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ABSTMCT: Digital Signal Processing Control of Induction Machine’s Torque 

and Stator F I u  Utilizing the Direct Stator F i u  Field Orientation Method 

Subject: This paper presents a review of the Direct Stator Flux Field Orientation 

control method. This method can be used to control an induction motor’s torque and 

flux directly and is the application of interest for this thesis. This control method is 

implemented without the traditional feedback loops and associated hardware. 

Predictions are made, by mathematical calculations, of the stator voltage vector. The 

voltage vector is determined twice a switching period. The switching period is fixed 

throughout the analysis. The three phase inverter duty cycle necessary to control the 

torque and flux of the induction machine is determined by the voltage space vector 

Pulse Width Modulation (PWM) technique. Transient performance of either the flux 

or torque requires an alternate modulation scheme which is also addressed in this 

thesis. Appendix A. 1 provides a block diagram of this closed loop system. 

Objective: The objective of this thesis is to revieu one of the more recent 

advancements in the power electronic field, specifically the use of the Digital Signal 

Processor (DSP) to aid in determining the desired switching states of an inverter 

necessary to achieve the desired goal of controlling, in this case, torque and flux of 

the induction motor. In the past, field oriented control was extremely difkult 

due to the large number of algorithms and speed required to transform and process 

the specified signals. This argument is no longer valid with the development of the 

DSP. This project will focus on the stator flux field orientation method and the 

advantages that exist fiom such a control scheme. 
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PREFACE 

The development of this thesis involved four unique phases. The sequence of the 

Chapters, contained herein, is consistent with the development of this thesis. The 

first phase , Chapter (l), reviews the use of the three phase induction motor and the 

characteristics associated with operating an induction motor. 

The second phase, Chapter (2), is a review of the controller used to operate the 

induction motor which, in this case, is a six step pulse width modulation controlled 

inverter. With the review of the two key components (the induction motor and 

inverter) complete, the next Chapter focuses on simulating a control system to 

provide direct torque and flux control of an induction motor. The simulation tool 

chosen is SIMULINK, a tool used in conjunction with MATLAB. The model was 

developed and tested based on the stator flux field orientation method. 

Chapter (3) is divided into four parts. The first part provides a general overview of 

the objectives and implementation of the control system chosen for this project. This 

project was based on the studies documented in Reference (1). The second part 

provides a discussion of the simulation tool SIMULINK. The third part of Chapter 

(3) discusses various modulation schemes used to control the induction motor as 

well as a discussion of the induction motor model itself. Part four of Chapter (3) 

provides the results of the simulation rum. 

I 
t 
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Chapter (4) is the final chapter and contains: 

(a) a description of the implementation of the control scheme that was used in the 

previously discussed S I m I N K  model using Digital Signal Processing (DSP) 

hardware, 

(b) the results of testing the algorithms with the 2 1020 floating point processor, and 

(c) conclusions related to the development and execution of this project. 
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Chapter 1- Induction Motor 

I. COMPARISON OF AC INDUCTION MOTORS AND DC MOTORS 

In order to understand how to control an ac induction motor, it is prudent to 

compare the characteristics of the ac induction motor and the dc motor. 

Understanding the positive characteristics of both machines has led to control 

techniques that take advantage of these positive characteristics. In the case of this 

project, the control technique (see References (1)-(8)) used is the direct stator flux 

field orientation method which is discussed in more detail later in this chapter. 

The three phase ac induction motor is a brushless machine and; therefore, requires 

minimal maintenance. The rotor winding of the induction motor is short circuited 

and receives its supply by induction fiom the stator thereby providing the name 

“induction” motor. During the starting of an induction motor, the fiequency of the 

rotor current is high and is considered to be equal to the stator fiequency. The 

induction motor also has high starting current, but minimal torque because of a low 

rotor power factor (PO at the high rotor fiequency. At normal steady state 

conditions, fiequency of the rotor current is low. The absence of the mechanical 

commutator in the induction motor allows this motor to operate at higher speeds 

than its dc motor counterpart. Additionally, armature voltage in an induction motor 

can be higher than what a dc motor is capable of. The transient response of the dc 

machine is limited by the rate of rise of armature current, which with today’s 

machines is approximately 30 times rated current. The induction motor has no such 
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limit. The rate of rise in current is only limited by the leakage inductance of the 

machine and the amount of voltage available to force the rise of current. In addition 

to these desirable characteristics, the induction motor is also smaller, lighter in 

weight and more efficient than a de motor. The disadvantage of an induction motor 

is the fact that it is difficult to control due to its highly interactive multivariable 

control structure. With load variation, the induction motor’s space angle between 

the rotating stator and rotor fields will vary, which results in complex interactions. A 

dc machine, on the other hand, has a decoupled control structure with independent 

simplistic control of torque and flux. 

11. THREE PHASE TO TWO PHASE TRANSFORMATION 

Based on the comparisons between a dc motor and the ac induction motor provided 

above, the only significant drawback appears to be the overly complex control 

structure. This problem can be resolved by modi@ing the induction motor to 

resemble that of a de motor. This can be accomplished by implementing a three 

phase to two phase transformation.The phases of an induction machine are 

interactive or coupled and; therefore, dependent on one another. To decouple the 

phases, results in simplification of control, and the phases are broken down into the 

real and imaginary parts representing the alpha-beta (a-p) reference frame, 

respectively. The objective of decoupling is achieved by using the principle of field 

orientation. Field orientation implements a ninety degree space angle between 
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specific field components to simulate the effects of the dc machine. The action of 

decoupling the phases into a two phase rectangular coordinate system yields: 

and is equivalent to that of a dc machine which already is decoupled by its 

operational characteristics. It should be noted that this decoupling algorithm is only 

valid when the sum of the stator currents equals zero. The phase shift for phases b 

and c, as shown in Figure I. 1, is &2(piy3 and &4@iY3 , respectively. The matrix 

representation of this transformation fi-om three phases to two phases is: 

Figure I. 1 - Three Phase/ Two Phase Transformation 

a 



The same equations can be used for stator voltage and for the complex stator 

flux linkage vector. The physical interpretation of the three phases is shown in 

Figure 1.2 . 

Figure 1.2-Physical Interpretation of Three Phase System 

- 
is defines the instantaneous magnitude and angular position of the resultant stator 

magnetomotive force (mmf) wave. For balanced three phase current, the vector is, 

has a constant amplitude and rotates with a constant angular velocity. 

111. FIELD ORIENTED CONTROL 

Field oriented control transforms the dynamic structure of the ac machine into that 

of a separately excited compensated dc machine. For a dc machine, the field flux is 

proportional to the field current assuming that the magnetic saturation term is 

negligible. The field current is not effected by, or is independent of, the armature 

current. The armature current provides direct control of torque. With the induction 

0 

3 
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motor transformed to a seperately excited dc machine, the induction motor can 

achieve four quadrant operation with fast torque response (the armature current 

provides direct control of the torque) and satiskctory performance down to 

standstill. The space angle of the induction motor (angle between stator and rotor 

fields) will vary with load and; therefore, result in complex interactions between the 

fields. The space angle will be controlled such that the stator input current can be 

decoupled into flux producing and torqueproducing components. The control action 

takes place in a field coordinate system using the rotating flux vector as a fiame of 

reference for the stator voltages and currents. It is convenient for this project to use 

the stationary dq (two phase) reference fiame. Field oriented control is the 

independent non-interacting control of flux and torque. Direct control of the position 

and magnitude of flux can be achieved by either direct measurement or derived from 

measurement of motor input voltage and current which is the method chosen for this 

project. Torque producing stator current is perpendicular to the flux and is 

subsequently regulated to produce the desired torque of the machine. 

The flux producing stator current is controlled independently to regulate the flux 

inside the induction motor. Therefore, similar to the desirable characteristic of a dc 

machine, the decoupled or independently controlled torque and flux is achievable for 

GI 

5 
8 
m 

the induction motor whenever the position of the flux vector is know 



Any stator flux field orientation scheme suffers fiom the severe problem that at low 

speed, the stator “IR” drop becomes a significant term in determining the stator flux. 

The integration at low fiequency gives an meliable result. This is because the signal 

to noise ratio is very small. 

There are three reference fiames that can be used in a field orientated control 

system: 

(1) Stationary Reference Frame: w = 0. This is the method used in this project. 

(2) Rotor Reference Frame (Park’s Transformation): w, = w. 

(3) Synchronous Rotating Reference Frame: w, = w. 

Where w is the excitation fiequency, wr is the rotor frequency and we is the stator 

fiequency . 

The conditions of operation will determine the most convenient reference fiame to 

use. The stationary or synchronous (sync) reference fiame are generally picked to 

analyze balanced or symmetrical conditions. The sync rotating reference frame is 

convenient to use when incorporating dynamic characteristics of an induction 

machine into a digital computer program to observe transient conditions of a large 

power supply. In a pulse width modulation (pwm) drive, the pulsating torques that 

are developed are small in amplitude and are at high fiequencies compared to the 

fimdamental frequency. The result of this is that there are minimal speed pulsations 

because of motor inertia. 
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The phasor diagram of the motor can be represented as follows: 

Figure 1.3 Induction Motor -Phasor Diagram 

t 

Where: 

Im= magnetizing current (Reference Phasor) 

E,= stator emf 

I t  = net stator current 

I2 = load component of stator current which neutralizes the rotor mmfand lags E1 by 

the rotor power factor angle 0 2  

0 = fundamental airgap flux 

The flux and current phasors can also be regarded as space vectors of flux and mmf. 

Torque can be expressed as follows: 



IV. OPTIMAL MOTOR OPERATION 

Motor operation should be restricted to regions of high torquelamp, thereby 

matching the motor and inverter ratings and minimizing system losses. To obtain 

high torque throughout the speed range, the airgap flux should be maintained 

constant. Below the base speed, the torque producing capability of a given motor 

kame size can be hlly utilized by holding airgap flux constant. The induction motor 

torque capability is then independent of supply fiequency and permits fast transient 

response of the drive system. 

The stator current vector in field coordinates has orthogonal direct and quadrature 

components hs and bS which are perpendicular and parallel to k, respectively. The 

current, i,,, is the modified magnetizing current vector representing rotor flux as 

shown in Figure 1.4. The current, &, is analogous to the main field flux of the dc 

machine and is controlled by ids, the direct component of the stator current vector. 

Figure 1.4- Modified Magnetized Current Vector 

STATOR 

G) s 
8 r: 
m 
rn 

3 
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Where: 

u M= angular velocity of two pole rotor 

u M ~ =  instantaneous angular velocity 

w1= synchronous angular velocity 

b= magnetizing current vector = is + & e'" . This is the sum of the stator and rotor 

current vectors in a common (in this case stator) reference fiame. 

br= modified magnetizing current vector representing rotor flux. 
- 

The current Gs is analogous to the armature current of a dc machine and can be 

rapidly varied by an appropriate change in stator current to provide a fast response 

to a sudden change in torque demand. If ids and hS can be independently controlled, 

i, will behave like a dc motor with decoupled control of flux and torque. Airgap 
- 

flux will control stator current which in turn controls the stator voltage. A 

Volts/Hertz type control system has_the disadvantage that airgap flux may drift, 

which effects slip and torque. As the airgap flux decreases, the slip will increase for 

the same torque demand. For a voltage fed drive system, both torque and airgap flux 

are functions of voltage and fiequency. The coupling of these two parameters is 

responsible for the sluggish response of the induction motor. For example, as 

frequency is increased, slip and torque will increase as flux decreases. The reduction 

in flux results in a reduction of torque sensitivity with slip and; therefore, lengthens 

the response time of the machine. Field oriented control of the machine improves the 

time response concern. 



s 
In a dc machine there are two currents of interest; the armature or torque component 'a 

1 
(D 

0 

of current and the field or flux component of current. For the ac machine, we can say rn 

e 
that Id, is analogous to the flux component of current and I,, is analogous to the 

torque component of current, as shown in Figure 1.5. 

