
INSTITUTE F 
FUSION STUDIES 

DEFG05-8031'-53088-690 IFSR #690 

Numerical Simulation of Bump-on-Tail Instability 
with Source and Sink 

H.L. BERK, B.N. BREIZMAN, and M. PEKKER 
Institute for Fusion Studies 

The University of Texas at Austin 
Austin, Texas 78712 

February 1995 

THE UNIVERSITY OF TEXAS 

AUSTl 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 
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A numerical procedure has been developed for the self-consistent simulation of the non- 

linear interaction of energetic particles with discrete collective modes in the presence of a 

particle source and dissipation. A bump-on-tail instability model is chosen for these simu- 

lations. The model presents a kinetic nonlinear treatment of the wave-particle interaction 

within a Hamiltonian formalism. A mapping technique has been used in this model in order 

to assess the long time behavior of the system. Depending on the parameter range, the model 

shows either a steady-state mode saturation or quasiperiodic nonlinear bursts of the wave 

energy. We demonstrate that the mode saturation level as well as the burst parameters scale 

with the drive in accordance with the analytical predictions. We also quantify the threshold 

for the resonance overlap condition and particle global diffusion in the phase space. For 

the pulsating regime, we show that when y~ > 0.16ASt, where y~ is the linear growth rate 

for the unperturbed system and AS2 is the frequency separation of neighboring resonances, 

overlap occurs together with an amplification of the free energy release compared to what is 

expected with the saturation of nonoverlapping modes. The effect of particle losses on the 

wave excitation is included in our model, which illustrates in a qualitative way the bursting 

collective losses of fast ions/alpha particles due to Alfv6n instabilities. 
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I. INTRODUCTION 

In this paper we will present results of the simulations of the bump-on-tail instability with 

a weak source and sink. We have posed this problem as a paradigm for the important problem 

in controlled fusion, that of the unstable excitation of Alfvkn waves in a tokamak by resonant 

energetic alpha particles. The source of alpha particles is the controlled fusion reaction 

produced by the backpound plasma and the sink is the collisional transport processes that 

slow down or scatter the energetic particles. The mathematical techniques that are needed 

to address this applied problem an be demonstrated in the much simpler bump-on-tail 

problem, which is explained in this paper. In a later work we will present results for the 

Ah6n-dpha particle problem. 

The essential physics that we address here is common to a wide variety of problems. We 

assume: 

1. Instability is weak with the following properties: (a) the growth rate y is much less 

than the wave frequency; (b) instability is caused by the conversion free energy of 

energetic particles to wave energy; (c) the bulk of the particles (excluding the resonant 

particles) interact “adiabatically” with the wave. 

2. There are sources and sinks present that allows a steady state solution for the particle 

distribution in the absence of waves. 

3. Unstable modes have a discrete spectrum. Depending on system parameters they either 

behave as isolated modes that saturate due to local wave trapping or they overlap 

nonlinearly and produce global diffusion. 

These features have been discussed previously from an analytical point of view in several 

One purpose of this paper is to confirm with numerical simulations the predictions 

2 



that arise from the analytic arguments. In addition we wish to build a numerical tool that 

can be used to study the effects of instability for the class of problems we are concerned 

with. In the text we describe the special numerical methods we have developed. 

In our numerical method we use the fact that the wave structure of a discrete number of 

waves is known. One can show, using Hamiltonian techniques, that there is a standard form 

for the interaction between a resonant particle and a wave, even for complicated geometry. 

The response of the background plasma can be expressed in terms of the electromagnetic field, 

so that the Lagrangian for the waves includes both the contribution from the electromagnetic 

field and the background particles. In this paper we use this general structure for our 

relatively simple system. 

We choose to obtain, using a Hamiltonian technique, similar to the one used in Ref. 5,  a 

symplectic map to increment the amplitudes and phases of the waves and the coordinates of 

the particles for a time step T such that w-l << 7 << y-l , w;’, where y is the growth rate of 

a wave, wb is the trapping frequency of a resonant particle with the wave and w is the mode 

frequency. With this large time step, the code is very fast and efficient. The symplectic 

structure ensures an accurate evaluation of orbits that may or may not undergo stochastic 

diffusion from the waves. The symplectic structure of the map also implies that the resonant 

particles have incompressible motion in phase space. The property of incompressibility can 

be used as a “Lagrangian” grid to describe relaxation due to classical transport. With the 

relaxation mechanism included, one can observe a pulsating response of the system due to 

the reformation of the unstable state as opposed to a find relaxed state that would occur in 

an initial value problem without sources and sinks. 

