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Abstract 

Spectroscopic ellipsometry is a very powerful technique for optical character- 

ization of thin-film and bulk materials, but the technique measures functions of complex 

reflection coefficients, which are usually not of interest per se. The interesting character- 

istics such as film thickness, surface roughness thickness, and optical functions can be 

determined only by modeling the near-surface region of the sample. However, the meas- 

ured quantities are not equivalent to those determined from the modeling. Ellipsometry 

measurements determine elements of the sample Mueller matrix, but the usual result of 

modeling calculations are elements of the sample. Often this difference is academic, but 

if the sample depolarizes the light, it is not. Ellipsometry calculations also include 

methods for determining the optical functions of materials. Data for bulk materials are 

usually accurate for substrates, but are not appropriate for most thin films. Therefore, 

reasonable parameterizations are quite useful in performing spectroscopic ellipsometry 

data analysis. Recently, there has been an increased interest in anisotropic materials, both 

in thin-film and bulk form. A generalized procedure will be presented for calculating the 
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elements of the Jones matrix for any number of layers, any one of which may or may not 

be uniaxial. 

I. Introduction 

Spectroscopic ellipsometry (SE) is a powerful optical characterization technique 

for a variety of needs,”’ including the monitoring of film growth and the determination of 

the optical properties of thin film and bulk materials. However, the data obtained from a 

SE measurement is not useful by itself. If one is interested in film or roughness 

thickness, or the optical functions of bulk or thin film materials, one must first model the 

near-surface region of the sample and obtain the complex reflection coefficients (CRC) 

from the model.”‘ The CRCs must then be compared with the ellipsometric data, which 

involves some assumptions concerning the nature of the light interaction with the surface. 

Another problem associated with the interpretation of SE measurements taken on 

thin film systems is that often the optical properties of thin-film material are quite 

different from those of the bulk material; moreover, these optical properties will often be 

a very strong function of the deposition process. This is at once an advantage and a curse. 

A major advantage of SE is that it is sensitive to the details of the deposition process and 

can therefore be used to monitor and control the process. However, this sensitivity of the 

optical functions means that we begin the modeling having only a rough idea of the 

values of the thin-film optical functions, which must then either be measured or 

parameterized. 

Recently, work on SE and its interpretation has been extended from isotropic to 

anisotropic materials. This is a challenge both from an experimental and a theoretical 
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point of view, in that traditional ellipsometers cannot measure all the relevant parameters 

in one configuration and methods of calculation must be developed to determine the 

additional parameters resulting from the sample anisotropy. 

In this paper, the procedure used to compare calculations with SE data will be 

examined. First, the differences between measured and inferred quantities will be 

discussed. Secondly, the three steps involved in comparing SE data with a model of the 

near-surface region of a sample will be briefly outlined. Some of the recent model 

parameterizations used to deal with thin film and bulk materials will then be discussed. 

Finally, the steps involved in calculating the CRCs from models where one or more of the 

constituents is anisotropic will be outlined. 

11. Measured and Calculated Quantities 

A. Measured Quantities 

In a generalized ellipsometry experiment, the light from the source passes through 

. the polarization state generator (PSG), interacts with the sample (reflects from or 

transmits through), and then passes through more polarization optics and is detected [the 

polarization state detector (PSD)]. The light that has passed through the PSG is described 

by its Stokes vector:.6 where 
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The elements of the Stokes vector are ail intensities and are therefore real. The quantity 

Z, is the total intensity and Z_4j ,  Zo, 4 5 ,  and Z,, are the intensities of light polarized at -45", 

Oo, 45O, and 90" with respect to the plane of incidence of the sample. The quantities I,, 

and 11, denote the intensities of right-circularly and left-circularly polarized light. The 

