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ABSTRACT 

In string-bit models, string is described as a polymer of point-like con- 
stituents. We attempt to use string-bit ideas to investigate how the 
size of string is affected by string interactions in a non-perturbative 
context. Lacking adequate methods to deal with the full complica- 
tions of bit rearrangement interactions, we study instead a simpli- 
fied analog model with only “direct” potential interactions among the 
bits. We use the variational principle in an approximate calculation 
of the mean-square size of a polymer as a function of the number of 
constituents/bits for various interaction strengths g in three specific 
models. 
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1 Introduction 

A long known, perhaps disturbing, fact about string is its idb i t e  physical extent(l,‘2]. Working in 
the light-cone gauge, one finds that the mean-square transverse size of a string is given by 

Any experiment designed to measure this quantity will necessarily involve a h i t e  resolution time 
E. This means that modes with frequency > 1 / ~  will get averaged over, and the observed transverse 
size will actually be given by: 

where a’ = 1/27rTo is the Regge slope parameter, and d denotes the number of transverse dimen- 
sions. As the resolution is improved (smaller E ) ,  the observable transverse extent of string grows 
logarithmically. Alternatively, for a fixed E the transverse size grows with increasing longitudinal 
momentum. Since the growth is logarithmic it will barely be noticeable unless the string experiences 
very high longitudinal boosts, such as when it falls into a black hole [3, 41. 

This peculiar property of perturbative strings, known as branching diffusion, is well known from 
the days of dual resonance models [l]. The form of the scattering amplitude at high energy and 
fixed momentum transfer (Regge regime), 

implies a transverse target size Ri - Ins. Consider a process in which one of the strings carries 
most of the longitudinal momentum, P: >> Pz. Then in a frame where the transverse momenta 
are equal and opposite, p1 = -p2 E p, the c.0.m. (energy)2 is given by 

The transverse size is therefore given by 

R i - h 2 P T & ~ h - .  
p z  

Comparing with (1.2), we see that the resolution time E is given by the longitudinal momentum 
of the small string, E = cr’P:. Since the energy of this “probe” string is given by p2/(2P2), 
the transverse size of the “target” string wilt appear to grow as the energy of the probe string is 
increased. In string theory P+ is a continuous variable, so in particular the probe string can have 
Pz = 0, in which case the target string’s size will be infinite. 

Consider discretizing a piece of string into M segments, such that each segment carries a 
longitudinal momentum AP’. The total longitudinal momentum is then MAP+. This means 
that the smallest probe string has P,* = AP+, and that given this probe, the target string grows 
logarithmically with F‘T s P+. String-bit models give preciseIy such a dicretization, where AP+ 
is given by the bit mass m. This provides a physical cutoff, resulting in a transverse size given by 

d P+ d 
TTO m TTO 

R: N -In - = - 1nM , 
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where M is the number of bits in the target string. Comparison with the previous discussion shows 
that we can identify E = ma’. As the transverse size is a measure of the transverse volume occupied 
by the string, the transverse bit number density of string is given by 

String interactions arise in string-bit models through the rearrangement interaction of string-bits. 
In perturbation theory a longitudinal dimension (z-) emerges dynamically. Thus the effective 
interaction of string is measured by the product of the string coupling and the bit number density 
in this higher dimension space. The longitudinal size of noninteracting string is given by 

d 
3P+2 

-(0l[z-(o) - z-(o)]2/o) - - 
n=l 

from which we see that RL doesn’t grow with P+ at fixed E, but is nonetheless very large O(CY‘/E = 
l/m). Thus the effective bit number density relevant to weakly interacting string is 

For fized E (m in string bit models) this density grows essentially linearly with increasing P. It 
will eventually become comparable to 1/g2, where g is the string coupling constant. At this point 
interactions become important and perturbation theory must break down. Since the above formulas 
rely on a perturbative picture, they cannot be correct at arbitrarily high P. At such energies the 
integrity of string is lost and a more appropriate description would presumably be in terms of a 
fluid of string-bits. 

