<table>
<thead>
<tr>
<th>Item No.</th>
<th>Document/Drawing No.</th>
<th>Sheet No.</th>
<th>Rev. No.</th>
<th>Title or Description of Data Transmitted</th>
<th>Approval Designator</th>
<th>Reason for Transmittal</th>
<th>Originator Disposition</th>
<th>Receiver Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WHC-SD-CP-OTR-158</td>
<td>1-18</td>
<td>0</td>
<td>Operability Test Report</td>
<td>SQE</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

KEY

- **E.S., G, D or N/A**
 - see WHC-CM-3-5, Sec.12.7
- **(G) Reason**
 - 1. Approval
 - 2. Release
 - 3. Information
 - 4. Review
 - 5. Post-Review
 - 6. Dist. (Receipt Acknow. Required)
- **(H) Disp.**
 - 1. Approved
 - 2. Approved w/comment
 - 3. Disapproved w/comment
 - 4. Reviewed no/comment
 - 5. Reviewed w/comment

Signature/Distribution

- **(J) Name**
 - Design Authority (PJ Sullivan)
 - Design Agent (RD Keck)
 - Cognizant Engr. (RD Keck)
 - Cognizant Mgr.
 - QA (RCG)
 - Safety Controller
 - (RJ G.1k)
- **(K) Signature**
 - (signature)
- **(L) Date**
 - (05/96)
- **(M) MSIN**
 - (N/A)

Required Response Date:

N/A

DOE APPROVAL (if required)

- 【】 Approved
- 【】 Approved w/comments
- 【】 Disapproved w/comments
Operational Test Report
ANN-714

R. D. Keck
Babcock & Wilcox Hanford Company, Richland, WA 99352
U.S. Department of Energy Contract DE-AC06-87RL10930

EDT/ECN: 160218 UC: 515
Org Code: 15510 Charge Code: K6001
B&R Code: EW7002010 Total Pages: 18

Key Words: Effluent, CAM, Seismic, Shutdown, Vacuum, Authorization Basis, Safety Envelope, OSR

Abstract: Operability testing for ANN-714 is documented.

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: WNC/BCS
Document Control Services, P.O. Box 1970, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.

Approved for Public Release

A-6400-073 (10/95) GEFS21
<table>
<thead>
<tr>
<th>Section Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 TEST PLAN</td>
<td>3</td>
</tr>
<tr>
<td>1.1 BACKGROUND</td>
<td>3</td>
</tr>
<tr>
<td>1.2 TEST APPROACH</td>
<td>3</td>
</tr>
<tr>
<td>1.3 ORGANIZATION AND RESPONSIBILITIES</td>
<td>4</td>
</tr>
<tr>
<td>2.0 SAFETY</td>
<td>4</td>
</tr>
<tr>
<td>3.0 TOOLS, EQUIPMENT, AND SUPPLIES</td>
<td>4</td>
</tr>
<tr>
<td>4.0 PRE-TEST INSPECTION REQUIREMENTS</td>
<td>4</td>
</tr>
<tr>
<td>5.0 PROCEDURE STEPS</td>
<td>5</td>
</tr>
<tr>
<td>5.1 Stack Alarm Testing</td>
<td>5</td>
</tr>
<tr>
<td>5.2 Process Vacuum Leak Detection Alarm Testing</td>
<td>10</td>
</tr>
<tr>
<td>5.3 Seismic Fan Shutdown Disabled Alarm Testing - Window 30</td>
<td>12</td>
</tr>
<tr>
<td>5.4 Power Fail Alarms</td>
<td>12</td>
</tr>
<tr>
<td>6.0 DATA/VERIFICATION SHEETS</td>
<td>14</td>
</tr>
<tr>
<td>7.0 INTERFACE AREAS</td>
<td>15</td>
</tr>
<tr>
<td>Appendix A EXCEPTIONS</td>
<td>16</td>
</tr>
<tr>
<td>Appendix B ACCEPTANCE SHEET</td>
<td>17</td>
</tr>
</tbody>
</table>

MICON is a registered trademark of MICON Company, Houston, Texas
1.0 TEST PLAN

1.1 BACKGROUND

The purpose of this test procedure is to provide instructions for functionally testing of the alarms connected to a new hardwired annunciator (ANN-714) for safety class and safety significant alarms (stack monitors, Process (26") vacuum leak detection, and seismic system disabled) in room 714. The alarms are currently connected to a status panel in room 321A of the 234-5Z Building and annunciators in rooms 221A and 321A of the 234-5Z Building and room 631 of the 2736-ZB Building.