In the bumpon-tail problem described here the transport will be due to particle annihi- 

lation and a particle source. More general transport algorithms can be developed. A similar 

method has been used to evolve distribution functions in the “Sf’) a lg~r i thm.~ ,~  
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An important question we address is when mode overlap is likely to occur given the qui- 

librium parameters of the linear theory with a growth rate y~ and the frequency separation 

of neighboring resonances AQ. For the bump-on-tail problem in the pulsating regime, we 

show that when y ~ / A f l  > 0.16 (a relatively small number) mode overlap occurs. Then if 

there are several linear modes present, global diffusion of the resonant particle occurs over 

the region where unstable modes are located. 

In Sec. 11, we derive a reduced Lagrangim for the nonlinear interaction of waves with 

energetic particles that resonate with the waves. Technically, our goal is to minimize the 

number of dynamical variables in the Lagrangian, subject to physics restrictions. We will 

assume that the number of energetic particles is relatively small, so that these particles 

have no effect on the spatial structure of the waves. It is also essential that wave ampli- 

tudes remain small, so that the finite amplitude waves retain the structure of the linear 

eigenmodes. The appropriate dynamical variables for these w a w  are their amplitudes and 

phases, which change as the waves interact with resonant particles. In Sea. 111-V, we present 

our numerical results on the simulation of: the dynamics of single mode saturation, reso- 

nance overlap between two neighboring modes, and the collective bursts in particles losses, 

respectively. Section VI contains a brief summary and a comparison of our model with the 

phenomenological predator-prey model.8 Two appendices describe: A) the connection be- 

tween the macroparticle weight used in our simulations and the particle distribution function, 

and B) the derivation of the generating function for the mapping algorithm. 

11. LAGRANGIAN FORMALISM FOR WAVE-PARTICLE IN- 
TERACTION 

We present the derivation of the simplified Lagrangian for energetic electrons interacting 

with plasma waves in a cold plasma, but we present it in a way that allows generalization 

to more complicated problems. 
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Our starting point will be the exact Lagrangian for charged particles in an electromagnetic 

field 

where ri is the particle coordinate and v = I$ is the particle velocity. Since plasma particles 

adiabatically respond to the fields, their contribution to the Lagrangian can be expressed in 

terms of the field variables. With this simplification, the first two terms in Eq. (1) give a 

Lagrangian for the waves L,: 

mu2 e 
L, = J [T + ; (A 0 v) - e ]  S(r - ri)dV + -L / ( E 2  - B2)dV 

8T plasma particles 

where we have subtracted out a constant in the Lagrangian so that L, = 0 when perturba- 

tions vanish and the subscript “0” refers to the unperturbed quantities. This expression will 

depend only on field variables, as shown below. 

It should be noted that, to lowest order, the wave Lagrangian L, is quadratic with respect 

to the wave amplitudes since the linear terms vanish due to the fact that the equilibrium 

state satisfies a minimum action principle. 

In the present work, we restrict ourselves to one-dimensional electrostatic electron pertur- 

bations with plasma ions forming an immobile uniform background. For these perturbations, 

it is most convenient to choose to represent the electric field E as a time derivative of A,(z; t )  , 
with A,(z; t )  the only nonzero component of the vector potential, namely 

1 .  E = --A,. 
C 

(3) 

Gauge invariance has allowed us to impose a restriction that the scalar potential # vanishes. 

In a cold spatially uniform plasma all the unperturbed quantities in Eq. (2) are equal to zero 
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and also there is no perturbed magnetic field in our problem (i.e., B = 0) .  As in our gauge 

there are no linear terms, the quadratic nature of the response is manifest (with other choices 

of gauge, more careful manipulation is required to demonstrate the quadratic response). We 

then obtain, 

L, = (T mvz2 + - A x ( r i , t ) ~ z )  e + - 1 /E:dV. 
plasma particles C 8T (4) 

We now use the equation of motion for plasma electrons obtained from variation of L, 

with respect to xj (the other terms in the Lagrangian are independent of the cold plasma 

variables), and find 
e .  

ir, = --A, 
mc 

With one integration, we use the relation 

e 
V, = --A, mc 

to express v, in terms of A, in the Lagrangian. Then L, becomes 

/ (A: - w:AE) dV, 1 L, = - 
8Tc2 

(5)  

(7) 

where wp is the electron plasma frequency. Note that we use 

because we ignore density modulations in the sum which are higher order in A, and we ignore 

spatial fluctuations arising from the discreteness of the homogeneous ensemble of particles. 