Figure 1.5- Torque/Flux Components of Current 

Iqs= Torque Component 

IF or Ids 

Ids= Flux Component 

V. TORQUE 

Torque is derived from the tangential force exerted on the rotor windings by the 

radial magnetic field produced by the stator mmf Torque is proportional to the 

vector cross product of the stator current vector and the rotor current vector, and is 

therefore proportional to the sine of the angle between the stator and rotor current 

vectors. 



To generate rotor current and thereby provide torque, the rotor must turn more 

slowly than the rotor field. The difference in rotational velocity is defined as slip. 

Slip is defined as fX. Unit Slip is the ratio of the difference between the stator and 

rotor angular fiequency (g) to the stator angular fiequency (0. The airgap 

flux moves at the slip fiequency. Synchronous speed is defined as (60 &)/p. “p” is 

defined as the number of poles. 

Torque pulsation is produced by the interaction of airgap flux and rotor mmf waves 

at difEerent harmonic orders. Torque pulsations, ifnot filtered by the motor inertia, 

can cause speed fluctuations too. At higher fiequency, speed variation becomes less 

pronounced . However, vibration an& therefore, noise problems are created. For 

fimdamental fiequency, or any order thereofl the phase angle between airgap flux 

and rotor current is constant. A harmonic component of the airgap flux will induce 

rotor current at the same fiequency and; therefore, torque is produced in the same 

direction as the rotating airgap flux. The torque-speed Curve for a given voltage and 

frequency is documented in Figure 1.6. 

L 
t 



Figure 1.6 - Torque -Speed Curve at Constant Voltage and Frequency 

- PLUGGING- 

STARTING 
........ 

2 

c- MOTOWN- 

SPEED --* 

+REGENERATION- 

MAXIMUM (BREAKDOWN) TORQUE 

b 
Regeneration: s < 0 

mr = rotor angular fiequency us= stator angular frequency 

As slip of the machine increases, the speed decreases. Energy is consumed during 

motoring and energy is generated and given back to the source during regeneration. 

In terms of the dq reference fiame torque is defined as follows: 

3 P  
2 2  

T = - - ( A d s  Iqs - Aqs Ids ) 

where Ads= Stator Flux in the d axis 

Aqs= Stator Flux in the q axis 

*Plugging : 15 s 2 2 

* Rapid reversal of the induction motor. 

Motoring: 02s  2 1 

Ids= Stator Current in the d axis 

Iqs= Stator Current in the q axis 
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VI. CONTROL OF FLUX AND TOROUE 

The induction motor for this project is powered fiom a six step voltage source 

inverter (see Chapter 2 for detailed description on voltage source inverter). The 

objective of this project is to control airgap flux and torque. The torque producing 

stator current component is regulated to produce the desired torque. The flux 

producing stator current component is controlled independently to regulate the flux 

inside the induction motor. Similar to a dc motor, decoupled torque and flux control 

is obtained for the motor whenever the position of the flux vector is known. For 

high performance drive systems, precise control of airgap flux as well as fast torque 

response control is necessary. 

This type of control system is used for such things as a traction drive in an electric 

vehicle or could be used as an inner loop in a speed or position controlled drive 

system. Terminal stator voltages and currents are monitored and then used to 

calculate motor torque and airgap flux. For optimum performance, the computation 

of motor torque and airgap flux should be unaffected by variations in machine 

parameters. 

For this project the inverter duty cycle is directly calculated each switching period 

based on torque and flux errors, transient reactance and an estimated value of the 

voltage behind the transient reactance. The flux and torque are derived &om the 
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stator voltage, stator current and resistance in the stator flux field orientation 

method. This method eliminates the need to monitor rotor speed, position or flux. 

The disadvantage of this method is that it results in a variable switching fitequency 

due to hysteresis control. This method of control is used for a steady state condition. 

Constant torque capability throughout the speed range is achieved ifthe airgap flux 

in motors is maintained constant at all speeds. For transient conditions the torque 

and/or flux cannot be driven to a reference value in a single switching period, 

therefore an alternate control method is used which is discussed in Chapter (2). 

In order to study the transient behavior of the induction motor, the simulation of the 

system assumes the following; 

(1) The motor is a symmetrical three phase wye connected stator winding with the 

neutral electrically isolated. 

(2) The space harmonics in the airgap flux &and flux density waveforms can be 

neglected. 

(3) The stator and rotor iron have infinite permeability. 

(4) Skin effect and core losses are considered to be negligible. 

(5) Slot and end effects can be ignored. 
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The per phase equivalent circuit of the induction motor can be depicted as follows: 

I 
d 

Figure 1.7-Per Phase Equivalent Circuit of an Induction Motor 

vm 

Ls= Stator Inductance 

LM= Magnetizing inductance 

Rs= Stator Resistance 

RR= Rotor Resistance 

Balanced three phase stator windings have the same number of effective turns placed 

120 degrees apart. A motor is normally delta connected or the neutral is insulated 

so it is insensitive to lie-neutral voltage. Line-neutral voltage can, therefore, be 

varied with no consequence to the load side (one degree of fieedom). The sum of 

line-line voltages must equal zero. 

To express the motor in terms of the stationary reference fiame, the excitation 

frequency component We is assumed to equal zero. Voltage in the dq stationary 

reference fiame is: 

Vqs = Rs I,, + dAqs/dt + me Ads 

Vds = Rs Ids + dAds/dt - We Aqs 
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If airgap flux is kept constant under all operating conditions, the torque is solely 

determined by slip speed and not synchronous speed. The shape of the torque-speed 

curve (Figure 1.6) for different fiequencies is, therefore, the same. For constant 

airgap flux, the inverter output voltage, VI; and fiequency must be appropriately 

controlled for each operating condition The inverter fiequency is closely related to 

the shaft speed and must be adjusted to the value that is dictated by the speed 

command. Therefore, the only quantity for flux regulation is the motor voltage, VI.  

Flux sensors could be used, but are normally distorted by large slot harmonics that 

cannot be filtered effectively because their fiequency varies with the motor speed. 

Airgap flux is proportional to the: (1) ratio of the airgap electromotive force (err@ 

to sync speed, and (2) product of the magnetizing inductance and magnetizing 

current. 

Figure 1.8- Constant Airgap Flux 

CONSTANT AIRGAP FLUX 

Per Unit (PU) 

OPERATION AT RATED I /  
VOLTAGE AND FREQUENCY 

~ 

ROTOR FREQUENCY (Hz) 
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Constant Airgap Flux-sustained operation may require special cooling, requiring two 

times the terminal voltage to achieve maximum torque. 

Airgap flux is maintained constant at the value corresponding to no-load operation 

at rated voltage and frequency. For constant flux, one can apply the universal torque 

equation: 

Tmb= [ (@2/mb) 4- (mdm2)l 

mb= The rotor breakdown frequency = 2 R2 /Lz 

Breakdown torque is the same for all frequencies Tb= +pml [El / W I  ]* /2L2 

Figure 1.9- Rotor Breakdown Frequency 

Motor 

8 

............ .. ......... ....... 

5 HP 

60 Hz, 220 V 

Induction 

Torque(PU) - 
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D 

Stator current is independent of the supply frequency when airgap flux is constant. 

The terminal voltage (VI) is equal to the phasor addition of the airgap emf(E1) and 

3 
8 
(D 

0 
m 

8 

the stator voltage drop, ( R 1  +j XI)  11 . 

VI= El + (RI +j XI) I1 

E] varies linearly with stator fiequency.The stator voltage required for constant flux 

operation is described in the figure below. 

Figure I. IO- Stator Voltage Required for Constant Flux Operation 

0 pu- h,&oring 

(b) II= 1.0 pu- Motoring 

(c) I1= Nominal Magnetizing Current 

(d) I,= 1 .O pu- Generating 

I I I I I I 
b 
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The operation of an induction motor at a high power factor results in a higher 

efficiency provided that the rotor frequency does not exceed the breakdown torque 

value. 

VII. PER UNIT SYSTEM OF MEASURING 

The per unit system of measuring is a method of normaliziig values. In the per unit 

system, the actual value of the parameter is expressed as a fiaction of the base value. 

For example, the root mean square (rms) value of rated phase voltages are generally 

selected as the base voltage for "abc" variables. Yet, the peak value of voltage is 

normally selected as the base voltage for dq variables. 

Base current is equal to rated fidl load sine wave current. Base torque is defined as 

the torque corresponding to a rotor current of one per unit with an airgap flux of 

one per unit and a rotor power factor of unity. Base torque will be greater than the 

rated torque of the motor. For this project, use of per unit measurements will be 

specified when used. 

VIII. HARMONICS 

In addition to controlling torque and flux directly, some effect can be imparted to 

improve the harmonics of the motor. Harmonics, generally occur as sidebands of 

*NOTE: The project will not focus on methods for improving the harmonics 

associated with the oepration of this control system. 
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the carrier fiequency and its multiples. Harmonic order is defined as k= np 5 m 

(where m is defined as the number of sidebands and n is the carrier harmonic). If n is 

even, there is an odd sideband spectrum because harmonics are nonexistent when n 

and m are both even. For n=2, there are harmonics of order 2pil,2p23,2p+5 in the 

pole voltage waveform, but harmonic amplitude diminishes rapidly with increasing 

values of m The m h  harmonic is the same spatial distribution as the fundamental, 

but one that pulsates at five times the supply frequency. Harmonic behavior of an ac 

motor mimics a linear device, ifmagnetic saturation is neglected. The principle of 

superposition can be used. The result is that the motor behavior can be analyzed 

independently for the fundamental component and for each harmonic term. The f3h  

and seventh harmonic react with the fundamental airgap flux to produce a sixth 

harmonic, pulsating torque, which can cause irregular stepping or cogging rotation 

of the motor shafl especially at low speeds (less than 5 hertz). One advantage of 

sinusoidal vice square wave is the enhanced low speed performance. The seventh 

harmonic adds to the fundamental torque, but the f 3 h  harmonic opposes it. 

Harmonic slip is defined as (synchronous speed of the fundamental rotating field - 

the actual rotor speed) / ( synchronous speed of the fundamental rotating field). 

When a motor is fed by a voltage source inverter with a specific output waveform at 

a particular frequency, harmonic currents will remain constant fiom a no load 

condition to a full load condition. If the motor has a large starting current, it will 

draw large harmonic currents on non-sinusoidal voltage supplies. 

D 

3 
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If the motor has very low leakage reactance, caution must be exercised to avoid 

excessive harmonic currents which leads to overheating of the unit. 

Harmonics in the airgap result in additional harmonic torques on the rotor. There are 

two types: 

(1) Steady State- This occws due to reaction of harmonic airgap fluxes with 

harmonic rotor nu& or currents for the same order. This harmonic torque 

component has a negligible effect on motor operation. 