1.2 TEST APPROACH

The modifications associated with the installation of ANN-714 will remove the stack alarms from the annunciators in rooms 221A and 321A of the 234-5Z Building and room 631 of the 2736-ZB Building. These annunciators "relay" the alarms to the final panel in room 321A, thus a failure in the remote annunciator could cause the loss of the alarm to the final panel. The alarms are being removed from these annunciators to eliminate this failure mode. Each of these alarms will be tested by activating the alarm at the end device (using radiation source, shutting off vacuum, removing power, etc) in a manner consistent with the applicable ZSE procedure.

The OSR LCO 3.2.2 operability parameters of concern tested under this OTP are limited to the ability of the Stack CAM system to generate LCO alarms at the new ANN-714 Panel. This includes CAM High Radiation, CAM Failure (Two Modes: loss of power, detector failure), and CAM Low Flow/Loss of Vacuum. Other CAM specific testing, such as efficiency checks, are not included in the scope of this OTP. These functions are not being effected by the alarm wiring modifications.

The modifications associated with the installation of ANN-714 will remove the seismic fan shutdown system disabled alarm from the status panel in room 321A. The alarm will be tested in same manner as ZSE-99B-001 by placing both accelerometers in the bypass mode and verifying the receipt of the alarm.

The modifications associated with the installation of ANN-714 will install parallel alarms for the process vacuum leak detection alarms. These alarms are being paralleled to allow continued operation of the process vacuum system until the system controls are tied into the MICON system. The room 321A alarms will be the primary alarms until this tie-in is completed. The alarm testing will use the same approach as used for the required OSR testing.

ANN-714 has power failure alarms to notify the operator that annunciator power has failed. These alarms will be tested by shutting off power to the annunciator.
1.3 ORGANIZATION AND RESPONSIBILITIES

The Seismic Fan Shutdown System Cognizant Engineer or the Liquid & Gaseous Effluents & Sanitary Sewer Cognizant Engineer shall serve as test coordinator and shall initial steps as complete.

NOTE: Technical changes to this test procedure shall be authorized by an ECN. Administrative changes may be authorized by the Seismic Fan Shutdown System Cognizant Engineer and shall be recorded in ink. Changes shall be signed by the Seismic Fan Shutdown System Cognizant Engineer and the Shift Manager or his representative. Record these changes on the exception sheet in section 10.0.

The testing shall be witnessed by a minimum of the Test Coordinator, QA, and the MICON power control room operator. During testing of stack alarms, an RCT will be required and the Liquid & Gaseous Effluents & Sanitary Sewer Cognizant Engineer may be present. During the testing of the Process Vacuum Leak Detection alarms, an Electrician will be required and the Process Vacuum Cognizant Engineer may be present. During the testing of the Seismic Fan Shutdown System Disabled Alarm, the Seismic Fan Shutdown System Cognizant Engineer may be present and a Stationary Operating Engineer will be required.

2.0 SAFETY

Two-hour stack surveillances will not be discontinued until this OTP has been completed and the Shift Manager has declared ANN-714 operable.

The RCT(s) handling the source are required to read, understand and comply with the rules governing work with sources.

In order to accomplish the work in section 5.2 and 5.4, it is necessary to have the equipment or circuit energized. The safe work requirements for the work activities are identified on the Energized Electrical Work Permit, in accordance with the WHC-CM-1-10, WKS 15.

3.0 TOOLS, EQUIPMENT, AND SUPPLIES

The following test equipment is required:

- Check source (5,000 dpm recommended)
- Jumper(s).
- Insulated hand tools, suitable for low voltage work.
- Voltage rated gloves with a rating greater than or equal to 500 Volts.

