Investigation of density limit processes in DIII-D

PDF Version Also Available for Download.

Description

A series of experiments has been conducted in DIII-D to investigate density-limiting processes. The authors have studied divertor detachment and MARFEs on closed field lines and find semi-quantitative agreement with theoretical calculations of onset conditions. They have shown that the critical density for MARFE onset at low edge temperature scales as I{sub p}/a{sup 2}, i.e. similar to Greenwald scaling. They have also shown that the scaling of the critical separatrix density with heating power at partial detachment onset agrees with Borass` model. Both of these processes yield high edge density limits for reactors such as ITER. By using divertor pumping ... continued below

Physical Description

5 p.

Creation Information

Maingi, R.; Mahdavi, M.A. & Petrie, T.W. February 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A series of experiments has been conducted in DIII-D to investigate density-limiting processes. The authors have studied divertor detachment and MARFEs on closed field lines and find semi-quantitative agreement with theoretical calculations of onset conditions. They have shown that the critical density for MARFE onset at low edge temperature scales as I{sub p}/a{sup 2}, i.e. similar to Greenwald scaling. They have also shown that the scaling of the critical separatrix density with heating power at partial detachment onset agrees with Borass` model. Both of these processes yield high edge density limits for reactors such as ITER. By using divertor pumping and pellet fueling they have avoided these and other processes and accessed densities > 1.5{times} Greenwald limit scaling with H-mode confinement, demonstrating that the Greenwald limit is not a fundamental limit on the core density.

Physical Description

5 p.

Notes

INIS; OSTI as DE99001959

Source

  • 17. IAEA fusion energy conference, Yokohama (Japan), 19-24 Oct 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99001959
  • Report No.: GA--A23000
  • Report No.: CONF-981064--
  • Grant Number: AC03-89ER51114;W-7405-ENG-48;AC05-96OR22464;AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 319810
  • Archival Resource Key: ark:/67531/metadc678805

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1999

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Aug. 3, 2016, 1:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Maingi, R.; Mahdavi, M.A. & Petrie, T.W. Investigation of density limit processes in DIII-D, article, February 1, 1999; San Diego, California. (digital.library.unt.edu/ark:/67531/metadc678805/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.