It has been suggested that one effect of string interactions is to spread string out, in essence 
to push bits away from each other [4]. In fact it has been conjectured that the transverse size 
should grow just rapidly enough to yield a constant transverse bit number density of m$land as 
P+ + 00. This would be necessary if string theory is to account for the Beckenstein-Hawking 
black-hole entropy [5, 61, and is to provide a realization of ’t Hooft’s holographic principle [7]. This 
limiting transverse density translates to a lower bound on the transverse size: 

(1.10) 

For d = 2 (D = 4 space-time) this lower bound is simply linear in bit number. 
The only indication in perturbative string theory that the net effect of the interactions is 

repulsive is the underlying supersymmetry, which guarantees a positive semidefinite energy. In 
the context of supersymmetric string-bit models, since bits must be held together by attractive 
interactions, it follows that residual interactions between composites of bits (i. e. string) should on 
the average be repulsive. It is clear that further insight into this issue requires information beyond 
perturbation theory. We propose to study string size in the context of d = 2 string-bit models, 
which are particular composite formulations of D = 4 string theory, that (conveniently) incorporate 
perturbative string interactions in the larger setting of microscopic bit interactions. 

The complete dynamics of string-bit models are extremely complicated. The interactions among 
bits include, among other complications, rearrangements of the bits among different polymers as 
well as on a single polymer. We have not yet developed methods to handle these complications, 
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so as a preliminary exploration, we consider a simple many-body quantum mechanical system of 
interacting polymers, motivated by the general principles of string-bit models. This simplified 
model contains only “direct” (potential energy) interactions, i.e. no exchange effects. Admittedly, 
this system is too simple to capture the quantitative details of non-perturbative string growth, but 
we can hope that it (or a slight improvement of it) can capture some of the qualitative physics. 
As we shall see, the growth predicted by this model is actually too rapid: quadratic in bit number 
rather than linear. It is too early to tell whether this “overshoot” signals a problem with the bit 
model itself, or it simply indicates the crudeness with which our analog system imitates a string-bit 
modek 

The rest of the paper is organized as follows. In section 2 we discuss the size of generic extended 
many-body bound states in such potential models, and show that the condition that these objects 
follow a relativistic dispersion law (P- = (p2 + M 2 ) / 2 P + )  implies an upper bound on the growth 
rate. In section 3 we rederive the logarithmic transverse growth of free string as the growth of a 

and propose quantum mechanical models which mimic it. In section 5 we use a variational approach 
to compute, in three specific models, the mean square size of a polymer and the bond length as 
functions of the number of bits. Section 6 is devoted to a discussion of the results and future 
directions. 

I polymer of string-bits in the N, + 00 limit. In section 4 we consider the effect of finite g N l/Nc, 

2 Size of Extended Bound States 

Consider a many particle system in d space dimensions, with dynamics governed by the Hamiltonian 

Assuming that this system admits extended bound states of many particles (e.g. chains), what 
is their rate of growth with the number of constituents? We will discover that for these bound 
states to become relativistic objects in d + 2 space-time dimensions in the continuum limit, the 
mean-square size can grow at most linearly. 

The mean-square distance between the (k + I)’th constituent and the Z’th constituent (“k- 
separated” constituents) on the object in its ground state is given by: 

where kn are the Fourier components of x k :  

. M  

We define the mean-square size as the average of the mean-square distances 

M R2 G - x R z  1 

k= 1 
M 
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Note that the variable conjugate to 5in is P M - ~ ,  so 

- 2  ~ ( O ~ [ 2 ~ , j 3 ~ - n ] ~ O )  = d . 
i 

Using & = -im[i?h, h] and inserting complete sets of states we get 

Since each term in the sum is positive definite, and Exl 2 Ex, for A1 > X 2 ,  we get the following 
inequality: 