Stokes representation contains all possible polarizations of the light beam, including 

partial polarization. In general, 

I,, 2 (e' + u2 + v y  , 

where the equal sign holds for totally polarized light. The PSD can be represented by the 

transpose of Eq. 1. Therefore, one requires a 4x4 Mueller matrix M to describe the 

interaction of the light beam with the sample, given by 

Of course, not all of these elements are independent in that any polarization system 
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cannot “overpolarize” the light, nor can the output energy exceed the input energy; this 

leads to several necessary constraints on the elements of M.’ The intensity of the light 

incident upon the detector is a linear combination of the elements of M: 

Usually, ellipsometers measure 2 to 4 independent linear combinations of the 

Mueller matrix elements. If the PSG (PSD) does not contain a compensating element, 

then the 4‘h element of S p s ~  (S&) will be 0 and the ellipsometer is not sensitive to 

elements of the 4‘h row (4th column) of M. 

B. Calculated Parameters 

Optical calculations for a reflection ellipsometry experiment determine the 

elements of the complex Jones reflection matrix, given by 

J =  

where the elements are the polarization-dependent complex reflection coefficients. The 

elements of this Jones matrix will depend upon the angle of incidence and the details of 

the near-surface region of the sample, including the number and thicknesses of the thin 

films, as well as their refractive indices (n)  and extinction coefficients ( k ) .  For 
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transmission experiments, the r terms are replaced with complex transmission 

coefficients t. The normalized Jones matrix has 6 independent quantities. If the sample 

is isotropic, then the off-diagonal elements are zero and only 2 parameters are 

independent. 

To compare the calculated Jones matrix with experimentally measured quantities 

(elements of the sample Mueller matrix), one can calculate an equivalent Mueller-Jones 

matrix given by' 

where 

There are constraints on the elements of M for it to a realizable Mueller matrix7 and 

additional constraints for M to be a Mueller-Jones If the normalized 

representations of the sample Jones matrix and Mueller matrix are used, then only the 6 

elements of M are linearly independent. 

For an isotropic sample in a reflection ellipsometry configuration, the normalized 

sample Mueller matrix is given by' 

6 



where N = cos (2 y), S = sin (2 y) sin (A),  and C = sin (2 v/> cos (A) .  If an ellipsometer 

contains a compensating element, and measures at least 3 independent parameters, then it 

is possible to totally characterize M (such as with the two-channel spectroscopic 

polarization modulation ellipsometer' I ) .  If no compensating elements are used (as with 

the simple rotating element ellipsometer"), then it is impossible to measure S. The 

addition of a static compensating element in a rotating element ell ip~ometer '~ makes it 

possible to measure a linear combination of the C and the S component. 

If the sample is not isotropic, or if there are strained windows between the PSG 

and the sample, or between the sample and the PSD, then there are additional non-zero 

and independent elements in the Mueller matrix for the sample and windows. The 

Mueller matrix for an isotropic sample between input and output strained windows is 

given by ' 4: 

- N  
0 

M =  

- N  
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where 

Sswo = 60 sin (2 O , d  , 

SSw1 = 6, sin (2 Owl> , 

and & = 60 cos ( 2  &o) + 61 COS ( 2  Ow/) . 

The quantity & (6,) is the static strain retardation of the window between the PSG (PSD) 

and the sample and 

respect to the plane of incidence. Therefore, the use of windows introduces three 

additional independent parameters into the Mueller matrix. If either the upper right or 

lower left 2x2 block of the sample Mueller matrix is measured, then the parameters 6sWo 

and &,+I can be determined. The measurement of 6~ requires the use of a known sample. 

Once these three parameters are known, then corrected values of N, S, and C and be 

obtained. 

(&,) is the azimuthal angle of the fast axis of the window with 

If the sample is anisotropic, then the off-diagonal elements of the sample Jones 

matrix may be non-zero and the resulting sample Mueller-Jones matrix (from Eq. 6 )  

M =  

I 
- N - a ,  
c ps + 5 I 

- s,, + 5 2  
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Thus, the measurement of 7 parameters (N,  S, C, S,7p, C,, S,,, C,,,) completely determines 

the sample Mueller-Jones matrix. In this approximation, the measurement of either the 

upper right or the lower left 2x2 submatrix and one element of M corresponding to each 

of the N, S, and C parameters is sufficient to completely determine M. The normalization 

condition can be written as 

2 2  N2 + S2 + C? + SSp2 + C,,: + S,,: + C,, = p 

If the sample is non-depolarizing, then p=l  and we have only 6 independent parameters. 