(2) Pulsating State- This occurs due to reaction of harmonic rotor fnrnfs with 

harmonic rotating fluxes of a different order. Pulsating torques have zero average 

value, but their existence causes angular velocity of the rotor to vary during 

revolution at low speeds. This is evidenced by rotor rotation being “jerky”. The 

irregular cogging motion sets a lower limit for the usefbl speed range of the motor. 

For sustained operation at low speeds, an improved inverter output waveform is 

required to help suppress low order harmonics. Harmonic currents delivered by the 

inverter produce a sixth harmonic voltage ripple on the dc link capacitor which in 

turn amplifies the harmonic voltage components in the inverter output voltage. The 

end result is that harmonic current flow to the motor increases and the sixth 

harmonic pulsating torque is magnified. A large dc capacitor will aid in minimizing 

this effect. 
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A characteristic of the Pulse Width Modulation (PWM) waveform is the large 

pulsations that are produced at high switching fkequencies. 

M. STABILITY OF THE SYSTEM 

Instability due to interaction between the inverter and the motor can occur when the 

inverter has an infinite source impedance (i.e., filter which smoothes the dc link 

supply). This will usually occur at fiequencies greater than 25 hertz when energy is 

transformed between motor inertia and filter inductance and capacitance. 

Stability of an inverter fed induction motor can be improved by: 

(I) increasing the load torque and inertia, 

(2) reducing the stator voltage and 

(3) increasing filter capacitance and reducing filter inductance and resistance. 

Pulse Width Modulation (PWM), discussed in Chapter (3), has a step-down 

transformer action* that reduces the effective output impedance at low fkequencies 

an& therefore, improves the drive stability. 

*NOTE: A six step inverter does not exhibit characteristics of a step-down 

transformer. 
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This is clear by evaluating low speed operation. The fimdamental output voltage is 

much less than dc link voltage yet the output current is much greater than the dc link 

current. Therefore, P W M  can give stable open loop operation at low speeds. 

Induction motors run asynchronously at a speed which is normally 95% of the 

synchronous speed. The torque developed by the induction motor at a given slip 

varies approximately to the square of the applied voltage, and steady state operation 

occurs when the motor torque balances the load torque. Output power fiom the 

induction motor is proportional to shaft torque and speed. Input power delivered to 

the inverter is the product of the dc link voltage and current. 

X. DYNAMIC BRAKING 

Dynamic braking is a method of dissipating regenerated power and is accomplished 

by installing a resistor which is switched across the dc link when the dc link voltage 

reaches a given threshold level due to the regenerative charging of the filter 

capacitor (Figure I. 1 1). The switching can be performed automatically by means of 

an auxhary thyristor or transistor which is triggered &om a voltage sensing circuit. 

There are also other means of achieving the same objective (i.e., regenerative). 

Regenerative brakiig is energy efficient. This allows four quadrant operation. 

Regenerative braking utilizes a converter at the fiont end instead of a diode bridge 

rectifier. The energy recovered fiom the motor load is fed back to the utility supply. 
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However, dynamic braking circuit, with its simplistic design, can be constructed at a 

much lower cost than a regenerative braking design ahd would be used for this 

application. 

Figure 1.1 1 Dynamic Braking 

ac 

- 
INVERTER 
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Chapter 2-Voltage Source Inverter 

I. INVERTERS 

In order to control the torque and flux of the ac induction motor discussed in 

Chapter (l), the stator current and voltage are sampled periodically. These analog 

signals are then converted to digital signals and sent to a digital signal processor 

(Chapter 4). The output (three phase) from the digital signal processor (dsp) is fed 

back to the inverter where the switching states and time spent in each state are 

controlled by the dsp. The inverter provides the motor with adjusted waveforms that 

correct for torque and flux errors. The following provides a general discussion of the 

voltage source inverter based on a review of References (9) - (12). 

The Voltage Source Inverter (VSI) is powered fiom a stif€, low impedance dc 

voltage source (Le., battery or rectifier with a LC smoothing filter). The inverter is 

an adjustable fiequency-voltage source where V, is independent of I L .  For three 

phase inverters, the output voltage does not depend on the load. To minimize the 

inverter starting current rating the controller must restrict motor operation at low 

slip frequency allowing stable operation at a high power factor with a high torque to 

stator amp ratio. Voltage source inverters are normally used with big drives with low 

switching fiequency. 

s 



However, this method is acceptable for small or medium drives as well. With an 

extremely high switching fiequency, approaching infinity, a filter is often used for 

both the dc and ac side. The energy stored in the filter is negligible since the 

instantaneous input equals the instantaneous output. A simplistic representation of 

the inverter used for this project is shown in Figure 11.1. 

Figure 11.1 - Voltage Source Inverter 

DC VOLTAGE 

DC to AC inverters are used in ac motor drives where the objective is to produce a 

sinusoidal ac output whose magnitude and fkequency can be controlled. The control 

strategy for an adjustable fiequency induction motor is to ensure operation is 

restricted to regions of high torque per ampere which match the motor and inverter 

ratings and minimizes system losses. 
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There are three general categories of voltage source inverters: 

(1) Pulse Width Modulated Inverters- The dc voltage is kept constant in magnitude. 

The inverter controls the magnitude and fkequency of the ac output voltages. This is 

achieved by Pulse Width Modulation (PWM) of the inverter switches (i.e., sinusoidal 

PWM or space vector modulation which is utilized in this project). As the motor 

speed increases, the modulation strategy can be altered to reduce the number of 

inverter switches per cycle. This aids in minimizing the inverter switching losses. 

(2) Square Wave Inverters- The input dc voltage is controlled in order to control 

the magnitude of the output dc voltage and the inverter, therefore, only controls the 

f?equency of the output voltage. 

(3) Single Phase Inverters with voltage cancellation- The input is constant ac 

voltage. The single phase output controls the magnitude and the frequency of the 

inverter output voltage. This inverter combines the characteristics of both inverters 

above. However, this method does not work with three phase systems and; 

therefore, was not considered for use in this project. 

11. LOSSES ASSOCIATED WITH INVERTER OPERATION 

Harmonic loss factors are mainly copper losses (Pl,,)and can be expressed as 

follows: 

kt 1 



where fi is the per-unit fundamental frequency, X,, is the per unit leakage reactance 

and & (I& the resistance (current) of the motor. 
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Inverter losses are a filnction of commutations per second. 

111. SINUSOIDAL PULSE WIDTH MODULATION (PWM) 

One implementation of P W M  is to take a sinusoidal control signal at the desired 

fiequency and compare it with a triangular waveform. This method was 

implementedmodeled using SIMULINK. The results of this simulation are discussed 

in Chapter 3. The frequency of the triangular waveform establishes the inverter 

switching fiequency, and is generally constant along with the peak value of voltage 

waveform (vt"). The switching frequency, f,, is known as the carrier frequency. The 

sinusoidal hdamental waveform (vcontrol ) is used to modulate the switch duty ratio 

and has fiequency (fi ) which is the desired hdamental fiequency of the inverter. 

The fiequency modulation index is defined as m r  f, / fi . The modulation index is 

varied with fiequency to control the volts per hertz ratio in the constant torque 

range. In a six step VSI, the maximum output voltage occurs when the fiont end 

thyristor rectifier circuit is phased hlly on and the dc link voltage is at the maximum 

voltage for that application. Figure 11.2 shows the relationship between the carrier 

wave and the control (reference) waveform. 
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Figure 11.2- Relationship of Carrier and Reference Waveforms 

REFERENCE WAVE 

The amplitude of the fundamental fiequency component of the output voltage varies 

linearly with the modulation ratio, defined as m,= vcontrol / v,, . This is true as long as 

m, is less than or equal to one. The linear range of operation is possible when m, is 

a value fiom 0- 1 .  Harmonics of the inverter output voltage waveform appear as 

sidebands centered around the switching fiequency mf. 2mf, 3mf. When mf is greater 

than or equal to 9, harmonic amplitudes are independent of mf even though the value 

of mf defines the fiequency at which they will occur. 

Because of the relative ease of filtering harmonic voltages at high frequencies, it is 

desirable to use as high a switching frequency as possible. However, it should be 

noted that switching losses in the inverter switches will increase proportionally with 

the switching fiequency. 

Synchronous PWM means that the fiequency modulation index is an integer. 

Therefore, for asynchronous PWM, mf is a fractional number. 
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The induction motor voltage waveforms are determined by the impedance presented 

to the fundamental and harmonic components of the inverter output current. 

IV. SPACE VECTOR MODULATION (SVM) 

For this project, the PWM technique used is space vector modulation. The switching 

instants are derived ftom the voltage space vector. Phase voltages are represented in 

the alpha beta reference frame. The alpha-beta components are derived by the Park 

Transform, where total power and impedance remain unchanged. The mean space 

vector remains unchanged during the switching period. There are eight states in the 

space vector modulation technique. These states correspond to the eight switching 

positions of the inverter. The space vector control provides on the average 15% 

better utilization of the dc bus voltage, and 33% reduction in inverter switching 

frequency as compared to a conventional sinusoidal PWM technique. The harmonic 

content of the inverter output voltages and currents is less for the space vector 

modulation technique than for its sinusoidal counterpart. Consequently, the 

harmonic content of current and torque pulsations are significantly reduced. 
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The opthum pulse width modulation is achievable ifthe following conditions are 

met: 

0 

3 

I 

B 
(1) The maximum deviation of the current vector for several switching states 

becomes as small as possible. 

The deviation current vector within one switching state is defined as 

Az = pi. I -V)dt 

- 
V= mean space vector, which is constant during each switching period; 

t l  is the beginning of the switching state; and t2 is the end of the switching state. 

(2) the cycle time is as short as possible. 

The above conditions are met when the following statements are true: 

(1) only the three switching states adjacent to the reference vector are used and 

(2) a cycle wherein the average voltage vector is equivalent to the reference vector 

which consists of three successive switching states. 

The space vector modulation technique switches the three inverter legs on and off 

once per switchg cycle; thus, generating three independent waveforms. With the 

insulated neutral, the motor only senses line to line voltages, and is insensitive to the 

common mode component of the line to neutral voltage. 
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Figure 11.3-Line-Line Phase Relationship 

LINE-LINE VOLTAGE 

PHASE 
VOLTAGE 

The vectors are all of the same magnitude. For space vector modulation, the line to 

neutral voltage is not sinusoidal; but the line to line voltage as seen by the machine is 

sinusoidal, as shown in Figure 11.3 above. 

The line to neutral voltage can, therefore, be varied without consequence to the load 

side. This allows one degree of fieedom. If the signal is high ( “1” ) the top switch 

is closed, else the signal is low ( “0” ) and the bottom switch is closed. With all 

upper switches of the inverter closed [ 1 1 11 the output of the inverter is connected 

to the (+) dc rail. With all lower switches closed [0 0 01 the output of the inverter is 

connected to the (-) dc rail. Figure 11.4 illustrates States 1-7. 
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Figure 11.4 -Inverter States 
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The eight possible inverter states are defined as shown in Table 11.1. 

Table 11.1 - Inverter States 

STATE 

0 

1 

2 

3 

4 

5 

6 

7 

Phase A 

0 

1 

1 

0 

0 

0 

1 

1 

Phase B 

0 

0 

1 

1 

1 

0 

0 

1 

Phase C 

0 

0 

0 

0 

1 

1 

1 

1 

The stator voltage vector takes on one of seven values depending on the switching 

state “k” of the inverter. 