If the Hamiltonian possesses at least a cyclic symmetry with respect to permutations of the particles, 
(OlxklO) will be independent of particle label I C ,  in which case (2.3) shows that (Oljtn10) = 0 for 
n # 0, and the second term vanishes. We then find 

d 2 2m(E1 -Eo)((Olkn - ~ M - ~ I O )  - (oI%lo)(01~~-n10>) . (2.7) 

d >_ 2m(E1 - Eo)(O(kn * % ~ - n l O )  . (2.8) 

From eq. (2.4) we therefore get an upper bound on the size: 

d 
N 

2 d M - 1  1 R 5-- 
m M E1 -EO m(E1 -EO) 

The only question remaining is how the gap E1 - EO scales with M .  If the extended object is 
to describe a discretization of a relativistic object in the light-cone frame (e.g. chain of bits + 
light-cone string), then the gap should scale as l /mM.  This is because in the continuum limit 
m M +  P+, so 

(2.10) 

where M is the rest mass of the lightest massive particle. Consequently the bound becomes: 

R 2 S - M = -  2d 2d P+. 
M2 m M 2  

(2.11) 

Note that we have not used a harmonic (or any specific) interaction (nearest-neighbor or not) to 
derive this bound. It is simply a consequence of the fact that the potential depends only on the 
positions and not on the momenta. 

A related upper bound on the growth of relativistic strings was derived in a completely different 
context by Susskind [8]. This bound is due to causality in the presence of a background black hole 
geometry. The information carried by a spreading string on the stretched horizon is limited in its 
speed of propagation by the requirement that it lie inside the light cone. The bound on the spread 
of information is found to be 

~2 i- < e t / 4 M ~ ~ G  7 (2.12) 

where t is time as measured by an external (Schwarzschild) observer, and G is Newton's constant. 
Since the longitudinal momentum of the string in this situation grows as 

p +  et14MBHG (2.13) 

it follows that the maximum rate of growth of the mean-square size with longitudinal momentum 
is linear. Here too, the bound is independent of the number of dimensions, and happens to agree 
with the conjectured growth rate in four space-time dimensions ( d  = 2). 
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In the next section we shall see that a bare polymer of string-bits, i.e. a free string, grows 
logarithmically, and therefore satisfies the bound (2.11) for any d. Moreover, for d 2 2 this upper 
bound is compatible with the lower bound in eq. (1.10). Note that for d = 1, i.e. three space-time 
dimensions, the two bounds are incompatible. From the point of view of extended bound states 
the d = 1 growth pattern is trivially understood, since the size of a one dimensional chain is simply 
its length. From the above argument it follows that the continuum limit cannot correspond to a 
relativistic string. The black-hole causality argument is also problematic for d = 1. 

3 Size of a Bare Polymer of String-Bits 

In the Nc -+ 00 limit, the energy eigenstates of string-bit models [9, 10, 11, 121 are non-interacting 
(bare) multi-polymer states. A single bare polymer containing M bits has, for M -+ 00, physical 
properties identical to a relativistic string in light-cone gauge. The dynamics of a bare polymer is 
governed by a Hamiltonian with only “nearest-neighbor” interactions: 

where V ( x )  is an attractive (and binding) potential. For the special case of harmonic interactions 
this becomes 

and the Hamiltonian can be diagonalized in terms of the creation and annihilation operators given 
bY 

Using these in the equations of the previous section gives 

and 

for the mean-square distance between k-separated bits and the mean-square size of the chain, 
respectively. The above formulas hold for any harmonic system with normal mode frequencies wn. 
For the nearest-neighbor harmonic system of a bare chain (3.2): wn = 2To sinnn/M, so 
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in agreement with the free string result. 
For a general potential, an exact solution is impossible and we turn to the approximation 

methods developed in [13]. Technically it is easier to deal in the general case with an open polymer 
with the Hamiltonian 

