Mechanisms of stability of armored bubbles: FY 1996 Final Report

PDF Version Also Available for Download.

Description

Theoretical and experimental studies examine how a coating, or {open_quotes}armor,{close_quotes} of partially wetted solid particles can stabilize tiny bubbles against diffusion of gas into the surrounding liquid, in spite of the high capillary pressures normally associated with such bubbles. Experiments with polymethylmethacrylate (PNMA) beads and carbonated water demonstrate that armored bubbles can persist for weeks in liquid unsaturated with respect to the gas in the bubbles. This question is of concern regarding gas discharges from waste tanks at the Hanford reservation. The stresses on the solid-solid contacts between particles in such cases is large and could drive sintering of the ... continued below

Physical Description

48 p.

Creation Information

Rossen, W.R. & Kam, S.I. November 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Pacific Northwest Laboratory
    Publisher Info: Pacific Northwest Lab., Richland, WA (United States)
    Place of Publication: Richland, Washington

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Theoretical and experimental studies examine how a coating, or {open_quotes}armor,{close_quotes} of partially wetted solid particles can stabilize tiny bubbles against diffusion of gas into the surrounding liquid, in spite of the high capillary pressures normally associated with such bubbles. Experiments with polymethylmethacrylate (PNMA) beads and carbonated water demonstrate that armored bubbles can persist for weeks in liquid unsaturated with respect to the gas in the bubbles. This question is of concern regarding gas discharges from waste tanks at the Hanford reservation. The stresses on the solid-solid contacts between particles in such cases is large and could drive sintering of the particles into a rigid framework. Stability analysis suggests that a slightly shrunken bubble would not expel a solid particle from its armor to relieve stress and allow the bubble to shrink further. Expulsion of particles from more stressed bubbles at zero capillary pressure is energetically favored in some cases. It is not clear, however, whether this expulsion would proceed spontaneously from a small perturbation or require a large initial disturbance of the bubble. In some cases, it appears that a bubble would expel some particles and shrink, but the bubble would approach a final, stable size rather than disappear completely. This simplified analysis leaves out several factors. For instance, only one perturbation toward expelling a solid from the armor is considered; perhaps other perturbations would be more energetically favored than that tested. Other considerations (particle deformation, surface roughness, contact-angle hysteresis, and adhesion or physical bonding between adjacent particles) would make expelling solids more difficult than indicated by this theoretical study.

Physical Description

48 p.

Notes

INIS; OSTI as DE97051565

Source

  • Other Information: PBD: Nov 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97051565
  • Report No.: PNNL--11416
  • Grant Number: AC06-76RL01830
  • DOI: 10.2172/475643 | External Link
  • Office of Scientific & Technical Information Report Number: 475643
  • Archival Resource Key: ark:/67531/metadc679702

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • June 13, 2016, 8:13 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Rossen, W.R. & Kam, S.I. Mechanisms of stability of armored bubbles: FY 1996 Final Report, report, November 1, 1996; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc679702/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.