Small Inertial Fusion Energy (IFE) demonstration reactors

PDF Version Also Available for Download.

Description

ICF target design studies done for the Nova Upgrade have identified conditions under which the target ignition ``cliff`` is shifted to much lower drive energy albeit with the penalty that the gain achieved at a given energy is also smaller. These targets would repeatedly produce the output and spectra of a higher gain targets at low yield. They should, thus, allow building much smaller R&D reactors with full thermonuclear effects. Demonstration reactor at the 1 to 100 MW{sub e} level appear to be feasible with driver energies of 0.5 to 2.0 MJ per pulse. These smaller, less expensive test and ... continued below

Physical Description

7 p.

Creation Information

Hogan, W.J. October 3, 1991.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

ICF target design studies done for the Nova Upgrade have identified conditions under which the target ignition ``cliff`` is shifted to much lower drive energy albeit with the penalty that the gain achieved at a given energy is also smaller. These targets would repeatedly produce the output and spectra of a higher gain targets at low yield. They should, thus, allow building much smaller R&D reactors with full thermonuclear effects. Demonstration reactor at the 1 to 100 MW{sub e} level appear to be feasible with driver energies of 0.5 to 2.0 MJ per pulse. These smaller, less expensive test and demonstration facilities should result in lower IFE development cost. If the U.S. government builds a driver and target factory, it is also conceivable that commercial organizations could build their own scaled concepts of IFE reactors using the beams and targets supplied by the government`s facilities.

Physical Description

7 p.

Notes

INIS; OSTI as DE96050352

Source

  • 14. IEEE symposium on fusion engineering, San Diego, CA (United States), 30 Sep - 3 Oct 1991

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96050352
  • Report No.: UCRL-JC--108087
  • Report No.: CONF-910968--82
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 371421
  • Archival Resource Key: ark:/67531/metadc679080

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 3, 1991

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 17, 2016, 4:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hogan, W.J. Small Inertial Fusion Energy (IFE) demonstration reactors, article, October 3, 1991; California. (digital.library.unt.edu/ark:/67531/metadc679080/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.