.l M-1 

Since the size of open polymers with a large number of bits is easily related to the size of closed 
polymers with the same large number of bits, the conclusions will be similar. Because of the nearest- 
neighbor interaction pattern, a particularly neat way of separating the center of mass motion is to 
define internal coordinates Yk = xk+l - xk, with corresponding conjugate momenta qk, in which 
case the Hamiltonian for internal dynamics becomes 

. r~ M-1 . M  1 

The correlation functions (GJT[yk(t)yr(O)]/G) contain information about the excitation spectrum 
of the model as well as information about the system’s size. Spectral information is inferred by a 
Fourier analysis of the time dependence, while size information is given by the limit t + 0. Define 
the Fourier components of this correlator by 

As discussed in [13], it is convenient to introduce a certain “irreducible” two point correlator 
n X ( w )  which facilitates the analysis of the low energy spectrum in the limit of large bit number. 
The irreducibility is with respect to a graphical description of time dependent perturbation theory, 
taking the term Cqrqr+l as the perturbation. For example the lowest order contribution to II is 
just E for the system with this perturbation set to zero. In general II is the sum of all connected 
graphs contributing to E which can not be disconnected by cutting only one line (which graphically 
represents the interaction). The all orders relation of E to II is then, assuming rotation invariance: 

(1 - 3 1 - l  . 
rs 

(3.10) 

Here ( I C 2 ) , ,  = 26,, - &,+I - a T S - 1 .  The eigenvalues of the matrix (k2),s are 4 sin2(n7r/2M), some of 
which scale as 1/M2 at large M .  Thus if IT,, is proportional to S,, and non-vanishing at w = 0, E 
will display poles at w = O(l/M), as required for a stringy continuum limit. This is certainly the 
case for a harmonic potential for which II,, is exactly given by Tz,, = 26,,/(m2w2 -2Ti). Of course 
for a general potential one can’t solve exactly for IT, but one can argue that it will generically have 
this low frequency behavior for A4 + 00 for a wide class of potentials. 

On the other hand the integral of I over all w gives the limit t = 0, which contains size infor- 
mation. Doing the integral by contours gives a contribution to the size from the above mentioned 
low energy poles similar to the purely harmonic nearest-neighbor case, i.e. a contribution scaling 
as In M .  But there are of course other contributions which could conceivably alter this behavior. 
For the nearest-neighbor harmonic case this doesn’t happen; the integral can be exactly performed 
and the conclusion of logarithmic growth is unaltered. We suspect this conclusion is more general, 
but our lack of detailed knowledge of the behavior of IT at high frequency leaves the matter open 
to future study. 
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4 Bits With Elbows - A Toy Model 

In order to carry the discussion of size beyond bare polymers (free string) we must deal with 
the complete string-bit Hamiltonian at finite N,. The simplest (bosonic) string bit model [9] is 
described by the Hamiltonian: 

where @(x) creates a bit at the position x with color (a,P), and lower (upper) color indices 
transform in the Nc (N,) representations of SU(N,). 

The variational principle provides a natural approach to the problem of discovering how string 
interactions (l/Nc corrections) affect the size of string. Since string-bit dynamics is standard many 
body non-relativistic quantum mechanics, exact energy eigenstates are given by states for which 
the functional 

is stationary with respect to arbitrary idnitesimal changes bJ$). Furthermore the lowest energy 
eigenstate is the absolute minimum of this functional. Since the Hamiltonian is a color singlet and 
commutes with bit number, one loses no generality in restricting I$) to an irreducible representation 
of the color group and to contain a fixed number M of string-bits. Focusing on the color singlet 
sector, a general trial state I$) is a linear combination of multi-polymer states of the form (assuming 
M >_ kn-1 2 - * * 2 k2 2 kl 2 1) 

l$)~' . .* 'kn-l)  = 
d x l .  - dxMTr[c#Jt(Xl) * . c#Jt(xkl)]  Tr[q5t(xkl+1) - .  4t(xk2)] 

* - * Tr[q5t(Xk,-,+l). * .  ~ t ( X M ) ] J o ) $ ~ , . . . , k , - l )  (x1, * .  . ,XM)  * 

- 
(44 

At N, = 00 the Hamiltonian acts independently on each trace, showing that in this limit the above 
state describes n noninteracting bare polymers, whose energy eigenstates are described by the chain 
dynamics explained in the previous section. 