However, if the sample does depolarize the light beam, then the NSC parameters so 

measured will normalize to p< 1 and p becomes a measure of this depolarization. Most 

samples do not measurably depolarize the incoming light, but there are many real 
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situations where the sample does depolarize the incoming light beam: 1) If the input light 

beam illuminates an area of the sample where the film thickness(es) are not uniform, 

quasi-depolarization can occur' I ,  and p< 1. 2) If the sample substrate is transparent then 

light reflecting from the back surface will contribute an intensity component to the light 

entering the PSD that is not phase-related to the light reflected from the front face and the 

light beam will be partially quasi-depolarized.16 

It must be emphasized that one can always associate a Jones matrix with a 

Mueller matrix, but the converse is not true. Rough surfaces, for example, depolarize the 

incident light 

identifiable polarization state. and in the sense that cross polarization occurs in nominally 

isotropic systems (s-polarized light goes to p-polarized light and visa versa). Some 

depolarization effects can be monitored with the p-parameter of Eq. 12, but the cross- 

polarization effects cannot. 

both in the sense that some of the light reaching the PSD has no 

111. Calculation Procedure 

If it can be assumed that the light reflecting from or transmitted through a sample 

can be represented by a modified Mueller-Jones matrix, the fitting of ellipsometric data is 

a three-part procedure3: 

1. 

2. 

Assume a model, including the number of layers and layer type (isotropic, 

anisotropic, or graded). 

Determine or parameterize the optical functions of each layer 
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3. Fit the data with a suitable algorithm and figure of merit to obtain the 

unspecified parameters. 

As was pointed out in refs. 3, 19 and 20, step 3 is critical. If there is no measure of the 

figure of merit, one does not know whether the model fits the data. One MUST use an 

error-based figure of merit, such as the reduced 2, which is given by 

In Eq. 13, p,.ex,,(df), p,,LL,lc(df), and @,(df) represent the experimental, calculated, and error 

quantities at wavelength AI, and data set j ,  while N is the total number of data points, rn is 

the number of fitted parameters, and M is the number of data sets. Furthermore, realistic 

measurements of the error limits of the fitted parameters must be calculated as well as 

cross correlation coefficients. To ignore this step invites drastic errors in the 

interpretation of spectroscopic ellipsometry data. 

IV. Parameterization of Optical Functions 

One of the critical steps involved in fitting spectroscopic ellipsometry data to a 

given model is that one often must use existing knowledge of the optical functions for 

each of the layers in order to make the problem tractable. Unfortunately, the optical 

functions of thin films are often quite different from the optical functions of nominally 
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equivalent bulk materials,” even for epitaxial films.’’ Furthermore, the optical functions 

of crystalline thin films can change with 

problem is even more severe for amorphous films, since even single-element films can 

have widely different deposition-dependent optical functions. 

or with t e m p e r a t ~ r e . ~ ~  The 

26-30 

Onebf the first attempts to deal with this was to model the layer 

using a Bruggeman” effective medium approximation, where the complex dielectric 

function E of the composite film was given by solving the equation 

E ,  - E  
; l = C f j ,  

1 E ,  + 2 E  j 

where the sum goes overj  constituents. (see Roussel et al.34 for an elegant method for 

performing this calculation with two constituents, thereby avoiding problems associated 

with the selection of the proper branch from a multivalued inverse of a complex 

function.) Generally, the early work did not use a reliable measure of the figure of merit, 

so it is not possible to know whether the data actually fit the model. Recent experience 

has shown that this model is not generally useable, but can be reliable in certain 

circumstances. 