Vsk= 213 Vdc e j(k- 1 )2pi/3 when k=1,2, ... 6 

Q 

3 

Vsk=0 when k=0,7 
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The space vector diagram is shown in Figure 11.5. 

Figure 11.5- Space Vector Diagram 

v, 011 

vs 

4 

001 

V6 101 

The reference voltage is realized in an average sense by computing the duty ratio 

(ftaction of the switching period) for two voltage vectors V,k and Vgk+l) which are 

the vectors adjacent to V,. .The amount of time at each state is defined as follows; 

V,TS = (Vsk Tk) + (Vs(k+l) T(k+l)) 

Ts= TO + Tk + T(k+l) 

TO = time spent at the zero state 

Tk = time spent on Vsk 
IVred sin(60 - y )  n=- Ts 
Vdc sin60 

vq 
y = Tan-' - 

Vd 
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lvrefl siny 

Vdc sin60 
T(k+ 1) = -- Ts T(k+l) = time spent on V+-+I) 

Ts = halfthe actual switching fiequency 

In order to switch fiom the zero state to two adjacent states, each inverter leg is 

commutated once during each half of the switching fiequency. This allows control of 

torque and flux twice during each switching cycle. Figure III. 1 shows the various 

states and associated times in each case. 

The goal for the space vector modulation technique is to minimize the deviation of 

stator current fiom its fundamental component each switching period. This 

optimization can be accomplished by forming the appropriate output voltage 

waveforms and thereby finding the optimal switching pattern. Additionally the cycle 

time should be as short as possible. The minimum time for the switching interval is to 

which equates to the maximum switching fiequency as; to - = l/& max . Each inverter 

switch has an associated dead time. Inverter dead time is deked as the delay 

between switching off and turning on of power devices in the same inverter leg. The 

deadtime will be considered negligible for the purposes of modeling and; therefore, 
, 

will not be incorporated into the models discussed in Chapter 3. 
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V. COMPARISON OF SINUSOIDAL PWM AND SPACE VECTOR 

MODULATION 
8 
E 
m 

The major difference between sinusoidal PWM and the space vector modulation 

technique is the reference waveform. The result of this difference is the maximum 

output voltage that can be obtained by the sinusoidal PWM as compared to the 

space vector modulation. The utilization of the dc bus voltage for the space vector 

modulation, as stated previously, is approximately 15% more than the sinusoidal 

PWM technique. The maximum modulation for the space vector method vector is 

2 A 
as compared to the sinusoidal pulse width modulation of Mmax=- 

M m x = x  2 

which equates to the 15% increase in the maximum modulation index. The 

modulation index is the ratio of the reference voltage wave amplitude to the carrier 

voltage wave amplitude. The magnitude of “M” determines the notch width in the 

modulated pole voltage waveform and; therefore, controls the fundamental output 

voltage of the inverter. 

When the Modulation Index is greater than 1, over-modulation takes place and pulse 

dropping results. Pulse dropping is caused by the fact that some of the intersections 

between the reference and carrier waveforms are avoided due to the reference 

amplitude exceeding the carrier amplitude when the Modulation Index is greater 

than 1. The pulse is then dropped. A major disadvantage to this is that the lower 

order harmonics reappear in the output voltage waveform. An example of pulse 

dropping is shown in Figure 11.6. 
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Figure 11.6 Pulse Dropping 
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The amplitude of the maximum voltage hdamental reaches approximately 90% of 

the respective square wave fimdamental. The space vector representation has the 

advantage of lower current harmonics and a higher modulation index as compared to 

the three phase sinusoidal modulation method. Additionally, the space vector 

modulation technique can achieve the minimum stator current distortion as well as 

an increased fundamental voltage capability compared with the sinusoidal PWM 

inverters. 
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Chapter 3- M4 TLAB/sIMuLIhK Sirnucations 

I. BACKGROUND 

The objective of this project was to simulate a control system to provide direct 

control of both flux and torque of an ac induction motor based on information 

contained in References (l), (13) - (15). The inverter duty cycle (three phase inverter 

switching pattern) is calculated twice each switching period based on torque and flux 

errors as well as the transient reactance (back electromotive force (emf)) of the 

induction motor. The desired voltage space vector is determined by using the space 

vector modulation technique, as was discussed in Chapter (2). This results in the 

inverter being switched in a deadbeat or hysteresis type manner and is based on the 

torque and flux instantaneous errors in the machine during that switching period. 

The switching period (T,) is held constant (500 microseconds) throughout the 

simulation runs. With the implementation of the stator flux field orientation method 

(discussed in Chapter l), no speed feedback of the motor is required to control the 

torque of the motor. 

In the past, Proportional Integral (PI) regulators were commonly used because of 

easy tuning and zero steady state errors. Controller output is amplitude limited to 

limit any excursions. PI regulators were used to generate a dq voltage reference 

based on the input of torque and flux errors. From this, the voltage space vector 

PWM controlled the inverter. The disadvantage of using the PI regulator is that the 
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transient response of the control system is limited by the PI regulator. This project 

eliminates the use of the PI regulator by calculating a voltage space vector, which 
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then provides direct control of torque and flux in a dead beat manner. The 

advantage of this method is that transient performance is improved. 

The advantages of torque control in the above discussed m e r ,  includes the 

elimination of load dependent controller parameters, greater transient response as 

discussed above, and reduction of over current trips for a given application. 

The first step of this controller is to sample the stator current and voltage, perform 

an analog to a digital signal conversion and transform the three phases to two 

phases. This provides the current and voltage in a stationary two phase dq reference 

fiame which is used with the stator flux field orientation method. In order to 

calculate the stator flux vector, the stator resistance must also be known. The stator 

flux vector is also determined in the dq reference fiame. 

The expected change in torque during a given switching period is determined fiom 

the stator voltage, current and the transient reactance voltage. The change in flux 

for a given period is based on the stator current and voltage. 
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The dq voltage vector required for deadbeat control of the flux and torque is then 

determined. Once the voltage vector is known, the inverter states are established 

based on the space vector modulation technique. The amount of time in each state is 

calculated. If the amount of time in any one of the various states is negative, a 

transient condition exists and is resolved as discussed below. Otherwise, the inverter 

states are switched in sequence for the required time in order to control the motor in 

a deadbeat manner. Each phase must change state once during the period “Ts/2”. An 

example of a non-transient (steady state) case would be as follows: 

Figure 111.1 Example of Steady State Three Phase Cycle 

I phase a 

phase b 1 

0 

phase c 1 .  I 

When a transient condition (the value of Tk,Tkl and/or To is negative) exists in 

which the torque or flux error is greater than the allowable error, than an alternate 

method is used. This alternate method is described in the flow chart shown in Figure 

111.2. 
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Transient conditions are determined as: 

(1) The switching times Tk and Tkl are determined , initially assuming a steady state 

(non-transient) condition. If the solution is negative, a torque transient is assumed 

(most fiequently occurring cause of transient) and the process requires performance 

of Step (2) below. A negative time indicates that the voltage space vector calculated 

is too large to be synthesized in a single switching period. The objective then 

becomes to drive the torque toward its reference value while not impacting the dead 

beat control of flux. If however, the solution results in positive times Tk, Tkl and 

To, then a steady state condition is present for the switching period; and both torque 

and flux can be driven to their reference values in a controlled deadbeat manner. 

(2) The inverter states are determined for a transient torque condition and the times 

Tk and Tkl are calculated based on the inverter states found in Table III.la If the 

solution is positive then the torque transient condition is correct, else, a flux 

transient is assumed and Step (3) is performed. In order to determine the applicable 

vector state from Table III.1 .a, the angle of the flux vector [Tan-’ (AqlAa )] must be 

known, fiom which the variable “n” is determined and applied. 

(3)The inverter states are determined for a transient flux condition and the times Tk 

and Tkl are calculated based on the inverter states found in Table III. 1 b. If the 
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solution is positive then the flux transient condition is correct, else a torque and flux 

transient condition exists and the guidelines of Step (4) apply. 

(4) The inverter state for a torque and flux transient is determined fiom Table 111.1 e. 

A single state is selected for the entire period which will tend to drive the torque and 

flux in the desired direction as quickly as possible. 

It is important to note that for all the transient cases (Steps 2-4), the zero state To 

is not used. This is because the torque and/or flux must be driven in one direction as 

quickly as possible and; therefore, the use of zero states is eliminated. 

The selection of inverter states K and K+1 under transient conditions is determined 

as follows: 

(2n-3)pi/6 < Flux Angle [ A ]  < (2n-l)pi/6 

T*= Reference or desired Torque 

F*= Reference or desired Flux 
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Signof (T-T*) 

Negative 

Positive 

Table 111.1 a -Torque Transient 

K 

n+ 1 

n+4 

K+l 

n+2 

n+5 

Table 111.1 b- Flux Transient 

Sign of (absm - F*) K K+l 

Negative n n+ 1 

Positive n+2 n+3 

Table 111.1 c-Torque and Flux Transient 

Sign of (T-T*) Sign of (abs(F) - F*) K 

Negative Negative n+ 1 

Negative Positive n+2 

Positive Negative n+4 

Positive Positive n+5 

The inverter states for the above transient condition are then expressed as: 

Inverter State= k K<6 

k-6 K>6 

The flow chart for determining space vector states and associated 

inverter state times is shown in Figure 111.2 
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Figure 111.2- Flow Chart For Control Scheme 
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Use Table 111. IC 

I '  , Output switching states with corresponding switching times to Inverter 
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To better understand what occurs during a transient condition, consider the 

following: If during a transient torque condition (see Figure 111.3), there exists a flux 

vector angle of twenty degrees and a stator current vector angle of eighty degrees, 

then the following is true. Stator voltage vectors 2 and 3 (see Figure 11.5) cause the 

stator current vector and; therefore, torque to increase. Likewise, stator voltage 

vectors 5 and 6 would cause the torque to decrease. In the case of flux control, 

states 2 and 6 would cause the flux to increase and states 3 and 5 would cause the 

flux to decrease. Based on this, states 2 and 3 would be used to drive the flux to its 

reference value while increasing torque toward its reference value. Table 111.2 

provides a summary of the above. A similar scenario exists during a flux transient 

condition. 

Figure 111.3- Torque Transient Case 
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Table 111.2 Example of States Used for Transient Torque Condition 

STATES 2 3 5 6 Result 

Torque Increases Increases Decreases Decreases Increases 

Flux Increases Decreases Decreases Increases No Effect 

11. GENERAL 

As discussed above, the objective of this portion of the project was to simulate the 

direct torque control system for an induction motor. The tool that was utilized is 

SIMULINK which is a program used to simulate dynamic systems. SIMULINK is 

an extension of MATLAB. The two phases involved in creating a working model 

consist of 

(1)  A Model Defjnition and 

(2) A Model Analysis 

Model definition involves the composition of each building block . For example, the 

induction motor is represented as a simple subsystem block (see Figure 111.4) with 

input and output ports. This is created fiom individual blocks as shown in Figure 

r11.5. 



Figure 111.4- Induction Motor-Subsystem Block Diagram 

Induction Motor 

-Torque 

Figure 111.5- Induction Motor-Individual Block Diagram Derived fiom Subsystem 

Block 

The model analysis allows the operator to observe the dynamic response of the 

system. The progress of a simulation can be viewed while the simulation is running 

(ie., using the scope for viewing) and the final results can be viewed using 
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MATLAB “plots” at the completion of the simulation. The operator has the ability 

to define the following parameters prior to initiating the simulation: 

(1) Start Time 

(2) Stop Time 

(3) Minimum/Maximum Step Size 

(4) Tolerances 

(5) Method used for analysis (i.e., Euler, Runge-Kutta, Gear, etc.) 