4.0 PRE-TEST INSPECTION REQUIREMENTS

Verify that the system's modifications is in agreement with the design drawings.

Seismic Fan Shutdown System Cognizant Engineer

[Signature] 1/12/77
5.0 PROCEDURE STEPS

NOTE: IF A PIECE OF EQUIPMENT FAILS OR DOES NOT PERFORM AS DESIGNATED BY THIS DOCUMENT, THE TEST COORDINATOR MAY MOVE TO ANOTHER PART OF THIS PROCEDURE OR ANOTHER PIECE OF EQUIPMENT TO CONTINUE TESTING WHILE TROUBLESHOOTING AND REPAIR IS COMPLETED UNDER WORK PACKAGE CONTROL ON THE FAILED OR UNSATISFACTORY EQUIPMENT.

INFORM Panel Attendant they will be PAX'd from the field to verify each alarm AND they may check off alarms as they are received, rather than noting time of day on the sheets.

RECORD name of Power Control Room Operator.

5.1 Stack Alarm Testing

NOTE: Choose a stack system to test. Access to 2736-ZB roof requires Patrol Authorization, and access to 2736-ZA requires a key from Operations and Patrol authorization on off-shift and weekends. Stack Cabinet keys are also required.

5.1.1 Preliminary Instructions

5.1.1.1 Verify the stack alarm windows are in the normal, non-alarm condition.

5.1.1.2 INFORM Operator of the window being tested. After generation of an alarm, PAX 278 to verify Power Operator received alarm before proceeding.

NOTE: The 232-Z Local Panel Alarms (PNL-Z14) will also be tested. For reference, CAM #1 = UPPER CAM or EDP #815, CAM #2 = LOWER CAM or EDP #816.

5.1.2 CAM HIGH RAD - ALARM WINDOWS 1, 6, 11, 16, 21, 25 AND 232-Z LOCAL ALARMS

5.1.2.1 OPEN CAM Detector Door, Remove Sample Filter, set aside.

5.1.2.2 INSTALL check source (recommend 5,000 dpm) under sample holder ring. CLOSE door.

5.1.2.3 CONFIRM High Count Alarm is received within 5 minutes. INITIAL table 1 as alarms are verified received.
5.1.2.4 REQUEST RCT REMOVE check source and INSTALL original sample filter.

5.1.2.5 CLOSE Detector Door.

5.1.2.6 IF testing 232-Z cabinet alarms, PRESS Local Panel (PNL-214) Reset Button to clear Panel CAM High Rad. alarm light, cabinet strobe light, and cabinet bell.

5.1.2.7 REQUEST RCT note "96-304" and date/time on CAM strip chart.

5.1.2.8 ENSURE local alarms are clear.
 - CAM Power Light illuminated.
 - CAM Failure Light OFF.
 - CAM Counting Light illuminated.
 - Cabinet (exterior) Alarm Light. (N/A if 2736-ZA)
 - If at 232-Z, Local Panel (PNL-214) alarm lights are OFF.

5.1.2.9 ENSURE Room 714 alarms are clear before proceeding.

5.1.2.10 If another CAM is at present location, repeat section 5.1.2.

5.1.3 CAM FAIL - ALARM WINDOWS 2, 7, 12, 17, 22, 25 AND 232-Z LOCAL ALARMS

5.1.3.1 Power Fail
 5.1.3.1.1 TURN CAM "ON/OFF" Switch to "OFF" position.

Table 1 CAM HIGH RAD

<table>
<thead>
<tr>
<th>Location</th>
<th>ANN-714 Window</th>
<th>CAM</th>
<th>Cabinet Alarm</th>
<th>Cabinet Bell</th>
<th>Cabinet Strobe</th>
</tr>
</thead>
<tbody>
<tr>
<td>291-Z</td>
<td>1</td>
<td>CAM-Z1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>241-Z</td>
<td>6</td>
<td>CAM-Z3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2736-ZB</td>
<td>11</td>
<td>CAM-Z5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2736-ZA</td>
<td>16</td>
<td>EDP# 804</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2736-ZA</td>
<td>21</td>
<td>EDP# 803</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>232-Z</td>
<td>25</td>
<td>Upper</td>
<td>N/A</td>
<td>DS-4</td>
<td>N/A</td>
</tr>
<tr>
<td>232-Z</td>
<td>25</td>
<td>Lower</td>
<td>N/A</td>
<td>DS-6</td>
<td>N/A</td>
</tr>
</tbody>
</table>
5.1.3.1.2 CONFIRM Fail Alarm is received. INITIAL table 2 as alarms are verified received.