Although amorphous materials often have optical functions that depend upon 

deposition conditions, the optical functions usually have no sharp features, and so it is 

possible to model them using only a few parameters. One of the first attempts to 

parameterize the optical functions of amorphous materials is due to Forouhi and 

Bloomer.35 In this formulation, the extinction coefficient k(E) was 
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A ( E  - E , ) *  
k ( E )  = 

E ’ - B E + C  

and the refractive index n(E) was determined using Kramers-Kronig integration, where an 

additional fitting parameter n(m) was included. This formalism approximately fitted 

some data in the literature, but again a realistic figure of merit to quantify the goodness of 

fit was not used. 

There are several fundamental errors in the Forouhi and Bloomer parameteri~ation:~’ 

1) k(E)>O for This is clearly unphysical for interband transitions. 

2) k(E)+constant as E+- . k(E) should go to 0 as 1/l? or faster. 

3) In performing the Kramers-Kronig analysis, Forouhi and Bloomer did not use 

the time-reversal requirement that k(-E)=-&E). 

Recently, Jellison and Modine3’ derived a model for the optical functions of 

amorphous materials that does not violate the problems listed above. This formulation 

uses a combination of the Tauc band edge and the Lorentz formulation for a collection of 

uncoupled atoms to determine the imaginary part of the complex dielectric function E ~ ( E ) ,  

which is given by 

E>E, 
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' The real part of the dielectric function is determined from E ~ ( E )  using Kramers-Kronig 

integration from 0 to 00, so time-reversal symmetry need not be considered. The model 

employs at least 4 fitting parameters: the band gap E,, the Lorentz resonant energy E,, the 

Lorentz broadening parameter C, and the transition matrix element, which is proportional 

to A .  In some cases, one can include ~, (m)  as a 5'h parameter, although this is not always 

necessary (often3' i t  can be set directly to 1). Several data sets found in the literature 

were fit to this Tauc-Lorentz (TL) model, and the fits were far better than when the 

Forouhi and Bloomer3s model was used. 

Recently, the TL model has been used by Fujiwara et al.36 to analyze 

spectroscopic ellipsometry data from graded amorphous silicon-carbon alloys. Jellison et 

al.37 have also used the TL model to characterize a series of SiN films grown on silicon 

using plasma-assisted chemical vapor deposition. In both cases, the fits obtained from 

the TL model were far better. In the case of the SIN work, &,(m) was set to 1, and the 

resulting x2s were all near 1 ,  verifying that the model fits the data. 

An alternate empirical model, using 7 parameters, has been proposed by 

Yamaguchi et. aLZ9 which consists of a sum of damped harmonic oscillator terms 

(Lorentz oscillators), whose square root amplitudes are distributed according to a 

hyperbolic function of photon energy connected to an exponential function. Reasonable 

fits to a-Si and a-SiN data sets(from Ref. 38) were obtained over a very wide energy 

range, although no attempt was made to determine a goodness of fit. 
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Crystalline materials present even more of a challenge to parameterize the optical 

functions, where critical points exist in the optical spectrum that often result in sharp 

features in the dielectric response functions. A realistic model becomes even more 

important when one wishes to simulate spectra from alloys, such as AI,Gal-,As or 

Si,Gel-,, which contain critical points in the optical spectrum that vary continuously with 

composition x. Snyder et aLZ3 compared 3 models for the dielectric functions of 

Al,Gal_,As and found that the best fits were obtained when the critical points were 

modeled using one or more Lorentz oscillators. For each oscillator, the peak energy, 

width, and amplitude is fit as a function of x, allowing the composite dielectric function 

to be calculated as a function of x. This approach works reasonably well near the critical 

points, but breaks down at small photon energies where the absorption coefficient 

becomes small. Susuki and Adachi’* used a similar approach to fit the spectroscopic 

ellipsometry data from microcrystalline silicon films. One of the main problems with this 

approach is that often 15 or more parameters are required to fit crystalline spectra, and 

correlations between parameters can become significant. 

