Effect of recrystallization in high-burnup UO{sub 2} on gas release during RIA-type transients

PDF Version Also Available for Download.

Description

The authors recently proposed a model for irradiation-induced recrystallization (grain subdivision) and swelling in UO{sub 2} fuels wherein the stored energy in the material is concentrated in a network of sink-like nuclei that diminish with dose due to interaction with radiation-produced defects. It is of considerable interest to explore the consequences of recrystallization on gas release during a reactivity initiated accident (RIA). In the absence of recrystallization, gas release during RIA-type transients is generally limited to gas available on grain boundaries and edges due to the very short heatup times (milliseconds), short cooldown periods (seconds), and relatively long intragranular diffusion ... continued below

Physical Description

7 p.

Creation Information

Rest, J. & Hofman, G.L. October 1, 1994.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The authors recently proposed a model for irradiation-induced recrystallization (grain subdivision) and swelling in UO{sub 2} fuels wherein the stored energy in the material is concentrated in a network of sink-like nuclei that diminish with dose due to interaction with radiation-produced defects. It is of considerable interest to explore the consequences of recrystallization on gas release during a reactivity initiated accident (RIA). In the absence of recrystallization, gas release during RIA-type transients is generally limited to gas available on grain boundaries and edges due to the very short heatup times (milliseconds), short cooldown periods (seconds), and relatively long intragranular diffusion distances (on the order of micrometers). However, recrystallization provides grain-boundary surfaces that are substantially closer to the gas retained in the bulk material, and thus the potential for much higher gas release. The authors show the calculated burnup at which grain subdivision will occur as a function of fractional radius and fuel temperature for a generic pressurized water reactor irradiation. The FASTGRASS code was used to calculate fission gas behavior during in-reactor irradiation and during the RIA-type transient. Results are given. It is clear from these results that recrystallization of high-burnup UO{sub 2} has implications for the potential consequences of severe accident scenarios such as the RIA type.

Physical Description

7 p.

Notes

INIS; OSTI as DE97002725

Source

  • Other Information: PBD: Oct 1994

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97002725
  • Report No.: ANL/ET/PP--84776
  • Grant Number: W-31109-ENG-38
  • DOI: 10.2172/432943 | External Link
  • Office of Scientific & Technical Information Report Number: 432943
  • Archival Resource Key: ark:/67531/metadc679584

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 1994

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 20, 2016, 1:11 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Rest, J. & Hofman, G.L. Effect of recrystallization in high-burnup UO{sub 2} on gas release during RIA-type transients, report, October 1, 1994; Illinois. (digital.library.unt.edu/ark:/67531/metadc679584/: accessed November 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.