<table>
<thead>
<tr>
<th>Location</th>
<th>ANN-714 Window</th>
<th>CAM</th>
<th>Cabinet Alarm</th>
<th>Cabinet Bell</th>
<th>Cabinet Strobe</th>
</tr>
</thead>
<tbody>
<tr>
<td>291-Z</td>
<td>2</td>
<td>CAM-Z1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>241-Z</td>
<td>7</td>
<td>CAM-Z3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2736-ZB</td>
<td>12</td>
<td>CAM-Z5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2736-ZA</td>
<td>17</td>
<td>EDP# 804</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2736-ZA</td>
<td>22</td>
<td>EDP# 803</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>232-Z</td>
<td>25</td>
<td>Upper</td>
<td>DS-5</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>232-Z</td>
<td>25</td>
<td>Lower</td>
<td>DS-7</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

5.1.3.1.3 TURN CAM "ON/OFF" Switch to "ON" position.

5.1.3.1.4 IF testing 232-Z cabinet alarms, PRESS Local Panel (PNL-214) Reset Button to clear Panel alarm and cabinet strobe light.

5.1.3.1.5 ENSURE local alarms are clear.
- CAM Power Light illuminated.
- CAM Failure Light OFF.
- CAM Counting Light illuminated.
- Cabinet (exterior) Alarm Light. (N/A if 2736-ZA)
- If at 232-Z, Local Panel (PNL-214) alarm lights are OFF.

5.1.3.1.6 ENSURE Room 714 alarms are clear before proceeding.

5.1.3.2 Cam Low Count Alarm

NOTE

Failure Alarm takes a minimum of 12.5 minutes to alarm. Door detect switch must be OPEN to prevent counts. (Counting light will be "ON" until failure alarm occurs.) Precautions should be taken to prevent any counts. IF even one count is detected, the test will need to be repeated.
5.1.3.2.1 OPEN Detector Door.

5.1.3.2.2 SHIELD Detector from light.

NOTE
This failure test may be repeated up to 3-4 times as desired on a
given Stack CAM if the first attempt fails. If the test does not
generate an alarm contact the PIC.

5.1.3.2.3 CONFIRM CAM low count Failure light is received on ANN-714
Panel. Initial Table 3 as alarms are verified received.

<table>
<thead>
<tr>
<th>Location</th>
<th>ANN-714 Window</th>
<th>CAM</th>
<th>Cabinet Alarm</th>
<th>Cabinet Bell</th>
<th>Cabinet Strobe</th>
</tr>
</thead>
<tbody>
<tr>
<td>291-Z</td>
<td></td>
<td>CAM-Z1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>241-Z</td>
<td></td>
<td>CAM-Z3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2736-ZB</td>
<td></td>
<td>CAM-Z5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2736-ZA</td>
<td></td>
<td>EDP# 804</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2736-ZA</td>
<td></td>
<td>EDP# 803</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>232-Z</td>
<td></td>
<td>Upper</td>
<td>DS-5</td>
<td>NA</td>
<td>out of service</td>
</tr>
<tr>
<td>232-Z</td>
<td></td>
<td>Lower</td>
<td>DS-7</td>
<td>NA</td>
<td>out of service</td>
</tr>
</tbody>
</table>

5.1.3.2.4 REMOVE Detector Shield and close detector door.

5.1.3.2.5 IF testing 232-Z, PRESS Local Panel (PNL-Z14) Reset Button.

5.1.3.2.6 CONFIRM local alarms are clear:

- CAM Power Light illuminated.
- CAM Failure Light OFF.
- CAM Counting Light illuminated.
- Cabinet (exterior) Alarm Light.
- If at 232-Z, Local Panel PNL-Z14 alarm lights are OFF.
- CAM sample flow rate 1.8-2.2 cfm for 2736-ZA and 2736-ZB.
5.1.3.3 If another CAM is at present location, repeat section 5.1.3.