Next, we represent A, as a superposition of linear plasma modes 

A, = Ak exp(-icrk - iw,t + i h )  + C.C. 
modes 

where real mode amplitudes Ak(t) and phases crk( t )  are slowly varying functions of time. We 

then neglect rapidly oscillating terms in the Lagrangian as their contribution nearly vanishes 
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on integrating over space. Hence, the variation of such terms produces a negligible response 

to the coefficients of the varied quantities. We then obtain 

L, = - 'OP &kAk2, 
2m2 modes 

where V is the system volume.. We assume this volume to be sufficiently large so that no 

physical quantity would depend on it. By taking the extremum of this Lagrangian to form 

the Euler equations, the equations of motion for free waves are found to be 

Although we have derived h. (8) for a particular case of plasma waves, this equation has in 

fact a general feature that the structure of the Lagrangian for other waves with a slowly vary- 

ing amplitude and phase is exactly the same as will be further demonstrated in subsequent 

work. The cogent point is that in weak turbulence theory, the lowest order wave Lagrangian 

is always proportional to dlk Ak2 with  CY^ and A k  generalized phase and amplitude factors. 

We now turn to the energetic particle Lagrangian that can be written in the form 

where x is the particle coordinate. At this point, it is appropriate to make use of the fact 

that, for the particle to interact with a mode, its velocity air must be close enough to the 

mode phase velocity wp/k. This allows us to replace x with wp/k in the interaction term, 

i.e., under the summation sign in Eq. (10). Next, we combine Ekp. (10) and (8) to obtain 

the complete Lagrangian for particles and waves. 
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We then define new variables for the waves 

so that the Lagrangian becomes 

where 

In addition to having changed variables, we have also changed the sum over real particles 

to the sum over macroparticles, which has introduced the macroparticle weight factor q into 

Eq. (13). The macroparticles represent the elements of the phase space that experience an 

area preserving motion dong the Hamiltonian orbits. It follows from the Liouville theorem 

that, without a particle source and collisions, the weight of each macroparticle is a conserved 

quantity. It is also convenient to alter the term k2/2 in the Lagrangian to vx - v2/2, with 

velocity v a new momentum-like independent variable. In this case, the self-consistent set of 

equations for wave-macroparticle dynamics has the form 

Q=- q s k  cos(ks - wt) ,  
macroparticles 

macropartiles 

X=v, 

6 = kSk [-Psin(kz - wt)  + Qcos(kz - wt)] . 
d e s  

It is easy to verify that the alteration of the Lagrangian reproduces identical equations of 

motion. 
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A more general set of equations, which we actually solve in this paper, has three additional 

factors, not included in Eqs. (14)-(17). First, we add a background dissipation of the plasma 

waves at a given damping rate 7 d  that is not associated with resonant particles. This damping 

modifies Eqs. (14) and (15) to 

P = qSksin(kz - ut) - y d ~ .  (19) 
macroparticles 

Second, we introduce a source, S(v),  of energetic particles, and, third, we assume that these 

particles undergo an annihilation process at a rate vr, which tends to balance the source and 

establish a steady state particle distribution. Formally, we describe the source and relaxation 

effects with the following time evolution equation for the macroparticle weight: 

ECquations (16) and (17) remain unchanged, so that the closed set of equations to be solved 

now consists of Eqs. (16)-(20). In Appendix A we show that our formulation is equivalent 

to solving for a distribution function, f ,  that satisfies the kinetic equation 

The essential point in achieving this equation is that the particle motion is incompressible 

in a u,x phase space. 

