Several measurement systems and techniques for the electrical and thermal characterization of thermophotovoltaic (TPV) cells are discussed. One computer controlled system measures the quantum efficiency of cells from 0.8 to 2.6 microns. A probe resistor is used to account for cells with low shunt resistances. In the second system, a production-style robot provides automated measurements of I-V characteristics under dark, blackbody, and flashed illumination conditions. The system measures the length and width of each cell, and calculates the open circuit voltage, short circuit current, fill factor, and maximum power for each cell. The mean and standard deviation of the measured ...
continued below
Publisher Info:
Knolls Atomic Power Lab., Schenectady, NY (United States)
Place of Publication:
Schenectady, New York
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
Several measurement systems and techniques for the electrical and thermal characterization of thermophotovoltaic (TPV) cells are discussed. One computer controlled system measures the quantum efficiency of cells from 0.8 to 2.6 microns. A probe resistor is used to account for cells with low shunt resistances. In the second system, a production-style robot provides automated measurements of I-V characteristics under dark, blackbody, and flashed illumination conditions. The system measures the length and width of each cell, and calculates the open circuit voltage, short circuit current, fill factor, and maximum power for each cell. The mean and standard deviation of the measured parameters are also computed. The third system measures the overall cell efficiency by a calorimetric technique. Heat losses due to radiation, conduction, and convection are factored into the analysis method.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Danielson, L.R.; Parrington, J.R.; Charache, G.W.; Nichols, G.J. & Depoy, D.M.Measurement techniques for single junction thermophotovoltaic cells,
article,
October 1, 1998;
Schenectady, New York.
(digital.library.unt.edu/ark:/67531/metadc679645/:
accessed April 25, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.