V. Calculations involving Anisotropic Materials 

Until very recently, very little spectroscopic ellipsometry work has been done on 

anisotropic materials. The problem is both experimental and theoretical. In general, the 

off-diagonal elements of the sample Jones matrix (Eq. 5) are non-zero, so additional 

measurements must be made to determine all the components. Using a rotating element 

ellipsometer at multiple polarizer azimuths, Schubert et al.39 measured the 6 independent 
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elements for rutile (TiOz), which is a uniaxial material. Using 2-modulator generalized 

ellip~ometry’~, Jellison et a1.j’ simultaneously measured 7 components (in the NSC 

representation) with a single measurement. (The measurement of the S parameters means 

that the surface roughness can be taken into account; this is not possible with the 

measurements of Schubert et al.”) 

Theoretically, the analysis of spectroscopic ellipsometry data where one or more 

of the components is anisotropic is considerably more involved than for isotropic 

media.41-53 The approach which we have used in our laboratory is based primarily on the 

paper by Berriman4’ and the modifications of Lin-Ch~ng.~’”’ There are significant 

parallels between this calculation and that of S ~ h u b e r t . ~ ~  

The Berriman equation is given by 

d Y  
-= iAY 
dz 

where vT = (Ex, H,, E,, -Hx), and A is the 4x4 complex Berriman matrix. The 

components of the y~ matrix are just the instantaneous electric and magnetic fields in the 

x-and y- directions, where the z-direction is defined as perpendicular to the plane of 

stratification. This is just a re-formulation of Maxwell’s equation. For a uniaxial crystal, 

the Berriman matrix becomes4’ 
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where the elements are given in Ref. 45. If it is assumed that the A matrix is independent 

of z over a short interval 6z, then the solution to Eq. 17 is given by 

where the K(&) matrix is given by 

f e'"'& 0 0 

0 

The qi are the 4 eigenvalues of the A matrix (Eq. lS), and the x matrix is it 4x4 matrix 

where the ith column is the ith eigenvector associated with qi. 

If the near-surface region consists of several layers, then 

~ ( 0 )  = P-](d,) P-'(dz) ... P'l(dn) w (d, + d2 + ... +dn) . 

17 



This expression gives the solution in terms of the electric and magnetic field components. 

However, we observe elements of the modal matrix43, a' = (Ex, Rx, E,, R,) 

where E,, E, are the x-and y-components of the electric field for the input light, and R,, Ry 

are the x-and y-components of the electric field for the reflected or output light. The 

solution in the substrate must also be transformed to the modal solution, which yields 

where xs is the column-wise set of eigenvectors for the A matrix associated with the 

substrate and 

any light propagating away from the layer stack will either be absorbed or transmitted out 

= (A, ,  0, Aj ,  0). The 0 elements of arise because it is assumed that 

the back of the sample and lost. Therefore, two of the eigenvalues (41 and 43) must be 

selected such that they are the two physically realizable solutions (that is, the modes that 

are propagating back to the layer stack). 
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The complex components of the reflection Jones matrix can be calculated: 

- m12m20 - m1om22 

3720237220 - moo37222 
5 P  - 

- m32m20 - m3Qm22 

mQ2m20 - mQ0m22 
rps - 

Note that the A ,  and A3 parameters are not involved in the expressions of Eqs. 23 

This formalism assumes that the A matrix is non-singular. If the layer is isotropic, 

or if the layer is uniaxial with its optical axis in the plane of incidence or perpendicular to 

the plane of incidence, then the A matrix becomes blo~k-diagonal~~. If this is the case, 

then the resulting eigenvectors have two zero components and the P matrix is also block- 

diagonal. For isotropic layers, the P matrix reduce to two AbelCs matrices,51’ 54 the one 

for the p-component in the upper left block, and the one for the s-component in the lower 

right block with all elements of the upper right and lower left blocks being 0. Bearing 

this in mind, this formalism can be used for any layer structure. 
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