Our modified set of equations does not have a Hamiltonian structure. However, the 

non-Hamiltonian terms in these equations are relatively small  since typically the source and 

relaxation processes are sufficiently weak, so that they do not cause a significant change in 

the particle distribution function on the time scale of the order of the inverse instability 

growth rate. Also, the wave damping from the background plasma is often small compared 

to the linear growth rate. Clearly, the shortest time scale that characterizes our problem 
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is determined by the linear instability growth rate with the system dynamics being essen- 

tially Hamiltonian over this time scale. To eliminate numerical diffusion in propagating the 

Hamiltonian system, we construct our numerical scheme as an areacpreserving map to which 

we then add non-Hamiltonian corrections due to yd, S ,  and u,. We have found that an 

appropriate generating function for the map is 

@ =  P Q +  
modes macroparticles 

- qSkr [Pcos(kz - ut) + Qsin(kx - ut)] G[(kv^ - u)r],  
modes macroparticles 

where r is the time step, the hat-sign mks the time advanced quantities, and G(z) = 1 

if x << 1 and G(z) vanishes if z >> 1. In our simulations, we use G(z) = sinz/z. The 

derivation of this generating function is given in Appendix B. The time step r is chosen so 

that y r  << 1. If (k5 - w ) r  << 1, the correct particle dynamics is obtained. Note that the 

contribution of particles with (k5 - W)T > 1, though not correct, is not essential as their 

interaction is small since they are not resonant. The whole scheme can now be written as 

a= q + S(V)T - QUrT. 

An important advantage of this mapbased algorithm is that it allows the energetic particles 

to be rapidly processed on the time-scale of the inverse instability growth rate; this is much 

more efficient than following the particle dynamics on the inverse mode frequency time scale. 

111. SINGLE MODE SIMULATIONS 

The purpose of these simulations is to illustrate and verify two different regimes of mode 

saturation predicted by analytical theory: steady state saturation that establishes when the 
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particle relaxation rate v,. exceeds the background damping rate yd, and a bursting scenario 

that occurs in the opposite limiting case. The physics essence of these regimes has been 

described in Fkfs. 1 and 2. 

We first discuss the steady state saturation shown in Fig. 1. In this simulation the system 

starts with no energetic particles but with the source turned on. As particles are injected 

and stored, the resonant particles excite a plasma wave, whose wave energy is shown as a 

function of time in Fig. la. We see that the wave energy approaches a steady state level. The 

distribution function is shown in Fig. lb  and one should note the nearly flattened distribution 

function at the resonant velocity, which here is marked as urw. 

The calculated mode amplitude in the steady-state regime agrees well with the following 

analytical formula derived in Ref. 9: 

where y~ is the contribution to the linear growth rate from the equilibrium distribution of 

energetic particles without 

particles which is given by 

waves. Here, a is the nonlinear bounce frequency of resonant 

with E the electric field amplitude of the mode, and k the wavenumber. This agreement is 

illustrated by Fig. 2 that shows the dependence of the particle bounce frequency at saturation 

on the background damping rate. 

The difference between the theoretical curve and the simulation results can be attributed 

to the fact that, at a low damping rate, the plateau around the resonant velocity v,, (see 

Fig. 3) extends beyond the interval where the unperturbed distribution function is of constant 

slope. 

The second simulation in this section is for a larger damping rate, which causes the wave 

energy to pulsate in time, as shown in Fig. 4a. In accordance with the analytical estimates, 

11 



the value of wb at a pulse maximum is of the order of y~ and the typ id  time interval between 

the pulses is of the order of v;’. When we examine the shape of the distribution for this case, 

we see that distribution function near v,,,, has an appreciable slope just prior to the pulse 

onset (see Fig. 4b), and the local distribution is flattened when the wave energy achieves 

its maximum level (see Fig. 4c). Our simulations show that the bursts are not exactly 

periodic in time, and also that their amplitudes vary. The physics reason behind these 

statistical variations is that, between the bursts, the system evolves into a metastable state 

that may “crash” if triggered by a fluctuation. More analytic work is needed to quantify 

the probability of these fluctuations and its relation to the intrinsic discreteness of both 

physical and numerical systems. Even though the individual bursts fluctuate, their average 

properties, that are determined by the energy balance condition, appear to be quite stable 

and predictable. We have checked this conclusion by making several longer mns (up to 

t = 250Wz1), the results of which are summarized in Fig. 5. This figure shows that the 

average burst energy defined by the formula 

l N  Tv= -cwi,  
N i=l 

where Wi is the peak energy of the i-th burst and N is the number of bursts scales as the 

fourth power of the linear growth rate, in agreement with the expectation that #b - ‘ y ~  - yd. 

