Exploring Process-Variation Tolerant Design of Nanoscale Sense Amplifier Circuits

PDF Version Also Available for Download.

Description

Sense amplifiers are important circuit components of a dynamic random access memory (DRAM), which forms the main memory of digital computers. The ability of the sense amplifier to detect and amplify voltage signals to correctly interpret data in DRAM cells cannot be understated. The sense amplifier plays a significant role in the overall speed of the DRAM. Sense amplifiers require matched transistors for optimal performance. Hence, the effects of mismatch through process variations must be minimized. This thesis presents a research which leads to optimal nanoscale CMOS sense amplifiers by incorporating the effects of process variation early in the design ... continued below

Creation Information

Okobiah, Oghenekarho December 2010.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 1779 times , with 8 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chairs

Committee Member

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Okobiah, Oghenekarho

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Description

Sense amplifiers are important circuit components of a dynamic random access memory (DRAM), which forms the main memory of digital computers. The ability of the sense amplifier to detect and amplify voltage signals to correctly interpret data in DRAM cells cannot be understated. The sense amplifier plays a significant role in the overall speed of the DRAM. Sense amplifiers require matched transistors for optimal performance. Hence, the effects of mismatch through process variations must be minimized. This thesis presents a research which leads to optimal nanoscale CMOS sense amplifiers by incorporating the effects of process variation early in the design process. The effects of process variation on the performance of a standard voltage sense amplifier, which is used in conventional DRAMs, is studied. Parametric analysis is performed through circuit simulations to investigate which parameters have the most impact on the performance of the sense amplifier. The figures-of-merit (FoMs) used to characterize the circuit are the precharge time, power dissipation, sense delay and sense margin. Statistical analysis is also performed to study the impact of process variations on each FoM. By analyzing the results from the statistical study, a method is presented to select parameter values that minimize the effects of process variation. A design flow algorithm incorporating dual oxide and dual threshold voltage based techniques is used to optimize the FoMs for the sense amplifier. Experimental results prove that the proposed approach improves precharge time by 83.9%, sense delay by 80.2% sense margin by 61.9%, and power dissipation by 13.1%.

Language

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 2010

Added to The UNT Digital Library

  • Jan. 9, 2012, 9:53 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 1
Past 30 days: 8
Total Uses: 1,779

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Okobiah, Oghenekarho. Exploring Process-Variation Tolerant Design of Nanoscale Sense Amplifier Circuits, thesis, December 2010; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc67942/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .