Comparison of some parallel Krylov solvers for large scale groundwater contaminant transport simulations

PDF Version Also Available for Download.

Description

Some popular iterative solvers for non-symmetric systems arising from the finite-element discretization of three-dimensional groundwater contaminant transport problem are implemented and compared on distributed memory parallel platforms. This paper attempts to determine which solvers are most suitable for the contaminant transport problem under varied conditions for large scale simulations on distributed parallel platforms. The original parallel implementation was targeted for the 1024 node Intel paragon platform using explicit message passing with the NX library. This code was then ported to SGI Power Challenge Array, Convex Exemplar, and Origin 2000 machines using an MPI implementation. The performance of these solvers is ... continued below

Physical Description

7 p.

Creation Information

Mahinthakumar, G.; Saied, F. & Valocchi, A.J. March 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Some popular iterative solvers for non-symmetric systems arising from the finite-element discretization of three-dimensional groundwater contaminant transport problem are implemented and compared on distributed memory parallel platforms. This paper attempts to determine which solvers are most suitable for the contaminant transport problem under varied conditions for large scale simulations on distributed parallel platforms. The original parallel implementation was targeted for the 1024 node Intel paragon platform using explicit message passing with the NX library. This code was then ported to SGI Power Challenge Array, Convex Exemplar, and Origin 2000 machines using an MPI implementation. The performance of these solvers is studied for increasing problem size, roughness of the coefficients, and selected problem scenarios. These conditions affect the properties of the matrix and hence the difficulty level of the solution process. Performance is analyzed in terms of convergence behavior, overall time, parallel efficiency, and scalability. The solvers that are presented are BiCGSTAB, GMRES, ORTHOMIN, and CGS. A simple diagonal preconditioner is used in this parallel implementation for all the methods. The results indicate that all methods are comparable in performance with BiCGSTAB slightly outperforming the other methods for most problems. The authors achieved very good scalability in all the methods up to 1024 processors of the Intel Paragon XPS/150. They demonstrate scalability by solving 100 time steps of a 40 million element problem in about 5 minutes using either BiCGSTAB or GMRES.

Physical Description

7 p.

Notes

OSTI as DE97003496

Source

  • 5. symposium on high performance computing: grand challenges in computer simulation as part of the 1997 simulation multiconference, Atlanta, GA (United States), 6-10 Apr 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97003496
  • Report No.: CONF-970430--6
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 459364
  • Archival Resource Key: ark:/67531/metadc678973

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • Jan. 15, 2016, 6:12 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mahinthakumar, G.; Saied, F. & Valocchi, A.J. Comparison of some parallel Krylov solvers for large scale groundwater contaminant transport simulations, article, March 1, 1997; Tennessee. (digital.library.unt.edu/ark:/67531/metadc678973/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.