Of course, making unrestricted variations is tantamount to solving the problem exactly, a pre- 
sumably intractable task. To proceed in an approximate way, we seek a minimum of E[@] within 
a restricted class of states. In this paper we restrict {$) to be a single bare polymer 

I@M)(l) = NL'/2 dXl  *..dXMTl($t(X1) . . * ~ t ( X M ) ] l o ) @ M ( X l ,  . . ,XM) , / 
with $M restricted to a class of functions for which integrals can be readily performed. The 
approximate Schrodinger dynamics that follows by using this trial in the variational principle 
assumes the form 

( o ( n [ 4 ( x M )  * - c#J(Xl)I(H - E[$l)l$M)(l) = 0 (4-3) 

The matrix element of H may be reduced by letting H act to the right. Let H' be the interaction 
term in (4.1). Its action on the one-polymer state is given by 
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+ %[4t (yi+l) * * 4 t ( ~ j > I % [ 4 t  ( ~ j + l >  * * .  4 t ( ~ i > I  

W d + ( Y i ) .  - * &Yj)ln-[4+(Yj+1) * * - dt(Yi-r)l - 

- T + @ ( Y i + l )  . .*&Yi-r)lTr[&Yj) . . *  &Ydl }IO) $M(Y1, ..,YM) - (4.4) 

When one of the traces in (4.4) is empty, that trace simply provides a factor of Tr I = Nc which 
cancels the l/Nc out front thus providing a term that survives the N, + co limit. Simple inspection 
shows that this only happens for the last term in braces when j = i + 1 and for the third term 
in braces when i = 1 and j = M .  We combine these special terms with the terms coming from 
the matrix element of the kinetic term of H to give the first quantized Hamiltonian i of a bare 
polymer, defined by: 

(OITr[4(XM) - - 4(xd]lh+M)(1) 3 N , - m  lim (OI%[4(XM) * * + 4(xl)lHl+M)(1) 7 (4.5) 

and therefore given by 

where we have, without loss of generality, taken the potential to be even V ( x )  = V(-x). 
All the remaining terms in (4.4) vanish in the large Nc limit. At finite N,, they introduce several 

new physical features into the dynamics. First of all, they describe interactions between non- 
nearest-neighbors on the bare polymer. At the same time, they allow non-cyclic bit rearrangement 
on the polymer. Finally, there are contributions of both an attractive and a repulsive character. 
Because the exact Hamiltonian is positive, we can expect that on average the non-nearest-neighbor 
interactions are repulsive. We can roughly confirm this by counting the number of repulsive and 
attractive contributions to the matrix element of H’ at leading order in l /Nc .  For example, the 
contribution of the first term in (4.4) is given by 

N,M-1(olTr[4(XM) . . 4 ( x l ) l w + + ( Y i )  - -4 t (Yj - l ) Iw#J+(Yj )  . -dt(Yi-1)110) . 

To evaluate the above matrix element we simply contract the annihilation and creation operators. 
The leading order contribution corresponds to contractions which preserve the cyclic ordering in 
the traces. There are therefore M ( j  - i ) ( M  - j + i) such terms in the above matrix element, each 
giving an additional factor of for a total of Ng2. From eq. (4.4) it then follows that there 
are 2M(j  - i) ( M  - j + i) repulsive terms and M ( j  - i + 1) ( M  - j + i - 1) + M ( j  -2 - 1) ( M  - j +i + 1) = 
2 M ( j  - i ) ( M  - j + i) - 2M attractive terms; an excess of repulsive over attractive of 2M. [Note 
that the factor of M in these countings is common to all terms in the Hamiltonian matrix element 
and does not represent an undue enhancement.) 

