In the current generation of high-{Tc} bolometers the thermal conductance is often chosen for a short time-constant rather than for optimal sensitivity. We describe a novel bolometer bias and readout scheme that promises to relax this constraint. Voltage bias of the superconductor results in strong negative electrothermal feedback that greatly reduces the time-constant of the bolometer. We estimate that a decrease of more than one order of magnitude in time-constant should be possible with existing high-Tc thermometers. We give theoretical estimates of the performance gain with voltage bias for several bolometers that have been reported in the literature. We find ...
continued below
Publisher Info:
Lawrence Berkeley National Lab., CA (United States)
Place of Publication:
California
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
In the current generation of high-{Tc} bolometers the thermal conductance is often chosen for a short time-constant rather than for optimal sensitivity. We describe a novel bolometer bias and readout scheme that promises to relax this constraint. Voltage bias of the superconductor results in strong negative electrothermal feedback that greatly reduces the time-constant of the bolometer. We estimate that a decrease of more than one order of magnitude in time-constant should be possible with existing high-Tc thermometers. We give theoretical estimates of the performance gain with voltage bias for several bolometers that have been reported in the literature. We find cases where the sensitivity can be greatly improved (by changing the thermal conductance) while holding the time constant fixed and others where the bolometer can be made much faster while maintaining the sensitivity.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Lee, A.T.; Gildemeister, J.M.; Lee, Shih-Fu & Richards, P.L.Voltage-biased high-{Tc} superconducting infrared bolometers with strong electrothermal feedback,
article,
August 1, 1996;
California.
(digital.library.unt.edu/ark:/67531/metadc679453/:
accessed April 25, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.