We have quantitatively determined that 

with a b  the average d u e  of a b .  The statistical variations in ob are relatively small, namely, 

A.wb/wb < 0.05. We have also benchmarked our code against earlier simulations of the initial 

d u e  bump-on-tail problem without a source1* and found the two to be in precise agreement. 

In particular, both simulations show that the ratio w b / y ~  at mode saturation is 3.2. 
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IV. RESONANCE OVERLAP AND STOCHASTIC DIFFUSION 

Even with more than one mode present in the system, the steady-state or pulsating 

nonlinear scenario may apply to each mode separately if the neighboring resonances do not 

overlap. Then the saturated waves would cause the distribution function to flatten locally 

near each resonance. However, when the resonances overlap at the saturation level, stochastic 

motion of particles arises, which allows individual particles to diffuse in phase space over 

many resonances so that the particle distribution can flatten over a large region of velocity 

space. It has been noted that much more particle kinetic energy transforms to wave energy 

during global flattening than arises when overlap does not 0ccur.~9~ We can observe this 

trend in simulations with two unstable modes. In the resonance region of the two modes, 

particle mixing tends to flatten the distribution function while no significant change in the 

distribution function has been observed outside the resonance region. The results of the 

two mode simulations are presented in Figs. 6 and 7. Similar to the previous single mode 

runs, the system starts with no energetic particles but with the source turned on. As the 

injected particles accumulate, the slope of their distribution function builds up gradually 

and so does the linear instability growth rate. At an intermediate stage when the system is 

already linearly unstable but the modes saturate at a relatively low level in accordance with 

the instantaneous estimate 

wb YL 

the snapshot of the particle distribution function (see Fig. 7a) shows two separate local 

plateaus, one near each resonance. These plateaus broaden and eventually merge into the 

global plateau shown in Fig. 7c. Note that the corresponding bursts in the wave energy are 

now an order of magnitude greater than those shown in Fig. 4 for a single mode, although 

the particle source, the relaxation rate and the background damping have exactly the same 

d u e s  as in the single-mode run. The burst enhancement is caused by the larger free energy 
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that becomes available when modes overlap. The plateau then broadens giving rise to a free 

energy release that is proportional to the cube of the plateau width. 

The resonance overlap condition can generally be presented in the form 

where Sv is the difference in phase velocities between the neighboring modes and C is a 

numerical factor. Our twwnode simulations show that the factor C, which determines the 

threshold of global diffusion, is close to 0.22. This estimate holds for both pulsating and 

steady state regimes. With Q. (29) for the pulsating regime (yd is now assumed negligible) 

we find that resonance overlap occurs when 7~ > 0.16kSu. 

V. SIMULATIONS OF BURSTS IN PARTICLE LOSSES 

In this section, we consider a model problem that suggests a plausible mechanism for 

the bursts of energetic particle losses that have been observed in fast ion beam experiments 

in a tokamak. In order to relate the results of this subsection to the fast ion-Alfvdn wave 

problem in a tokamak, one has to take into account that the velocity space diffusion in our 

model should be interpreted as a spatial diffusion in the fast ion-Alfv6n wave problem. 

To simulate the losses within our model, we introduce a particle collector in velocity 

space at u < v,, where v, is the collector edge position. The particle source is assumed to be 

zero for v < vc, and the particle absorption rate in the collector, u,, is taken to be twenty 

times greater than u,. With such a source, the particles can only reach the collector if their 

distribution broadens due to the interaction with unstable modes. Otherwise, every particle 

would be absorbed where it was born, i.e. at v > v,. 

In these simulations we use four modes with the phase velocities q, v2, 713, and 214, 

respectively, all of which are above the collector edge. Shown in Fig. 8 is the time evolution 

of the mode energy, which exhibits bursts that occur simultaneously in all four modes. 
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Synchronized with these bursts, are the bursts in the particle flux at the collector, which 

are shown in Fig. 9. The snapshots of the particle distribution function presented in Fig. 10 

demonstrate that the losses at the collector are indeed coherent with the broadening of the 

particle distribution at the moments of the wave energy bursts. 