The final model for this project was developed by evaluating less complex models 

and applying lessons learned to the final model. 

(1)  MODEL I - Modeled direct torque control of induction motor using the 

MATLAB program only. This allowed a prehmary check of the algorithms that 

were to be used in the SIMULINK model (see Appendix A.2). Sample plots were 

generated to ensure that expected results were achieved. 

D 

3 

It 

B 

(2) MODEL I1 - Model of Induction Motor using simple transfer function with three 

phase sinusoidal input. 
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(3) MODEL III - Complex model of the induction motor based on the information 

provided by Reference (16) as shown in Figures 111.4 and 111.5. 

(4) MODEL IV - Modeled sinusoidal pulse width modulation switching scheme as 

input to the Induction Motor (Model I11 above). 

(5 )  MODEL V - Modeled Space Vector Modulation switching scheme as input to 

inverter to control the induction motor (Model (111) above). 

The above models are discussed in greater detail in the following sections of this 

Chapter. The purpose of modeling the above was to identirjl as many “bugs” as 

possible prior to implementation of the control system using Digital Signal 

Processing (DSP) hardware detailed in Chapter 4. 

The Time Domain technique is used since all time harmonics are automatically 

incorporated in the description waveforms (i.e., exact solutions of current and 

flux).This method requires less computing time than the harmonic analysis (Fourier 

Analysis) method. 



M y t i c a l  solutions to hear differential equations are used. Linearity is assumed 

due to the following assumptions: (1) constant rotor speed in the 2-axis voltage 

equations formulated in the appropriate reference kune and (2) effects of saturation 

are neglected. 

1 

The advantages of digital simulation versus analog simulation include: 

(1) changes in software are easier, (2) parameters can easily be modified, 

(3) quicker response for obtaining solutions, and (4) the simulation can be speed 

dependent. 

1II.MODELS 

(a) MODEL I - M T U B  MODEL 

The MATLAB model of a direct torque controlled system is found in Appendix A.2. 

This model contains the algorithms necessary to calculate the desired voltage space 

vector states and the switchiug times associated with those states. This provided a 

basis for creating the SIMULINK block diagram (Model V). 

(b) MODEL 11 - TRANSFER FUNCTION MODEL OF INDUCTION MOTOR 

The original induction motor was modeled fiom the parameters provided in 

Reference (l).The equivalent single phase representation of the induction motor is as 

shown in Figure III.6. 
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Figure 111.6-Induction Motor-Single Phase Representation 

The Observer Canonical form of this model is shown in Figure 111.7. 

Figure 111.7- Induction Motor-Observer Canonical Form 

-a l/a 



3 
D 

The transfer hc t ion  for the induction motor can be represented using the 3 

following equations: 

H(s)= Vom/ Vi, = [s2 (b) + s(bl)] / [s2(a) + s(al) + a21 

where the parameters, per Reference (l), are defined as: 

L I =2.72 rnH=Ls = Stator Inductance 

L ~ 8 4 . 3 3  ~ H = L M  = Magnetizing Inductance 

L ~ 3 . 3  mH=LR = Rotor Inductance 

R1 =.371 ohms=R~ =Stator Resistance 

R2=.415 ohms=&= Rotor Resistance 

H(s)= [s2 (2.783e-04) + s(0.03499)]/[s2(5.16e-04) +s(0.0686) + (0.154)] 

X 

a 
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A more realistic representation (as demonstrated using the SIMULINK tool) of this 

system can be shown by evaluating the output current vice output voltage. 

I* = I2 + I3 = ljn= 12 + Io, 

H(s)= L2 s / [s’(LIL, + L2L3)+ s( RlLj +RzLI +L2R2) +RzRI 3 

The resulting transfer function using the above values results in: 

H(s)= 84.33 e-03/ [s2 (2.873 e-04) + ~(.0373) + .1539] =IoutNin 



Use 01 Sinusoidal PWM wlth TrsrNler Fundlonr voutlvlnl and llouWinl 
to almulale the load. Vlew ol Torquekssponse 

Figure 111.8 Transfer Function Model of Three Phase Induction Motor 
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Figure 111.8 represents the SIMULINK Block diagram of the Transfer Function 

Model of the three phase induction motor. Figure 111.9 shows the output torque's 

behavior, fiom the Figure 111.8 model, cycles around a steady state point of zero, 

representing a no load condition. The model provides an initial attempt at modeling 

an induction motor. For transient cases, the results of this model are limited. A more 

detailed model as described later in this chapter provides a better representation of 

an induction motor. 

Figure 111.9 Torque Based on Transfer Functions 

Torque wlTransier Function 
50, I 
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(c) MODEL 111- DETAILED MODEL OF INDUCTION MOTOR 

A more complex induction motor model was added replacing the transfer hc t ion  

used in 1II.b above. 

The parameters of the induction motor used in the SIMULINK program are 

specified as: 

Rsm=.007565 [Stator Magnetizing Resistance] 

Rrm=.00596 [Rotor Magnetizing Resistance] 

Lhm4.559e-03 [Magnetizing Inductance of the Motor] 

IsIm=. 11 87e-03 [Stator Magnetizing Current] 

LrIm=. 1692e-03 [Rotor Magnetizing Inductance] 

ppairs=3 

Lsm=(Lhm)(IsIm) [Stator Inductance] Lrm=(Lhm)(LrIm) [Rotor Inductance] 

Det=(Lrm)(Lsm)-Lhm2 Mm=3 (pP&s)/2 

MI 1 =Lrm/Det MI2=Lsm/Det MI3=-Lhm/Det 

RSMI 1 =(-Rsm)(MI 1) RSMI2=(-Rsm)(MI2) RSMI3=( -I?.SIII)(MI~) 

RRMI 1 =(-Rrm)(MI 1) RRMr2=(-Rrm)(MI2) RRMl3 =(-Rsm)(MI3) 
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From the above parameters a state space model as shown below can be created: 

STATE SPACE MODEL 

?=AX+BU 

Y=CX + DU 

where A,B,C and D are defined as: 

- 
RSMI3 0 1 r-26.75 0 25.796 0 1 ' ' 0 -26.75 0 25.796 1 i Rs:l RSMIl 0 RSMI3 

20.85 0 I 1 RRMI3 0 R M I 2  0 1 I 20.32 0 
1 0 RRMI3 0 RRMI21 1 0 20.32 0 20.85 1 

I 
0 

I= I * = I  

r l  o o 01 
J O  1 0 01 

I O  0 -1 01 
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C= 

1 0 0 0 1  

0 1 0 0 1  

O 1  

O 1  

0 0 1 
0 0 0  

MI1 0 MI3 

0 MI1 0 M13 

MI3 0 M12 0 

- 0 M13 0 MI2 i 

r 1  0 0 0 

I 
I O  

c= I 

‘ 0  1 0 0 

I o  0 0 1 
0 1 0 

0 -3409.87 0 I 3536.42 

I o  3 536.42 0 -3409.8; 
I 

0 3498.65 0 

-3409.87 0 3498.65 

j o  o o o i  
10 0 0 01 

D= I 1 
10 0 0 01 
10 0 0 01 
I I 
~ 0 0 0 0  
l o  O O O] 



Proof of the State Space Equations can be derived as: 

r Vd 1 

Rs Ls Lr 

4 
60 C 

P 
0 

Per the state space equations we know that: 

x 
8 



and fiom Reference (1 7) we know that: 

Adqs= Ls hqs -i- LM hqd 

therefore, 

idqr = Adqr  /Lr - LM bq&r 

From definitions provided above we know that 

M13= -Lhm/(Lhm+IsIm) (Lhm +LrIm) -Lhm2 = -LM/ ( L L  - LM’) 

M12=Lsm/DET=Lhm+IsIm/Lrm*Lsm-Lhm2 = 1 / (L,( 1 -LM2/LrLS))=l /[Lr-Lm2ks] 
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P 

B C 
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O 
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I 

3 



given that, 

LM=Lhm Ls=Lhm + IsIm 

n.4 = Fsd = (RSMIl)(Fsd) + RSMI3(Frd) + Vd 

LR=Lhm +LrIm 

i,= Fsq = (RSMI1)O;sq) + RSMI3(Frq) + Vq 

a 

&= Frd = (RRMI3)(Fsd) + RRMI2(Frd) -WmFrd 

i, = Frq = (RRMI3)(Fsq) + RRMI2(Frq) +Vd +WmFrq 

Stator flw is determined by using the following equation 

therefore, 

l=J (V, - I&); 

dA= V, -I& 

F k =  Vd + (RSMIl)(Fsd) +(RSMI3)(Frd) 

- [(RSMIl)(Fsd) +RSMI3(Frd)]=Ids Rs 

Fiq= Vq + (RSMLl)(Fsq) + RSML3(Frq) 

- [(RSMLl)(Fsq) + RSML3(Frq)]= Iqs Rs 



The inputs to the induction motor model are identified as Vd , V, and rotor speed. 

The dq transformed voltages are derived fiom phase voltages Va , Vb and V, as: 

v,=v, and Vd=(Vb-Vc)/& = (Va+2Vb)/&. AS stated previously in Chapter (11, 

~ 
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transformation f?om a coupled three phase system into a decoupled dq frame (similar 

to a dc machine) simplifies control of the system since the complex interactions of a 

three phase system no longer apply. The output of the induction motor is then 

transformed back to a three phase complex system ((2/3) transformation). 

From the above state space equations, the torque can be determined using the 

following equation which is contained within the sub-block induction motor model 

(labeled as output 8 on Figure 111.5). 

The speed of the rotor was varied &om 0 to 1.2 per unit. As was shown in Figure 

1.6, previously, when the speed of the rotor is in the range of 0 -1, torque continually 

increases until breakdown torque is reached. After breakdown torque is reached, 

torque rapidly decreases until the speed reaches 1. This region (0-1) is known as the 

motoring region of operation. Once the speed increases above 1, a negative torque 

results. This is known as the regeneration region. The results of speed adjustment 

and its effect on torque are illustrated in Figure 111.10. 
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Figure 111.10 Speed (Slip) Adjustments- Effect on Torque Response (Sheet 1 of 2) 
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Figure 111.10 Speed (Slip) Adjustments- Effect on Torque Response (Sheet 2 of 2) 
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(4 MODEL IV - SINUSOIDAL PULSE WIDTH MODULATION 

Figure 111.1 1 represents the block diagram of this model. The same induction motor 

model that was used in 1II.c above is used for this model. The signal generator 

provided the carrier wave (triangular wave) which determines the switching 

frequency. Sina, sinb and sinc provide the control waveform for phases a, b and c, 

respectively; and represent the desired fundamental or modulating frequency (60 

Hertz). As the switching frequency is increased (varied fi-om 15x -33x the 

funkenta l  frequency) , the filtering of harmonics becomes easier but results in 

more switching losses. This project did not focus on determining the magnitude of 

these switching losses. The amplitude of Vtri was maintained greater than Vcontrol , 

thereby maintaining the modulation index less than one. This eliminates over- 

modulation or pulse dropping. However, it should be noted that over-modulation is 

commonly used with induction motors. 

