Impact of radioactive waste heat on soil temperatures

PDF Version Also Available for Download.

Description

Consideration of the impact of radioactive waste heat is necessary for many aspects of potential repository design. Waste heat will alter the mineralogy of the host rock, and may change the character of the zeolitic units below the potential repository that are likely to be the primary natural barriers to radionuclide migration. The impact of waste heat on the near-surface temperature within the soil zone is the focus of the present study. Since 1990, the Nuclear Waste Technical Review Board (NWTRB) has raised the issue of potential impacts on the aboveground ecosystem from increases in soil temperatures. This study is ... continued below

Physical Description

63 p.

Creation Information

Robinson, B. A.; Gable, C. W. & Lowman, J. P. January 4, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Los Alamos National Laboratory
    Publisher Info: Los Alamos National Lab., Earth and Environmental Sciences Div., NM (United States)
    Place of Publication: New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Consideration of the impact of radioactive waste heat is necessary for many aspects of potential repository design. Waste heat will alter the mineralogy of the host rock, and may change the character of the zeolitic units below the potential repository that are likely to be the primary natural barriers to radionuclide migration. The impact of waste heat on the near-surface temperature within the soil zone is the focus of the present study. Since 1990, the Nuclear Waste Technical Review Board (NWTRB) has raised the issue of potential impacts on the aboveground ecosystem from increases in soil temperatures. This study is a first step toward understanding the relevant heat transfer processes that controls the near-surface thermal regime and to place bounds on the expected timing and magnitude of the temperature rise. Two-dimensional, site scale thermohydrologic calculations will be used to simulate the large-scale thermohydrologic processes that will feed heat to the soil zone. The potential influence of this heat on soil-zone temperatures will then be examined in a series of simplified one-dimensional model calculations. In future efforts the measured soil-zone temperature variations in the air will be used to calibrate the model, which will tighten the bounds on the possible temperature rise. This study is a precursor to more detailed, three-dimensional simulations with a calibrated model. If it is determined that direct coupling of the site scale and soil zones would be beneficial, this will be done as well.

Physical Description

63 p.

Notes

INIS; OSTI as DE99002014

Source

  • Other Information: PBD: 4 Jan 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99002014
  • Report No.: LA-UR--99-111
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/329491 | External Link
  • Office of Scientific & Technical Information Report Number: 329491
  • Archival Resource Key: ark:/67531/metadc679213

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 4, 1999

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 3, 2016, 1:22 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Robinson, B. A.; Gable, C. W. & Lowman, J. P. Impact of radioactive waste heat on soil temperatures, report, January 4, 1999; New Mexico. (digital.library.unt.edu/ark:/67531/metadc679213/: accessed November 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.