Handling bit rearrangement effects in the context of a variational calculation is daunting if not 
intractable. We defer such a direct attack and instead, in a first attempt, replace our string-bit 
system with an effective analog system in which rearrangement is not allowed. This strategy is 
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somewhat reminiscent of the Hartree as opposed to Hartree-Fock approximation to many electron 
atoms. We wish to suppress rearrangement of bits altogether and simulate l/Nc effects by adding 
a simple non-nearest-neighbor potential term to h: 

I .  

The last term is supposed to represent, in an average way, all of the terms in (4.4) with nonempty 
traces. We have taken it to be repulsive because although there are a large number of terms with 
both signs, there is a slight preponderance of repulsive ones. We have used the same potential 
function for the nearest-neighbor attraction as the non-nearest-neighbor repulsions, as both effects 
originate from the same quartic term in the Hamiltonian. But we have introduced the parameter 

Furthermore, for the sake of numerical study we would like to relax the condition that the 
non-nearest-neighbor interaction be tied to the nearest-neighbor interaction. Thus we shall study 
the “bits with elbows” system given by 

to absorb the renormalization effects of the averaging procedure. 

where U ( x )  is an independent repulsive potential, and g2 represents 1/Nz together with all renor- 
malization effects. This will allow us in particular to use a long-range (harmonic) nearest-neighbor 
potential in conjunction with a short-range non-nearest-neighbor potential. 

Consider first the harmonic chain of the previous section, V ( x )  N x2. For small g ,  one might 
be tempted to treat the non-nearest-neighbor terms as a perturbation. The resulting first order 
correction to the size of the chain is found to be 

AR2 - g2M3[1nMlQ , (4.9) 

where cr depends on the precise form of U ( x ) .  Comparing with the zeroth order result (3 .6) ,  we 
see that perturbation theory breaks down quickly with increasing number of bits. To treat a large 
number of bits we will instead use a variational approach. 

5 Variational Approach and Numerical Results 

Although we have used the variational principle to motivate our analog model, the model itself 
cannot be solved without approximation. Thus in this section we shall use the variational method 
to learn about the size properties of the analog system. If we make simple choices for V and U, the 
integrals involved in computing E[$,] can be readily done once we restrict the trial wave functions 
to be gaussians. A convenient way to parameterize such trial functions is to let them be the ground 
state wave functions of various many body systems with arbitrary harmonic forces. The ground 
state of such a system is defined by’ 

where 

An]#)) = 0 I (5.1) 

( 5 4  
1 

A, = -(fin - iunXn)  . & 
‘First-quantized states are denoted I . . -), to distinguish them from second-quantized (Fock) states 1. . .). 
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We take the normal mode frequencies wn of the trial harmonic system as the variational parameters, 
and minimize the expectation value of the energy 

with respect to them. The size of the chain will then be given by eq. (3.5). In addition we will 
want to keep track of the bond length, given by eq. (3.4) with k = 1: 

This will determine the string scale in the stringy continuum limit (M + m). Three specific models 
are considered: 

1. Harmonic chain with &function elbows: 

V ( x )  = T;x2 , U(X)  = @(X) . (5.5) 

Setting rn = 1 and absorbing numerical factors into g2, the expectation value for the energy 
is 

2. Harmonic chain with gaussian elbows: 
2 2  

V ( X )  = T , ~ x ~  , U ( X )  = e-x la , 

3. Gaussian chain with gaussian elbows: 

-d/2 -d/2 

1 [": ] + g 2 M E [ q + R $ ]  . (5.10) 
2 

M-1 

Bgg(wn) = 5 wn - -AM - + Rf 
k=l n= 1 

The coefficient X in the third (gg) model is b e d  by requiring that the bond length (R1) for the 
bare chain (9 = 0) be the same in all three models, 

d 
(5.11) 

The energies of the three models were minimized numerically for various values of M and 9. The 
results for R2 and R: as functions of the number of bits M for various coupling constants g are 
shown in fig. 1. 