5.1.4 LOW FLOW / LOSS OF VACUUM - ALARM WINDOWS 3, 4, 8, 13, 18, 25, AND 232-Z LOCAL ALARMS

5.1.4.1 MINIMIZE flow to CAM/Record Sampler Flow/Vacuum switch in order to generate a low flow/loss of vacuum condition. If the stack system contains multiple switches, check each one by generating and then clearing the alarms in sequence.

- For 2736-ZA Stack use Valve V-6021-23A to isolate Switch PS-5900-23A. The Switch is located in 2736-ZA.
- For 2736-ZB Stack use Valve V-4012-23A to isolate Switch VS-CAM-Z5. The Switch is located in 2736-ZB Room 600.
- The Calibration Ports to these Switches may be opened if necessary to generate the alarms.

5.1.4.2 CONFIRM that each Low Flow or Loss of Vacuum Alarm is received for a given stack system. INITIAL table 4 as alarms are verified received.

Table 4 LOW FLOW / LOSS OF VACUUM

<table>
<thead>
<tr>
<th>Location</th>
<th>ANN-714 Window</th>
<th>SWITCH</th>
<th>Cabinet Alarm</th>
<th>Cabinet Strobe</th>
</tr>
</thead>
<tbody>
<tr>
<td>291-Z</td>
<td>3</td>
<td>VS-CAM-Z1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>291-Z</td>
<td>4</td>
<td>VS-SPL-Z1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>241-Z</td>
<td>8</td>
<td>VS-CAM-Z3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2736-ZB</td>
<td>13</td>
<td>VS-CAM-Z5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2736-ZA</td>
<td>18</td>
<td>PS-5900-23A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>232-Z</td>
<td>25</td>
<td>FS-SPL-Z14</td>
<td>DS-1</td>
<td>out of service</td>
</tr>
<tr>
<td>232-Z</td>
<td>25</td>
<td>FS-UPPER-Z14</td>
<td>DS-2</td>
<td>out of service</td>
</tr>
<tr>
<td>232-Z</td>
<td>25</td>
<td>FS-LOWER-Z14</td>
<td>DS-3</td>
<td>out of service</td>
</tr>
</tbody>
</table>

5.1.4.3 RESTORE flow to the CAM/Record Sampler (1.8-2.2 cfm) or Switch to clear alarm.
5.1.4.4 VERIFY that the alarm is clear in Room 714 and any local alarms (232-Z Cabinet local alarm panel) before proceeding.

5.1.4.5 RCT shall independently verify system operation by performing ZH-100-101 and completing the OSR Data Sheet. Request RCT note "Package 96-304" in Comment field of OSR Data Sheet.

5.1.4.6 If another switch is at present location, repeat section 5.1.4.

5.1.5 REPEAT sections 5.1.2 through 5.1.4 until all stacks have been checked.

5.2 Process Vacuum Leak Detection Alarm Testing

5.2.1 Secure Process Vacuum System per ZO-060-602 and ZO-060-624.

NOTE: Sections 5.2.2, 5.2.3, and 5.2.4 may be worked in any order at the Test Coordinator's direction.

5.2.2 Leak Detector No. 1 - Window 26

WARNING
Electrical SHOCK potential is present (above 50 VAC) while installing jumpers on probe. PERSONAL INJURY COULD OCCUR.

