Toward higher order particle simulation of space-charge-dominated beams

PDF Version Also Available for Download.

Description

The intense particle beams to be used as drivers for Heavy Ion Inertial Fusion exhibit dynamics which are dominated by space-charge (abbreviated s-c) forces, rather than by thermal pressure (as in most traditional accelerator applications). Such beams are non-neutral plasmas, and the particle-in-cell technique (with the addition of detailed models for the externally applied fields and the domain geometry) has proven effective in their study. Typically, the applied focusing, bending, and accelerating fields vary rapidly with axial position, while the s-c fields (which are comparable in strength to the applied fields) vary smoothly; it is desirable to avoid using many ... continued below

Physical Description

7 p.

Creation Information

Friedman, A., LLNL January 12, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The intense particle beams to be used as drivers for Heavy Ion Inertial Fusion exhibit dynamics which are dominated by space-charge (abbreviated s-c) forces, rather than by thermal pressure (as in most traditional accelerator applications). Such beams are non-neutral plasmas, and the particle-in-cell technique (with the addition of detailed models for the externally applied fields and the domain geometry) has proven effective in their study. Typically, the applied focusing, bending, and accelerating fields vary rapidly with axial position, while the s-c fields (which are comparable in strength to the applied fields) vary smoothly; it is desirable to avoid using many steps to resolve the applied field variations while still computing accurate orbits. We are exploring high-order particle advance methods and other techniques to enhance the efficiency of these simulations. The earlier stages of this work included initial studies of: sub-cycling of the particle advance relative to the field solution; higher-order time-advance algorithms; force-averaging by integration along approximate orbits; and orbit- averaging. In this paper we describe further progress: (1) development of prescriptions for ``smooth`` cutoffs of tabulated fringe-field data so as to preserve the convergence of a high-order advance, studied using the realistic-profile model problem described in (2) for a high order advance and the model problem, comparison of both ``true`` and ``approximate`` (old-data, non-symplectic) every-substep s-c force application to periodic (``operator-split``) s-c force application; and (3) 2-d PIC (WARPxy code) convergence studies of the Candy-Rozmus (C-R) explicit fourth-order symplectic integrator using both ``true`` (every-substep) s-c and operator-split s-c, and of the leapfrog mover, modeling a transport line with sharp-edged fields.

Physical Description

7 p.

Notes

INIS; OSTI as DE98058835

Other: FDE: PDF; PL:

Source

  • 16. international conference on numerical simulation of plasmas, Goleta, CA (United States), 10-12 Feb 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98058835
  • Report No.: UCRL-JC--129416
  • Report No.: CONF-980217--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 304516
  • Archival Resource Key: ark:/67531/metadc679582

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 12, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 6, 2017, 6:04 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Friedman, A., LLNL. Toward higher order particle simulation of space-charge-dominated beams, article, January 12, 1998; California. (digital.library.unt.edu/ark:/67531/metadc679582/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.