The advantage of over-modulation is that the maximum possible value of the 

fundamental voltage will be obtained. The disadvantage of dropping pulses is that . 

low order harmonics will be apparent in the output voltage waveform. The addition 

of filters eliminates the concern for low order harmonics in the output voltage 

waveform. 



The fkequency modulation index, Mf, (as discussed in Chapter 2) was varied as 

stated above. Based on the fact that synchronous P W M  was used in this model, an 

odd integer value was chosen for Mf (i.e., 15,21, 33). The control and carrier 

waveforms are shown in Figure 111.12. Note that the carrier wave peak value varies 

fkom approximately 7.8 to 9.8. In reality the carrier wave was observed to have an 

amplitude of 10.0. It was noted that as the i?equency of the carrier wave was 

increased (Le. fiom 15x-33x the fundamental fiequency) the more distorted the wave 

became. This could not be adjusted and appears to be a hc t ion  of the SIMULINK 

program. Therefore, the maximum fiequency used for the carrier wave was 

7916.8135 radskec or 21x the fundamental fkequency (376.99 radshec). The 

amplitude of the fundamental waveforms (phases a, b and c) was set at 6.  

.8 
'L 
m m 
1 

8 

Figure 111.1 1 - Sinusoidal Pulse Width Modulated SIMLTLINK Model 
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Figure 111.12- Carrier and Control Waveforms for Sinusoidal P W  
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The three phase input sinusoidal waveforms are 120 degrees apart from one another. 

This was previously identified in Chapter (1) as one of the requirements for 

transformation into the dq reference fiame. 

The result of this sinusoidal switching scheme for phases a, b and c is shown in 

Figure 111.13 respectively. Transfer functions 1 1, 12 and 13 represented output 

filters. The addition of filters provided minimal effect on the simulated output and 

were subsequently deleted for the SIMULINK model only. Outputs VaVb, VaVc 

and VbVc provide the line-line voltages (see Figure 111.14). The line-line voltage 

provides a sinusoidal type response. The torque and flux response (Figure 111.15) 

shows initial settling time is required (approximately 200 msec) for the torque until a 

steady state band results ( in this case approximately -700 ft-lbs). 
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Figure 111.13 Sinusoidal PWM Output VoltageKhrrent Waveforms 
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Figure 111.14- Sinusoidal PWM Line-Line Output Voltage Waveforms 
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Figure 111.15- Torque and Flux Response with Sinusoidal PWM 
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(e) MODEL V - SPACE VECTOR MODULATIONSWITCHING SCHEME 

The objective of this model is to calculate the voltage space vector twice each 

switching period. The switching period remains fixed during the entire analysis. The 

flux (dq), current (dq) and torque output of the motor are used in several algorithms 

as shown in Appendix B. Once the voltage space vector and associated switching 

times are calculated, the a, b and c phase states (0 or 1) are known and fed back to 

the inverter switches to control torque and flux. 

Based on Reference (l), a Block Diagram was created as shown in Figure 111.16: 

The SIMULINK model of the Direct Stator Flux Field Orientation Controller as 

represented in Figure 111.17 was constructed based on this Block Diagram. The 

individual sub-blocks as labeled in Figure 111.17 are found in Appendix B. 

Initially, for a fixed period of time the simulation is run by feeding a sinusoidal PWM 

signal into the induction motor (this is model IV). This allows the induction motor 

to reach a steady state condition. The time should be long enough to have torque 

reach a steady state condition (for this case approximately 150 msec). 
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The SIMULINK Technical Manual discusses the use of algebraic loops and states: 

“Algebraic or implicit loops occur when two or more blocks with direct feed 

through of their inputs form a feedback loop. When this occurs, SIMULINK must 

perform iterations at each step to determine whether there is a solution to this 

problem. Algebraic loops considerable reduce the speed of a simulation and may be 

unsolvable . . . ” 

Initially, there was some dif€iculty with the model based on the large number of 

algebraic loops created in the model. In order to effectively break these loops, a 

delay time of one cycle and a zero order hold was added to several parameters. This 

results in calculating voltage space vectors and associated times in one cycle and 

applying them to the inverter during the next cycle, as would be the case for the 

actual implementation of this control scheme. Due to the large number of algorithms 

that are exercised each cycle, the simulation run itself takes a long period of time to 

complete @e., approximately sixty minutes for a 400 rnsec run). This problem will 

not exist when implemented on the DSP 21020, since one of the major advantages 

of the DSP is the speed at which it can compute values to feed back to the inverter. 

Two hundred rnsec after the simulation commenced, the inverter was switched to the 

space vector modulation scheme. As results indicate, the torque levels off very 

quickly, to the new desired level. 



BLOCK DIAGRAM - SPACE VECTOR MODULATION PROJECT 
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Figure 111.16 Block Diagram of Direct Stator Flux Field Orientation Controlled 

Induction Motor (Sheet 12 of 13) 
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Figure 111.16 Block Diagram of Direct Stator Flux Field Orientation Controlled 

Induction Motor (Sheet 13 of 13) 
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IV. RESULTS OF SPACE VECTOR MODULATION SIMULATION RUNS 

a. PARTITIONED MODEL: 

Initially, the model was partitioned into smaller sections in order to test specific 

portions of the model prior to testing the entire model. Specifically, VD and VQ 

were replaced with two sinusoidal waves with a defined phase shift between the two. 

For the results shown below the phase shift between VD and VQ was 60 degrees. 

This provided a cyclic pattern and allowed us to evaluate both the steady state and 

transient conditions. In order to ensure a steady state condition (ie., Tk and Tkl 

must be positive values) the space vector angle " A" must be greater than 0 but less 

than approximately 1. 

For the first 0.25 milliseconds the output is zero. This is based on the one cycle 

delay. For the next seven cycles (0.25-2.0 msec) a transient condition was in place. 

This was followed by three steady state cycles (2.0-2.75 msec). The remaining 

segment of the simuiation (2.75-3.0 msec) resulted in a transient condition. The 

results of this simulation are documented in Figure 111.18. Feedback to the inverter 

for this run (phases a, b and c) is documented in Table 111.3. Each period (Ts/2) 

provided 25 samples or a time span of 0.25 msec. 
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The Space Vector Angle (SVA) for this example varied fiom 0-88 degrees. 

Therefore, when the steady state condition was applicable, states 0, 1 ,2  and 7 were 

used (see Figure 11.5). It should be noted that SVA was varied fkom 0-360 degrees 

during subsequent runs in order to ensure that all potential sequences were observed. 

VD2 and VQ2 represent VD and VQ discussed above with a zero order hold (250 

usec) applied to each parameter. 

Tk,Tkl and To represent the times calculated for the steady state condition. Note 

that for this particular run Tkl was always positive. When Tk andor To was 

negative, a transient condition resulted. 

Comparing Tables 11.1 and 111.2 with the values of SVA (see Figure 111.18, steady 

state only), KS (Torque Transient State), Fks (Flux Transient State) or the Torque 

and Flux Transient case, the results of the partitioned model are as expected. 
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Specifically the following is observed: 

(1) For the steady state cases, States 0 and 7 are used. Each phase changes state 

once during the entire cycle and occurs one phase at a time. 

(2) For the transient cases, States 0 and 7 are not used. For the torque and flux 

transient, one state remains in place for the entire 250 usec. While for the torque or 

flux transient case, two states are used. 

Again with the exception of the torque and flux transient cases, phases are changed 

one at a time. For example, if the last valid state was 0 (000), and States 2 (1 10) and 

3 (01 0) were to be used, then State 3 would be sent first followed by State 2. 

Likewise, if the last valid input was 7 (1 1 l),  then State 2 would be sent to the 

inverter first, followed by State 3. 

'8 
.I 
.ta 
rn 
I 

8 



Figure 111.17 SIMLTLINK Model of Direct Stator Flux Field Orientation Controller 
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Figure 111.18- Results fiom the Partitioned Model (Sheet 2 of 4) 
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Figure 111.18- Results fiom the Partitioned Model (Sheet 3 of 4) 
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Figure III. 18- Results fiom the Partitioned Model (Sheet 4 of 4) 
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Table 111.3-Three Phase Output to Inverter fiom Partitioned Model 

Mode (Time is Simulation) States(0utput of Demw) # of times 

(0-0.25 msec ) 000 x25 

Flux Transient 010 xl 

(0.25-0.5 msec) 01 1 x24 

Steady State 

(2.25-2.5 msec) 

Steady State 

(2.5-2.75 msec) 

Torque & Flux Transient 00 1 

(0.5-2.0 msec) 

Steady State 000 

(2.0-2.25 msec) 100 

110 

1 1 1  

1 1 1  

110 

100 

000 

000 

100 

110 

1 1 1  

00 1 Torque & Flux Transient 

(2.75-3.0 msec) 

x150 (6 Cycles) 

x10 

x4 

x2 

x9 

x7 

xl 

XI 1 

x6 

x4 

x17 

xl 

x3 

x25 

a 

3 

L 

is 
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IS 
-Q 
-0 Note: The Space Vector Angle (SVA) is only valid during the steady state condition, 

since Table In. 1 is used for the transient cases. 

After confirming that the algorithms required to determine both. (1) desired space 

vector states and (2) associated times for either the steady state or transient 

condition, were implemented correctly, the next step was to provide actual feedback 

to the inverter. 

b. SPACE VECTOR MODULATION (SVM) MODEL 

As an interim step, Model V was run with only the sinusoidal pulse width 

modulation scheme. Figure m. 19 provides the torque response of the system for this 

run and is equivalent to the results shown in Figure III.15. 

Model V was then modified to initially start the motor using the sinusoidal pulse 

width modulation for approximately 2.0 x 10 -’ seconds. Once the motor was 

running in a steady state condition, the modulation scheme was switched to SVM as 

evidenced by the step change shown in Figure 111.20. 
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However, once the system is switched to the SVM scheme, the torque value does 

not reflect the desired torque value and attempts to adjust the torque reference value 

were not successfbl. The system was in a locked condition. Discussions with 

SIMULINK's technical assistance personnel confirmed that based on the magnitude 

of algorithms contained in the model and the large number of internal loops, 

SIMULINK is unable to handle this condition and results in a locked state. Attempts 

to use zero order holds to effectively break the internal loops were unsuccessfbl. 

Although direct torque and flux control could not be demonstrated with this model, 

the actual control portion (sampling of stator current and voltage, calculating a 

space vector, determining steady state or transient state vectors, and observing the 

output states along with the state times) operated satisfactorily as was demonstrated 

with the partitioned model. 

The next phase of this project (Chapter 4) focuses on the control portion of the 

model as described above. Given the results of the SIIvKJL,INK models, comparisons 

can easily be made with the results of the digital signal processor (dsp) and in fact 

several layers of complexity were added to the implementation of the dsp control 

system (i.e., implementation of interrupt handlers, optimization of code- which 

results in reducing cycle times, use of timers, etc.). 
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Figure 111.19- Torque Response Using Sinusoidal P W M  (Model V) 
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Chapter 4- ADSP (Analog Digital Signal Processor) 21020: Implementation of the 

S W  Technique 
-8 
2 m 

0 

t 

I. Introduction 

The digital signal processor used for this project was the Analog Device (AD) Model 

2 1 020KG- 133. Reference (1  8) provides a description of the processor, operating 

instructions, troubleshooting guidance, example programming, etc. The 21020 is a 

floating point processor. This processor has a 30 ns instruction cycle time or a 33.3 Mhz 

instruction rate. The ADSP package is a 223 lead ceramic pin grid array and is 

rated for ambient conditions in the range of OC to 70C. This processor is mounted on an 

ADSP 2 1020 board known as the EZ-LAB evaluation board. EZ-LAB includes on board 

memory (RAM). Pushbuttons and indicator lights are connected directly to the processor. 