REFER TO WHC-CA-1-10

5.2.2.1 REMOVE electrical cover from liquid detector CE-1LD-23B.

5.2.2.2 INSTALL electrical jumper across detector probes.

5.2.2.3 Verify the following:

- Annunciator "1" on PANEL "L" Room 321A ("26" VAC No. 1 Moisture Detection) alarms.
- ANN-714 Window 26 alarms (MOISTURE LIQ DETECTOR 26" VAC NO 1)

5.2.2.4 REMOVE jumper.

5.2.2.5 Verify the following:

- Annunciator "1" on PANEL "L" Room 321A ("26" VAC No. 1 Moisture Detection) returns to normal.
- ANN-714 Window 26 returns to normal (MOISTURE LIQ DETECTOR 26" VAC NO 1)

5.2.2.6 INSTALL electrical cover on liquid detector CE-1LD-23B.
5.2.3 Leak Detector No. 2 - Window 27

WARNING
Electrical SHOCK potential is present (above 50 VAC) while installing jumpers on probe. PERSONAL INJURY COULD OCCUR.

REFER TO WHC-CM-1-10

5.2.3.1 REMOVE electrical cover from liquid detector CE-2LD-23B.

5.2.3.2 INSTALL electrical jumper across detector probes.

5.2.3.3 Verify the following:

\[RDK \]
Annunciator "3" on PANEL "L" Room 321A ("26" VAC No. 2 Moisture Detection) alarms.

\[RDK \]
ANN-714 Window 27 alarms (MOISTURE LIQ DETECTOR 26" VAC NO 2)

5.2.3.4 REMOVE jumper.

5.2.3.5 Verify the following:

\[RDK \]
Annunciator "3" on PANEL "L" Room 321A ("26" VAC No. 2 Moisture Detection) returns to normal.

\[RDK \]
ANN-714 Window 27 returns to normal (MOISTURE LIQ DETECTOR 26" VAC NO 2)

5.2.3.6 INSTALL electrical cover on liquid detector CE-2LD-23B.

5.2.4 Liquid Detection Loop Circuit Test - Windows 28 and 29

5.2.4.1 PRESS "Liquid Detection Loop Circuit Test" button on ANN-714 and verify the following:

\[RDK \]
ANN-714 Window 28 alarms

\[RDK \]
ANN-714 Window 29 alarms

\[RDK \]
Room 321A L panel annunciator "2" "Liquid Detector No. 1 Trouble" alarms

\[RDK \]
Room 321A L panel annunciator "4" "Liquid Detector No. 2 Trouble" alarms

5.2.4.2 RELEASE "Liquid Detection Loop Circuit Test" button and verify the following:

\[RDK \]
ANN-714 Window 28 returns to normal

\[RDK \]
ANN-714 Window 29 returns to normal

\[RDK \]
Room 321A L panel annunciator "2" "Liquid Detector No. 1 Trouble" returns to normal

\[RDK \]
Room 321A L panel annunciator "4" "Liquid Detector No. 2 Trouble" returns to normal
5.3 Seismic Fan Shutdown Disabled Alarm Testing - Window 30

5.3.1 Get accelerometer cage keys and open doors to both cages.
5.3.2 Turn accelerometer 1 ONLINE/BYPASS key to the BYPASS position.
5.3.3 Verify the ACCLRM #1 BYPASS ALARM light in the seismic status panel in 321A is illuminated.
5.3.4 Verify the DISABLED SEISMIC FAN SHUTDOWN alarm on the room 714 annunciator is not activated.
5.3.5 Turn accelerometer 2 ONLINE/BYPASS key to the BYPASS position.
5.3.6 Verify the ACCLRM #2 BYPASS ALARM light in the seismic status panel in 321A is illuminated.
5.3.7 Verify the DISABLED SEISMIC FAN SHUTDOWN alarm on the room 714 annunciator is activated.
5.3.8 Verify the SEISMIC FAN SHUTDOWN DISABLED audible alarm on the corridor 14 is activated.
5.3.9 Turn accelerometer 1 ONLINE/BYPASS key to the ONLINE position.
5.3.10 Verify the ACCLRM #1 BYPASS ALARM light in the seismic status panel in 321A is extinguished.
5.3.11 Verify the DISABLED SEISMIC FAN SHUTDOWN alarm on the room 714 annunciator is no longer active.
5.3.12 Verify the SEISMIC FAN SHUTDOWN DISABLED audible alarm on the corridor 14 is silenced.
5.3.13 Turn accelerometer 2 ONLINE/BYPASS key to the ONLINE position.
5.3.14 Verify the ACCLRM #2 BYPASS ALARM light in the seismic status panel in 321A is extinguished.
5.3.15 Verify the DISABLED SEISMIC FAN SHUTDOWN alarm on the room 714 annunciator is not active.
5.3.16 Close and lock accelerometer cages.