The R2 plots clearly exhibit a change in the growth pattern for g # 0 at some number of bits 
M .  For small M the growth is logarithmic, in agreement with the fact that perturbation theory is 
valid there, and the zeroth order result (3.6) dominates. For large M the growth is quadratic with 
M .  This result seems to contradict the bound of linear growth found in section 2. Recall however 
that the linear bound was a consequence of the gap scaling as 1/M at large M. From fig. 2 it is 
clear tha? for g # 0 the gap in these models scales roughly as l/M3 at large M .  These polymers 
therefore do not correspond to relativistic strings in the continuum limit. 
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Figure 1: Results of variational calculation of size and bond length for various nearest-neighbor 
(bond) potentials and non-nearest-neighbor repulsions (elbows). 
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6 Discussion 

We have found that our analog string-bit model, simulating the effects of string interactions on the 
size of a polymer of string-bits, seems to predict a growth with bit number that is much too fast for 
relativistic string. However, there are several circumstances that indicate that the analog model 
overstates the self-avoiding aspects of an interacting string. First of all, the interactions of the 
original bit model are much richer in structure than those of the analog model. Our estimate of the 
net repulsive character of the interactions (controlled in the analog model by the value of g) involved 
the competition between huge numbers (of order M 2 )  of repulsive and attractive contributions. A 
rough counting gave a net excess of repulsive over attractive contributions of O(1). For larger and 
larger M the repulsive and attractive contributions are reZatively more nearly in balance. Moreover, 
every contribution is not really the same either quantitatively or qualitatively, so it is a bit of a 
leap to conclude that the net result of the competition is a pure repulsive interaction independent 
of M .  It is conceivable that the net repulsive interaction decreases with M .  This would correspond 
in our analog model to an effective g depending in some way on M .  

Furthermore, our analog model has vastly oversimplified the complicated bit rearrangement 
nature of the interactions, replacing them with interactions that conserve the integrity of each bit. 
Since a rearrangement term includes a factor of the overlap of different wave functions, it is bound 
to be smaller than a corresponding “direct” term. This criticism of our analog model is made 
even sharper by the circumstance that, in fact, all of the “direct” contributions exactly cancel out, 
leaving only contributions which involve at least some bit rearrangement. Thus treating the bit 
rearrangement properly would certainly reduce the growth rate compared to our analog model. 
However, it is not at all clear whether the reduction would amount to multiplying the size by a 
factor smaller than unity but independent of M ,  or by one that actually decreases with M .  

Finally, the models studied in this paper are generic bosonic bit models. There is no opportunity 
in these models for the further more subtle cancelations that would be present in a supersymmetric 
model. We have tried to include at least one implication of supersymmetry by starting with a man- 
ifestly positive Hamiltonian. Indeed it was that positivity that was responsible for the net repulsive 
character of the interactions in the first place. But imposing positivity without supersymmetry is 
perhaps a bit heavy-handed, yet another reason to suspect that our analog model overstates the 
growth rate of string. Thus there is some hope that the real string-bit model could predict a linear 
growth with bit number. 

All of these issues need to be addressed. One could certainly try to apply the variational method 
in the original bit model by varying within the space of single bare polymer states. But handling 
bit rearrangement in a tractable way remains a major challenge. As long as bit rearrangement is 
taken into account, it is probably also a good idea to try to include at least some admixture of 
bare multi-polymer states in the trial wave function. Clearly, this would require methods beyond 
those used in this article. To study the role of supersymmetry, we must &st find a supersymmetric 
string-bit model. So far the only candidate we have is the model in d = 1 spatial dimension found 
in [14]. In view of the discussion at the end of section 2 however, the d = 1 case is not likely to 
shed light on the size issue. It is probably most urgent to construct a supersymmetric bit model in 
realistic dimensions (d  2 2). 
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