Defect structure of the mixed-conducting Sr-Fe-Co-O system

PDF Version Also Available for Download.

Description

Electrical conductivity of the mixed-conducting Sr-Fe-Co-O system was investigated at high temperatures and various oxygen partial pressures (pO2). The system exhibits not only high combined electrical and oxygen ionic conductivities but also structural stability in both oxidizing and reducing environments. Conductivity of SrFeCo{sub 0.5}O{sub x} increases with temperature and pO2, within the experiment pO2 range (1-10{sup -18} atm). p-type conduction was observed, the activity energy of which decreases with pO2. A model of the defect chemistry in the Sr-Fe-Co-O system is proposed. The pO2- dependent conducting behavior can be understood by considering the trivalent-to-divalent transition of the transition metal ions ... continued below

Physical Description

7 p.

Creation Information

Ma, B.; Balachandran, U.; Chao, C.-C. & Park, J.-H. November 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Electrical conductivity of the mixed-conducting Sr-Fe-Co-O system was investigated at high temperatures and various oxygen partial pressures (pO2). The system exhibits not only high combined electrical and oxygen ionic conductivities but also structural stability in both oxidizing and reducing environments. Conductivity of SrFeCo{sub 0.5}O{sub x} increases with temperature and pO2, within the experiment pO2 range (1-10{sup -18} atm). p-type conduction was observed, the activity energy of which decreases with pO2. A model of the defect chemistry in the Sr-Fe-Co-O system is proposed. The pO2- dependent conducting behavior can be understood by considering the trivalent-to-divalent transition of the transition metal ions in the system.

Physical Description

7 p.

Notes

OSTI as DE97001964

Source

  • 1996 Fall meeting of the Materials Research Society (MRS), Boston, MA (United States), 2-6 Dec 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97001964
  • Report No.: ANL/ET/CP--90385
  • Report No.: CONF-961202--33
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 436288
  • Archival Resource Key: ark:/67531/metadc679289

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Dec. 14, 2015, 6:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ma, B.; Balachandran, U.; Chao, C.-C. & Park, J.-H. Defect structure of the mixed-conducting Sr-Fe-Co-O system, article, November 1, 1996; Illinois. (digital.library.unt.edu/ark:/67531/metadc679289/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.