5.4 Power Fail Alarms - Windows 9 and 10

5.4.1 In panel MCS (Room 308 Duct Level) turn off circuit 11.
5.4.2 Verify Window 10 (PWR FAIL ANN-714) alarms.
5.4.3 In panel MCS (Room 308 Duct Level) turn on circuit 11.
5.4.4 Verify Window 10 (PWR FAIL ANN-714) returns to normal.
5.4.5 In room 321A, Pull fuse F3 or F4 in panel F (also impacts K panel annunciator - Fuses F3 and F4 in panel F room 321A - H-2-16318 sheet 1 and ECN 138809.)

| 5.4.6 RK | Verify Window 9 (BACKUP PWR FAIL ANN-714) alarms. |

5.4.7 In room 321A, install fuse removed in step 5.4.5

| 5.4.8 RK | Verify Window 9 (BACKUP PWR FAIL ANN-714) returns to normal. |
6.0 DATA/VERIFICATION SHEETS

All personnel involved in the performance of this test including the person-in-charge (PIC), data taker/recorder, verifier and witnesses shall fill out the data below:

<table>
<thead>
<tr>
<th>PRINT NAME</th>
<th>SIGN NAME</th>
<th>INITIAL</th>
<th>POSITION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. D. Keck</td>
<td>RK</td>
<td>RDK</td>
<td>Test Director</td>
<td>11/12/97</td>
</tr>
<tr>
<td>J. L. Bernard</td>
<td>L.</td>
<td>LK</td>
<td>HPT</td>
<td>12/12/97</td>
</tr>
<tr>
<td>Kid Maig</td>
<td>KDMaig</td>
<td>kW</td>
<td>HPT</td>
<td>11/12/97</td>
</tr>
<tr>
<td>W. M. Bricker</td>
<td></td>
<td>WM</td>
<td>KT</td>
<td>1/12/97</td>
</tr>
<tr>
<td>S. N. Butler</td>
<td></td>
<td>SNB</td>
<td>POWER</td>
<td>1/12/97</td>
</tr>
<tr>
<td>E. Rosenbauer</td>
<td></td>
<td>E. Rosenbauer</td>
<td>ED</td>
<td>11/12/97</td>
</tr>
<tr>
<td>B. Dooley</td>
<td>BDdooley</td>
<td>BD</td>
<td>Elec</td>
<td>1/12/97</td>
</tr>
<tr>
<td>Randy Kother</td>
<td></td>
<td>Randy K</td>
<td>Ops</td>
<td>1/12/97</td>
</tr>
<tr>
<td>C. Harval</td>
<td></td>
<td>C. Harval</td>
<td>12P</td>
<td>11/29/97</td>
</tr>
<tr>
<td>Jeff L. Gibson</td>
<td></td>
<td>Jeff L. Gibson</td>
<td>121</td>
<td>INSTRUMENTS</td>
</tr>
<tr>
<td>E. L. Pomerinke</td>
<td></td>
<td>E. L. Pomerinke</td>
<td>12</td>
<td>Install</td>
</tr>
<tr>
<td>P. J. Sullivan</td>
<td></td>
<td>P. J. Sullivan</td>
<td>12</td>
<td>Env. Eng.</td>
</tr>
<tr>
<td>H. F. Morris</td>
<td></td>
<td>H. F. Morris</td>
<td>8M</td>
<td>O.E TECH</td>
</tr>
<tr>
<td>J. K. Holkern</td>
<td></td>
<td>J. K. Holkern</td>
<td>8K</td>
<td>Elec</td>
</tr>
</tbody>
</table>
6.0 DATA/VERIFICATION SHEETS