VI. CONCLUSION 

In this work we described the simulation of the bumpon-tail instability with sources and 

sinks. We have chosen the bumpon-tail instability as this is the simplest problem in kinetic 

theory that describes the response of a continually driven system, where the steady-state 

without perturbations has a weak instability driven by resonant particles. 

This problem indicates that, depending on conditions, the system can produce steady 

oscillations, or pulsating oscillations. Further the nature of the oscillations can be due to 

saturation by local flattening of the distribution or global flattening. In the former case, wave 

trapping of resonant particles by single modes releases a modest amount of wave energy, and 

there is no global diffusion of these resonant particles. In the latter case, the mode amplitudes 

cause global overlap of modes and the collapse of the entire distribution over the phase space 

region that overlaps with waves. The result is a much larger release of wave energy density. 

As discussed in Ref. 3, without mode overlap, the wave energy density scales as N ,  where 

N is the number of modes. At the point that mode overlap occurs, the wave energy release 

will scale as N3.  Our simulations qualitatively reproduce this enhancement. 

The other interesting feature of our model is the observed bifurcation that arises in the 

character of the particle d ih ion .  When the resonances do not overlap, the instability 

saturates by flattening the particle distribution locally in phase space and particles only mix 

in the resonant region of a single mode. However, when the linear growth rate becomes 

too large, neighboring unstable modes can be excited and cause mode overlap. In these 

simulations of the bumpon-tail problem overlap occurs in the pulsating regime when y ~ /  
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AM > 0.16. This is a rather low number and its absolute value may be problem specific. 

Nonetheless the result is indicative that on-set of global diffusion when a discrete set of 

modes are unstable, occurs at substantially lower values of -yL than is expected from the 

dimensional estimate ~ L / A M -  1, although the scaling is preserved. Then when resonance 

overlap arises, the resulting amplification of the wave energy produces global diffusion over 

the entire area of phase space covered by the excited modes and particle resonances. If the 

area of enhanced diffusion includes the boundaries of the system a rapid loss of particles may 

occur. 

The quasiperiodic pulsations of the wave energy, which occur within our model, have some 

similarity with those of the predator-prey model, a common model in recent 

The predator-prey model captures the feature that the growing mode saps the free energy 

of the wave, and then the sources have to resurrect the unstable structure. However, the 

predator-prey model has a basic weakness that the period of pulsations is rather arbitrarily 

determined by the choice of initial conditions. Even a steady response can be obtained with 

an appropriate initial condition. In our kinetic model, the choice of a pulsating or steady state 

response does not depend on initial conditions. Rather the nature of the response depends 

on the physical quantities that define equilibrium and linear stability of the system; these 

include the characteristics of the source, sink and background damping and the wavenumbers 

of unstable modes. It is also important that, in contrast with the predator prey model, our 

model is based on the systematic derivation of the nonlinear dynamics from the fundamental 

equations of motion. 
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APPENDIX A: CONNECTION BETWEEN THE MACROPAR- 
TICLE WEIGHT AND THE PARTICLE DISTRIBUTION FUNC- 
TION 

Let us consider the distribution function, 

where d t ) ,  zi(t) and vi(t) satisfy the equations, 

cj = S(v) - v,q 

where H is the Hamiltonian per unit mass. By taking the time derivative of Eq. (Al) we 

obtain 
1 

Then using (A2) gives 

Now we choose the distribution cS(z - zi(t))S(v - vi(t)) so that it is initiall: 
i 

st tis tically 

homogeneous in phase space over the region where zi(t) and vi(t) will evolve to. For an 

incompressible motion in phase space, 

homogeneous and therefore constant in time. Then 

S(z-zi(t))S(w-vi(t)) remains statistically spatially 
i 

c S(v)S(z - z&))S(v - vi@)) = S(V) .  
particlea 
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The term with u, in (A4) is by definition u r f .  Thus, we have demonstrated that Eq. (Al)  

satisfies 
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APPENDIX B: DERIVATION OF THE GENERATING FUNC- 
TION 