The 2 1020 has two modes of operation. The first is an in-circuit emulator known as EZ- 

ICE. Although not used for this project, the EZ-ICE is a valuable tool since its function is 

to control EZ-LAB while on line. EZ-ICE allows stopping/starting a program in process, 

altering registers and memory, and conducting other debug operations. The EZ-ICE 

disconnects the path that would normally exist between the controller (ADSP 2 1 1 1) and 

the ADSP 21020. EZ-LAB also contains stereo audio ports. However this function was 

not needed for the development of this project. The other mode, which was used in this 

project, controls the board from a PC connected via a RS-232 link. This mode has the 
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capability to download and upload programs, and reset and initiate execution, all of which 3 
9 
rn m 

is 
is driven from the PC. 

* 

Based on the results of modeling this system in SIMULINK (see Chapter 3 for details), a 

program was written in ANSI C (Appendix C. 1). The objective of this program was to 

calculate the appropriate vector states and associated times that are then fed back to the 

inverter to directly control torque and flux of an induction motor. This program was 

designed to mimic the SIMULINK block diagram documented in Chapter 3. The inputs 

are the simulated values of VD,VQ, Fds, and Fqs. For the actual application, the stator 

voltage (Va,Vb, Vc) would be sampled and fed through an A/D converter at the 

beginning of each switching period. From the phase voltage values the voltage vector 

(VD and VQ) are determined using a simple algorithm. The stator flux (Fds and Fqs) 

would then be calculated via hardware vice software. The assumption is that analog 

hardware would be used for the analog integration of stator flux since this is easily 

achieved using hardware and relieves the additional burden on the processor. 

11. ADSP 21020 Architecture 

Figure IV. 1 provides an overview of the EZ-LAB evaluation board and its components. 

The ADSP 21 11 microcomputer controls the ADSP 21020 through the JTAG access port. 
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Contro ller 

4 8 

The hc t ions  of the ADSP 21 1 1 are to: 

(1) Transfer data between the 21020 and the AD1 849 SOUNDPORT (not used in this 

project). 

(2) Handle all host communication including downloading and uploading programs. 

AD 1849 

Soundport 

Figure IV. 1- EZ-LAB Evaluation Board Block Diagram 
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The AD7769 two channel ADDA also interfaces directly with the 21020 through I/O 

ports. There are two ports for input and two for output. 

The ADSP interfaces directly with both the program and data memory chips. The program 

and data memory space is divided into two separate regions. There are two banks for 

program memory and four banks for data memory. Figure IV.2 provides a visual 

representation of these memory locations as used for this project. The architecture file 

(file-ach) is responsible for allocating sections of memory for all fbnctions required for use 

for a given program. Data can be stored in either program or data memory. The 

architecture file is used to map or specifl the location of data. Data stored in the data 

memory bank(s) are designated as “dm”. Likewise, data stored in the program memory 

bank(s) are designated as “pm”. 

The architecture file (jb7.ach) developed for this project was based on the EZ-LAB 

evaluation board, since ultimately the program is downloaded and runs the EZ-LAB 

evaluation board. The jb7.ach file is located in Appendix C.2. The corresponding map file 

is documented in Appendix C.3. 
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Figure IV.2- Program and Data Memory Maps 
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111. OPERATION of ELLAB and PC 

To run the ADSP 21020, the following actions are required: 

(1) Use of the command "lab2lk" connects the EZ-LAB to L e  PC host. The interface 

program starts communicating with the ADSP 21 11, assuming power is available to the 

EZ-LAB. 

(2) The program displays a menu of program options on the PC monitor. These items 

include: 

a. Download to ADSP 21020 memory. This loads a specific program fiom the PC to 

program and data memory on the EZ-LAB board. Downloaded programs are in byte 

stacked format, known as file.stk. 

b. Reset and Run the ADSP 21020. This resets the processor which then allows the 

program to commence execution. 

c .  Upload from the ADSP 21020 memory. This selection results in stopping the ADSP 

21020 and loading a program fi-om either the program or data memory on the EZ-LAB 

board to the PC. 

d. Information related to the software version is displayed. 

e. The h l  choice &om this menu is a return to DOS which leaves the program and 

returns to the normal operating system. 

Various commands and associated switches were used to accomplish tasks such as 

compiling the source code, assembling the code etc. Table IV. 1 provides a summary of the 

commands used for the development of this program. 
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Table IV. 1 - Commands for the 2 1020 and Associated EZ-LAB /PC Interface 

COMMAND 

~~ 

-save-temps 

(switch) 

FUNCTION 

C Compiler for 21020 

produces debuggable code for 

CBUG 

generates map file 

stores the usual "temporary" 