All personnel involved in the performance of this test including the person-in-charge (PIC), data taker/recorder, verifier and witnesses shall fill out the data below:

<table>
<thead>
<tr>
<th>PRINT NAME</th>
<th>SIGN NAME</th>
<th>INITIAL</th>
<th>POSITION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee Oliver</td>
<td></td>
<td>S</td>
<td>SOE</td>
<td>1-13-97</td>
</tr>
<tr>
<td>Don McKinney</td>
<td></td>
<td>M</td>
<td>SOE</td>
<td>1-14-97</td>
</tr>
<tr>
<td>Steve Stewart</td>
<td></td>
<td>S</td>
<td>SOE</td>
<td>1-15-97</td>
</tr>
</tbody>
</table>

INFORMATION ONLY

WCC

REV 0.
Sections 5.1, 5.2, 5.3, and 5.4 may be worked in any order at the Test Coordinator's direction. If a piece of equipment fails or does not perform as designated by this document, the Test Coordinator may move to another part of this procedure or another piece of equipment to continue testing while troubleshooting and repair is completed under work package control on the failed or unsatisfactory equipment.

During testing for the process vacuum system in section 5.2, the process vacuum system must be shutdown.
Appendix A \textbf{EXCEPTIONS}

Exception Sheet

<table>
<thead>
<tr>
<th>ITEM</th>
<th>STEP</th>
<th>PAGE</th>
<th>DESCRIPTION</th>
<th>DISPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,2,3,13</td>
<td>11</td>
<td>CE-260-23B - Window Alarms malfunction when CE-240-23A is shorted, due to relay "race" between Leak and Baffle alarms.</td>
<td>Accept as-is, Leak Detection Alarm functions as required.</td>
</tr>
<tr>
<td>2</td>
<td>TABLES 1,2,3,4</td>
<td>6,7,9,9</td>
<td>Strobe -out of service due to burned out bulb, Strobe wiring not changed by project.</td>
<td>Accept as-is.</td>
</tr>
<tr>
<td>3</td>
<td>TABLE 1</td>
<td>6</td>
<td>Upper lower cabinet column</td>
<td>Accept as-is.</td>
</tr>
<tr>
<td>4</td>
<td>TABLE 2,3</td>
<td>7,8</td>
<td>Cabinet bell column, does not sound during cabinet power fail/low count alarms.</td>
<td>Accept as-is.</td>
</tr>
<tr>
<td>5</td>
<td>TP</td>
<td>17</td>
<td>QA Witness Point</td>
<td>Add signoff space for QC witness of test.</td>
</tr>
</tbody>
</table>

Notes:
- Item 3: 2, 5, 10
- Item 16: 1-15-97
- Item 14: 1-13-97
- Item 13: 11-13-97
Appendix B ACCEPTANCE SHEET

TESTING COMPLETION Satisfactory completion of this test procedure will render ANN-714 ready for operation.

Testing per this procedure is satisfactory:

SEISMIC FAN SHUTDOWN COGNIZANT ENGINEER

DATE 1/15/97

PFP OPERATIONS OSR REPRESENTATIVE

DATE 1/15/97

BENEFICIAL USE After completion of the above signatures and release of modified procedures, the signature of the Shift Manager below indicates that PFP has beneficial use of ANN-714, stack CAM remote alarms are declared operable and 2 hour surveillances of the stack monitors may be discontinued.

PFP PLANT OPERATIONS MANAGER

DATE 1/15/97
DISTRIBUTION SHEET

To
Information Resource Management

From
PFP Facilities Systems Engineering

Date
11/20/97

Project Title/Work Order
2Z-96-304

<table>
<thead>
<tr>
<th>Name</th>
<th>MSIN</th>
<th>Text With All Attach.</th>
<th>Text Only</th>
<th>Attach./ Appendix Only</th>
<th>EDT/ECN Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Files</td>
<td>A3–88</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.D. Keck</td>
<td>T4–20</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J.P. King</td>
<td>T5–51</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.J. Sullivan</td>
<td>T5–54</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.J. Thomas</td>
<td>T4–20</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>