Improved fusion performance in low-q, low triangularity plasmas with negative central magnetic shear

PDF Version Also Available for Download.

Description

Fusion performance in DIII-D low-q single-null divertor discharges has doubled as a result of improved confinement and stability, achieved through modification of pressure and current density profiles. These discharges extend the regime of neoclassical core confinement associated with negative or weak central magnetic shear to plasmas with the low safety factor (q{sub 95}{approximately}3) and triangularity ({delta}{approximately}0.3) anticipated in future tokamaks such as ITER. Energy confinement times exceed the ITER-89P L- mode scaling law by up to a factor of 4, and are almost twice as large as in previous single-null cases with 3{le}q{sub 95}{le}4. The normalized beta [{beta}(aB/I)] reaches values ... continued below

Physical Description

6 p.

Creation Information

Strait, E.J.; Casper, T.N. & Chu, M.S. July 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • General Atomic Company
    Publisher Info: General Atomics, San Diego, CA (United States)
    Place of Publication: San Diego, California

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Fusion performance in DIII-D low-q single-null divertor discharges has doubled as a result of improved confinement and stability, achieved through modification of pressure and current density profiles. These discharges extend the regime of neoclassical core confinement associated with negative or weak central magnetic shear to plasmas with the low safety factor (q{sub 95}{approximately}3) and triangularity ({delta}{approximately}0.3) anticipated in future tokamaks such as ITER. Energy confinement times exceed the ITER-89P L- mode scaling law by up to a factor of 4, and are almost twice as large as in previous single-null cases with 3{le}q{sub 95}{le}4. The normalized beta [{beta}(aB/I)] reaches values as high as 4, comparable to the best previous single-null discharges. Although high triangularity allows a larger plasma current, the fusion gain in these low triangularity plasmas is similar to that of high triangularity double-null plasmas at the same plasma current. These results are encouraging for advanced performance operation in ITER and for D-T experiments in JET.

Physical Description

6 p.

Notes

INIS; OSTI as DE96015289

Source

  • 23. European Physical Society conference on controlled fusion and plasma physics, Kiev (Ukraine), 24-28 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96015289
  • Report No.: GA-A--22402
  • Report No.: CONF-9606226--6
  • Grant Number: AC03-89ER51114;AC05-96OR22464;W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 380309
  • Archival Resource Key: ark:/67531/metadc678731

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 18, 2016, 5:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Strait, E.J.; Casper, T.N. & Chu, M.S. Improved fusion performance in low-q, low triangularity plasmas with negative central magnetic shear, article, July 1, 1996; San Diego, California. (digital.library.unt.edu/ark:/67531/metadc678731/: accessed June 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.