We use the fact that the function that generates the transformation to timeadvanced 

quantities in the Hamiltonian motion is -S, where S is the action written as a function of the 

old coordinates qi and the timeadvanced quantity Gi; we mark all time-advanced quantities 

with the hat-sign.12 The transformation is implicitly determined by the relations 

from which & and ff can be found as a function of qi and pi.  Since, in our problem, pi is 

constant in the unperturbed motion whereas qi change with time, it is more convenient to 

use fji and qi as the independent variables of the generating function. Then the appropriate 

generating function changes from -S to 

and the new coordinates and old momenta are 

Now using the 

where T is the time step, we can rewrite Eq. (B2) in the form 

where the first term on the right-hand side describes the identity transformation. Using 

Eq. (13) for the Lagrangian and noting that the particle velocity does not change significantly 
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if r << y-',&', we then calculate the last two terms approximately by integrating over the 

unperturbed motion. which gives 

sin[(k0 - w)r]  
(kG - W)T - C C qSkr [ cos(kz - ut) + Q sin(kz - ut)] 

modes macroparticles 

The last term in this expression can be dropped since, for the resonant particles with 

kw - w M y, this term is quadratic in r and therefore much smder than the first interaction 

terms in !fj. In addition, the form-factor sinz/z in the first interaction term can be altered 

to improve numerical filtering. Namely, the key features of the model should not change if 

we replace this factor with a function G(z) that equals 1 when z is small ,  decays rapidly for 

z >> 1, and has the same norm as sinz/z (in order to properly capture the linear growth 

rate). This generalization is then a convenient way of cutting of€ insignificant contributions 

from nonresonant particles. 
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FIGURE CAPTIONS 

FIG. 1. Steady-state nonlinear saturation of an isolated mode. (a) Time dependence of the 

mode energy. The wave energy density is normalized to WnWm = 0.5mnv&(y~/w,)* 

where 7~ is the contribution to the linear growth rate from the equilibrium distribu- 

tion of energetic particles without waves, and n is the plasma density. (b) Flattened 

particle distribution near the resonance: solid line - distribution at mode satura- 

tion, dashed line - unperturbed distribution. The normalized background damping 

and the relaxation rate in this run are yd/y~ = 0.031 and vr/yL = 0.035. 

FIG. 2. Scaling law for the steady-state mode saturation at a given relaxation rate (vr/ 

- y ~  = 0.035); solid line - analytical theory, data points - simulations. 

FIG. 3. Particle distribution when mode is at steady-state saturation with vr/YL = 0.035 

and with very small background damping level (yd = 0.0187~). 

FIG. 4. Nonlinear bursts of an isolated mode (yd/y~ = 0.082, v,/yL = 0.0082). (a) Time 

dependence of the mode energy. The wave energy density is normalized to W,,,, = 

0 . 5 m n ~ ; ~ ( y ~ / w ~ ) ~ .  (b) Particle distribution prior to burst ( y ~ t  = 152). (c) Particle 

distribution after the burst ( y ~ t  = 175). 

FIG. 5. Comparison of the numerical and analytical results for the average burst energy as 

a function of the linear growth rate. 

FIG. 6. Time evolution of the total wave energy for the nonlinear bursts of two overlapped 

modes with the phase velocities vl and v2 such that 2 E = 2.6. The wave 

energy density is normalized to W-m = 0.1251nn(z~~+v2)~(~~/w,,)~. The background 

damping and relaxation rate are same as in FIG. 4. 
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FIG. 7. Snapshots of the velocity distribution of resonant particles for the run shown in 

FIG. 6: 

a) an early stage of the burst ( 7 L t  = 73) when the two modes have not yet overlapped 

(note the local plateaus near the resonances with each mode); 

b) merging of the two resonant regions during the burst ( y ~ t  = 85); 

c) globally flattened distribution immediately after the burst (+y~ t  = 98). 

FIG. 8. Time evolution of the wave energy in the simulation of particle losses caused by four 

bursting modes with equally spaced phase velocities VI, 712, 213 and v4 indicated in 

FIG. 10, such that :{:::) = 2.4. The normalized background damping and the 

relaxation rate in this run are yd/y~ = 0.18 and V , / ~ L  = 0.009. 

FIG. 9. Time dependence of the particle flux to the collector located at v = v, (see FIG. 10). 

FIG. 10. Snapshots of the particle distribution function in the simulation of particle losses: 

a) before the burst, when particles do not reach the collector; 

b) during the burst when particles are being lost at the collector. 
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