \item B_p: averaged poloidal field at plasma surface (T)
 \item I_p: plasma current (A)
 \item I_{bs}: bootstrap current (A)
 \item q: edge safety factor q_ψ
 \item q_{cyl}: cylindrical safety factor
 \item n_0: central density (m^{-3}), $n_e = n_i$
 \item T_0: central temperature(keV), $T_e = T_i$
 \item γ_d: density profile shaping factor
 \item γ_T: temperature profile shaping factor
 \item Z_i: charge of main impurity ion
 \item Z_{eff}: effective charge including impurities
 \item A_i: effective mass
 \item g: fuel dilution factor
 \item s_p: plasma profile and impurity content factor
 \item W: total stored energy in plasma (J)
 \item β: ratio of average pressure to vacuum toroidal field
 \item β_N: beta normal
 \item f_n: fraction of Greenwald limit
 \item f_{bs}: bootstrap fraction
 \item α_{bs}: bootstrap fraction coefficient
\end{itemize}
\[\tau_E \text{ confinement time (s)} \]
\[H \text{ confinement enhancement factor} \]
\[\alpha_R \text{ confinement-time scaling-law exponent} \]
\[\alpha_a \text{ confinement-time scaling-law exponent} \]

- \(P_E \) total heating power (external plus alpha) (W)
- \(P_\alpha \) alpha heating power (W)
- \(P_n \) power in neutrons (W)
- \(P_{el} \) total electric power generated (W)
- \(P_{TF} \) power consumed in producing toroidal field (W)
- \(P_{CD} \) power consumed in generating current drive (W)
- \(P_H \) power consumed in generating auxiliary heating (W)
- \(P_{out} \) total heat lost from plasma (W)
- \(P_B \) power lost to Bremsstrahlung (W)
- \(P_S \) power lost to cyclotron radiation (W)
- \(\Gamma_n \) neutron power flux to walls (W/m²)
- \(F \) ratio of alpha power to conduction loss
- \(Q_n \) ratio of neutron power to auxiliary power
- \(\chi \) recirculating power fraction
- \(\eta_{CD} \) conversion efficiency from electric power to plasma current \(\left(\frac{A}{W m^{-1}} \right) \)
- \(f_{el} \) conversion efficiency from neutrons to electrical power
- \(f_{TF} \) conversion efficiency from electrical power to toroidal field
- \(f_{CD} \) conversion efficiency from electrical power to current drive
- \(f_H \) conversion efficiency from electrical power to auxiliary heating
- \(f_{Cu} \) fraction of TF area made of conductor

Appendix 4. Constants

- \(\mu_0 \) permeability of free space \(4\pi \times 10^{-7} (H m^{-1}) \)
- \(k_b \) Boltzmann constant \(1.6022 \times 10^{-16} (J/keV) \)
- \(\eta \) resistivity of copper \(2 \times 10^{-8} (\Omega - m) \)
Appendix 5. Nominal values

\[
\begin{align*}
\chi_0 &< 0.62 & (94) \\
\Gamma_{no} &< 5 \times 10^8 & (95) \\
H &= 2 & (96) \\
Z_{\text{eff}} &= 1.5 & (97) \\
Z_i &= 6 & (98) \\
\gamma_n &= 1 & (99) \\
\gamma_T &= 1 & (100) \\
A_i &= 1.5 & (101) \\
f_{el0} &= 0.4 & (102) \\
f_{Cu} &= 0.7 & (103) \\
\delta &= 0.2, 0.3, 0.9 & (104) \\
\kappa_0 &< 2 & (105) \\
\beta_{N_0} &< 9 & (106) \\
T_{\text{min}} &> 5 & (107) \\
T_{\text{max}} &< 25 & (108) \\
B_{T_{\text{max}}0} &= 13 & (109) \\
\alpha_{bs} &= 1 & (110) \\
f_{bs0} &< 1.0 & (111) \\
\eta_{CD} &= 1.0, 3.0, 10.0 \times 10^{19} & (112) \\
q_{\text{min}} &= 3.2 & (113) \\
f_n &= 0.9 & (114) \\
f_{TF} &= 0.8 & (115) \\
f_{CD} &= 0.8 & (116) \\
P_{gr} &> 0.5 GW & (117)
\end{align*}
\]