intermediate files 
~~~ 

Optimize code; 

Oxeduce code size & execution 

time 

02:increase in both compile timing 

and the performance of generated 

code. 

Searches the library named samp 

when linking 

Invokes CBUG 

REMARKS 
~ _ _ _ _  

various switches listed 

below provide additional 

fhnctions 

See Appendix C.3 

saves compile, assemble, 

object code files 

Thisswitch is not used 

during CBUG operations. 

Observed negligible results 

for this project with this 

switch, so did not use. 

Used with CBUG 

operations 



COMMAND 

spi2lk 

lab2 1 k 

FUNCTION 

Uses a PROM splitter to create 

byte-stacked tiles (file.stk) 

Interface program between PC and 

EZ-LAB 
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REMARKS 

Needed to create this file in 

order to download to EZ- 

LAB board. Order of listing 

switches in command line is 

very important. Example in 

manual did not work. 

Five options are displayed 

as discussed above in 

Section 111. 

EXAMPLES: 

-To compile source code txt.c for CBUG : g21k txt.c -a txt.ach -0 txt.exe -g -1samp 

-To compile source code txt.c for download to EZ-LAB: g21k txt.c -a txf.ach -0 txt.exe 

-To invoke CBUG: sim2lk -a txt.ach -e txt.exe 

-To create txtstk: spl2lk -pm -dm -ram -f B -a txt.ach txt.exe 

-To interface with EZ-LAB fiom PC: Zub2Ik 
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IV. DEVELOPMENT OF THE PROGRAM 

This program, written in ANSI C, was designed with simulated inputs (VD, VQ, Fds, and 

Fqs). Output phases a, b and c, were presented using the status of indicating lights located 

on the EZ-LAB. VD and VQ represent the quadrants of the stator voltage vector “Vs” 

where VQ lags VD by angle 8. The stator flux (Fds and Fqs) in reality would be 

calculated using hardware vice software. The program was run with all calculated states 

and associated times being stored in an array entitled “RESULT”. In order to be able to 

visually observe the changing status of lights, the switching time was changed fiom 250 

micro-seconds to 9 seconds. Obviously for the real application where feedback is fed to an 

inverter and not to status lights, the cycle time would be approximately 250 micro 

seconds. Twice each switching period the input is processed through the various hnctions 

of the program in order to determine if the condition represents: 

(1) Steady state [STEAD-STATE] -where four states and four associated times are 

calculated and used in the following cycle. 

(2) Torque transient [TORQUE-TRAN] -where two states and two associated times are 

calculated and used in the following cycle. 

(3) Flux transient [FLux_TRANII -where two states and two associated times are 

calculated and used in the following cycle. 

(4) Torque and Flux transient [TORQrn-FLW-TRAN] - where a single state is 

determined and the full cycle is spent in this state. 

8 
L 
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Each row in the array entitled “RESULT” has nine columns. The ninth column (not shown 

below) represents the condition (steady state,torque transient, etc.) that exists for that 

case. Specifically, “1” represents steady state , “2” represents a torque transient, “3” 

represents a flux transient, and “4” represents a torque and flux transient. 

For the remaining columns, the following is true: 
~ 

1- 2- 

STATE 

3- 

TIME 

5- 

TIME* 

6- 

STATE* 

7-TIME* 8- 

STATE 

RESULT 

STEAD_ 

4- 

TIME STATE 

TO1 STI Tk Tkl ST2 TO 1 STF ST1 

ST2 

KT 1 

STATE1 

STEAD- TO 1 STI Tkl Tk TO1 STF ST1 

STATE2 

1 0 Ttkt KT Ttkl t STF 0 

KT 0 1 0 STF Ttkl t 

Tkf 

Ttkt KTl 

FKF 0 1 Tklf STF FKFl 1 

Tklf FKFl Tkf 1 0 1 STF FIG 

9 KTF 0 1 0 1 
~ 

0 STF 
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T-TRAN= Torque transient case (1 or 2 is contingent on the previous last valid state 

(STF)) 

F-TRAN= Flux transient case (1 or 2 is contingent on the previous last valid state (STF)) 

TF-TRAN= Torque and Flux transient case. Since the entire cycle time is spent in the one 

state KTF, the full cycle time (9 seconds) is specified. 

* For torque, flux and torque-flux transient cases, default values are placed in columns 

only to be used as an identifier or place holder. 

Initially, once the RESULT array was fU, a separate function stepped through the array 

using the timer and interrupt handlers to determine when to change states. For 

demonstration purposes, the LEDs on the board were used as: FLAG1 represents phase 

a, FLAG2 represents phase b, and FLAG3 represents phase c feeding back to the inverter 

When the LED is ON for a given phase, the feedback to the inverter for that 

phase would be “1” else ifthe LED is OFF, feedback to the inverter would be “0”. 

Once this was successfully demonstrated, the program was revised to reflect the desired 

control scheme. Specifically, the program must calculate the new state and associated 

state times in parallel with providing an output to the inverter. As was done with the 

original program, the output is represented by the three LEDs changing state to reflect the 

three phases being fed back to the inverter. For the actual application, the EZ-LAB board 

outputs would be provided to the inverter, switching phases (High “1” or Low “0”) 

appropriately to provide the direct control of both torque and flux. This switching would 

8 
E 
m 

t 
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be at a much higher fiequency (in the range of 4000 Hz). The output is based on the 

previous cycle’s calculations. Again the use of interrupts and timing options was utilized 

to accomplish this task. Appendix C. 1 provides the documentation of the program with 

associated comments. For the steady state condition, the status of phases a, b and c 

change four times within the allotted time (9 seconds). In order to accomplish this the 

following interrupts are used: 

(1) timer-isr: This interrupt handler is used for all possible scenarios (steady state, torque 

transient, etc.). For the steady state case, the counter is set using the interrupt handler 

routine to count fiom the value of time TO1 (T0/2) to zero seconds. Once the timer-isr 

routine is complete and prior to the timer reaching zero, the program returns to the main 

“for” loop and the calculations begin using inputs of the next sample. However, it should 

be noted, that at time 0 seconds of the cycle, the first thing to occur is an initial output 

which is provided to the inverter representing values calculated at -Ts seconds or in this 

case -9 seconds. Therefore the actual sampling time for the stator voltage and current will 

occur at time t 1, where t 1 represents the amount of time it takes to service the timer-isr 

interrupt and return to the main program where the stator voltage and current are 

sampled. When the timer reaches zero, the program services the timerl-isr intempt 

routine. 
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The above is also true for the other possible conditions with the following exceptions: For 

the torque transient case and the flux transient case the counter is set for Ttkt (Ttkl t) or 

Tkf(Tklf), respectively, vice T01. For the torque and flux transient case: 

(a) the timer is set for the fidl cycle or 9 seconds and 

(b) the timer-isr interrupt is the only interrupt handler routine used during this cycle. 

(2) timerl-isr: This interrupt handler is only used for the steady state condition, the torque 

transient condition or the flux transient condition. For the steady state case, the counter is 

set using the interrupt handler routine to count fiom the value of time Tk(Tk1) to zero 

seconds. Once the timer1 - isr routine is complete and prior to the timer reaching zero, the 

program returns to the main ‘Tor” loop and if all the calculations have not been completed, 

the program will continue where it exited to handle the timerl-isr routine. If all the 

required calculations have been completed and stored in the array “RESULT” , the 

program will remain in the “idle” condition and wait for the timer to reach 0 seconds. The 

above is also true for the torque transient case or the flux transient case with the exception 

that the counter is set for Ttklt (Tkt) or Tklf (Tkf), respectively, vice Tk (Tkl). 

Once the timerl-isr reaches 0 seconds, the interrupt handler routine timer2 - isr will be 

serviced ifthe condition is steady state. If the condition was either the torque transient or 

flux transient case, the interrupt handler timer-isr will be serviced which marks the 

beginning of the next cycle. 

H c 
‘0 
P 
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(3) timer2-isr: This interrupt handler is only used for the steady state condition. The 

counter is set using the interrupt handler routine to count from the value of time Tkl(Tk) 

to zero seconds. Once the timed-isr routine is complete and prior to the timer reaching 

zero, the program returns to the main “for” loop and ifall the calculations have not been 

completed, the program will continue where it exited to handle the timer2-isr routine. If 

all the required calculations have been completed and stored in the array “RESULT” , the 

program will remain in the “idle” condition and wait for the timer to reach 0 seconds. 

Once the timer2-isr reaches 0 seconds, the interrupt handler routine timer3-isr is serviced. 

(4) timer3-isr: This interrupt handler is only used for the steady state condition. The 

counter is set using the interrupt handler routine to count from the value of time 

TOl(T0/2) to zero seconds. Once the timer3 - isr routine is complete and prior to the timer 

reaching zero, the program returns to the main “for” loop and ifall the calculations have 

not been completed, the program will continue where it exited to handle the timer3-isr 

routine. If all the required calculations have been completed and stored in the array 

“RESULT” , the program will remain in the “idle” condition and wait for the timer to 

reach 0 seconds. Once the timer3 - isr reaches 0 seconds, the interrupt handler routine 

timer-isr is serviced. This rnarks the beginning of the next cycle. 
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The timer command used in the interrupt handler routine is timer-set 

(TPERIOD,TCOUNT). TPERIOD specifies the fiequency of the timer interrupts. The 

number of cycles between timing interrupts is TPERIOD +I or a maximum value of 232 -1 

(4294967295 * 30 nsec=128.8 seconds). TCOUNT is the register 

containing the timer counter. The timer decrements the TCOUNT register each clock 

cycle. When TCOUNT reaches zero, the interrupt is generated. 

On the next clock cycle after TCOUNT reaches zero the timer automaticaUy reloads the 

TCOUNT register fiom the TPERIOD register. 

In addition to viewing the lights on the EZ-LAB board, the results of the program can be 

uploaded fiom the board to the PC. The values found in the array RESULT can then be 

compared to that observed visually on the board. In order to be able to run this program 

indefinitely, once the array “RESULT” is filled, the program returns to Row 0 and begins 

writing over previous values that are no longer needed. 
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V. TroubleshootinP Aid-CBUG 

The CBUG emulator allows the operator to troubleshoot the compiled program in C. This 

tool allows you to step through a program line by line and view the expected parameter 

values. CBUG uses the executable file for debugging. CBUG also supports debugging of 

the C-source interrupt handlers. In order to do this a breakpoint at the interrupt handler is 

inserted. The command “CONTINUE” is used and run until the program reaches the 

interrupt handler routine. Breakpoints are used throughout the program in order to allow 

the program to run through several lines of code without interruption. 

VI. Conclusion 

For those with any language programming experience, a review of Appendix C. 1 will 

quickly reveal that this code was not in any manner optimized. Execution time of the fill 

program ( single loop time for worse case torque and flux transient condition ) took 

approximately 100 microseconds which is less that the 250 microseconds which would be 

used for this project’s direct torque and flux control application. Therefore this program, 

as written, is satisfactory for use. 

The most dficult part of the program was to get the interrupts and associated clock 

cycles working satisfactorily. Overall the ADSP 21020 is very easy to use, and very 

forgiving for the inexperienced operator. A great deal of knowledge about the hct ions of 

the program and how they are executed can be gained by using the CBUG troubleshooting 

tool. 



The next step in the development of this project would be to use sampled filtered inputs 

fi-om am induction motor to the digital signal processor. The output would then be fed 

back to the inverter controlling the induction motor. Reference torque and flux values 

would be altered to verirjr the system responds to the desired inputs appropriately. This is 

needed to validate the assumptions that these algorithms will be able to control torque and 

flux directly for any given torque or flux reference value. 
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APPENDLXA.1- Block Diagram of Direct Stator Flux Field Orientation 

Controlled Induction Motor 
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Vdg* - Space Vector Angle 

I ,  Inverter State Times 
b x=IVs $1 I Vdc 

Tk = X* sin (60 -7 ) *TS 
b sin bo 

Tk+l = X* Sin y *TS 
Vdc sin 60 

Ts 

vii 

Figure 1.n- Determination of Inverter State Times 
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TABLE I- STEADY STATE VALUES (Tk, Tk+l AND To>O) 

y -SPACE VECTOR ANGLE INITIAL STATE 

O <  y<60 O[OOO] 

60< y <  120 

120< y <  180 

180 < y <  240 

240 < y <  300 

300< y<360 

7[ 1 1 11 

O[OOO] 

7[111] 

O[OOO] 

7[111] 

K STATE 

1[100] 

2[1 lo] 

3[010] 

4[011] 

5[001] 

6[101] 

K+l STATE 

2[ I IO] 

3[010] 

4[011] 

5[001] 

6[101] 

1[100] 

FINAL STATE 

7[11 I ]  

O[OOO] 

7[111] 

O[OOO] 

7[111] 

O[OOO] 



ix 

TABLE 11- TRANSIENTS (Tk, Tk+l AND/OR To < 0) 

(2N-3)PM < FLUX ANGLE(A) < (ZN-I)PI/6 

A = TAN' (A qsiR DS) 

TABLE 1I.A-TORQUE TRANSIENT 

SIGN OF (T-T*) 
NEGATIVE 
POSITIVE 

K 
N+ 1 
N+4 

TABLE 1I.B- FLUX TRANSIENT 

SIGN OF ( 4 - A*) K 
N 
N+2 

NEGATIV d 
POSITIVE 

SIGN OF (T-T*) 
NEGATIVE 
NEGATIVE 
P 0 SIT I VE 
POSITIVE 

K+ 1 
N+2 
N+5 

Kt 1 
N+ 1 
N+3 

TABLE 1I.C- TORQUE AND FLUX TRANSIENT 

SIGN OF ( ]AI-  A*)  
NEGATIVE N+ 1 
POSITIVE N+2 
NEGATIVE N+4 
POSITIVE N+5 

K 
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3 
%The name of this file is invertbu.m 8 

%Reference (1) Direct Torque Control of Induction a 

1NVERTBU.DOC 
-0 

-c 8 

s 
D 

%JB Seiz Thesis-DSP Controlled Induction Motor 

%update of this file last occurred 08/28/95 E 
0, 

0 
m 

%Machines 
%Using Space Vector Modulation dated 05/91 

%Initial Conditions 
ts=clock; 
Tref=100 %Reference or Command value 

Ts=250e-06; %Switching frequency 
p=4 ; % Number of poles 
Vr=[O 0 01; %Resulting Space Vector State 

%of Torque 

%for each switching period 
t=0:0.5:4*pi; 
Va=lO; %sin(t); 
Vb=20; %sin (t-Z*pi/3) ; 
Vc=30; %sin (t-4*pi/3) ; 
Fm=60*1.01036; %Rotor speed, slip can be 

%varied. 
Rsm=.007565; %Stator magnetizing 

%resistance 
Ia=Va/Rsm; 
Ib=Vb/Rsm; 
Ic=Vc/Rsm; 
Rrm=.00596; %Rotor magnetizing resistance 
Lhm=4.559e-03 %Magnetizing inductance of 

IsIm=.1187e-03; %Stator/magnetizing current 
LrIm=.1692e-03; 
ppairs=3 ; 
Lsm=Lhm+IsIm; %Stator Inductance 
Lrm=Lhm+LrIm; %Rotor Inductance 
Det=Lrm*Lsm- (Lhm) ̂2; 
MIl=Lrm/Det; 
MI2=Lsm/Det; 
MI3=-Lhm/Det; 
RSMIl=-Rsm*MIl; 
RSMI2=-Rsm*MI2; 
RSMI3=-Rsm*MI3; 
Mm=3* (ppairs/2) ; 
RRMI3=-Rrm*MI3; 
RRMI2=-Rrm*MI2; 

%motor 

I 
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RRMIl=-Rrm*MIl; 
Vdc=120; %Input Voltage to inverter 

%Output of inverter 
%Determining dq reference values for stator 
%voltage, from EQN (1) of Ref (1) 

Vds=Vb-Vc/ ( (3) "0 - 5 )  
pause 
Vqs=Va 
pause 

%A, B, C, D values provided from 
%gebl5.m program 
%A=[RSMIl 0 RSMI3 0;O RSMIl 0 RSMI3; 
% RRMI3 0 RRMI2 0;O RRMI3 0 RRMI21 

A=[-26.75 0 25.796 0;O -26.75 0 25.796; 
20.32 0 20.85 0;O 20.32 0 20.851; 

B=[I o o o;o 1 o o;a  o -1 O ; O  o o 11; 

%C=[l 0 0 0 ; o  1 0 0 ; o  0 1 0;o 0 0 1; 
% MI1 0 MI3 0;O MI1 0 MI3;O MI3 0 MI21 

C=[1 0 0 0;o 1 0 0;o 0 1 0;o 0 0 1; 
3536.42 0 -3409.87 0;O 3536.42 0 -3409.87; 
-3409.87 0 3498.65 0;O -3409.87 0 3498.651; 

D = [ O  0 0 0;O 0 0 0;O 0 0 0;O 0 0 0 ;  
0 0 0 0;o 0 0 0;o  0 0 0;o  0 0 01; 

%The root locus of the system is as follows 
% [r, k]=rlocus ( A , B , C , D )  ; 

%Equation #1- Determine dq reference values 
%for stator current,from EQN (I) 
% of Ref (1). 

. I=[1/3"0.5 2/3"0.5; 1 O]*[Ia;Ibl; 
Ids=I (1,l) ; 
Iqs=I(2,1); 
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%Equation #2- Determine stator flux 
% "F"-Trapezoidal Rule 
IOds=O;VOds=O;IOqs=O;VOqs=O; 
mIds= (Ids-IOds) /Ts; 
mIqs= (Iqs-IOqs) /Ts; 
mVds= (Vds-VOds) /Ts; 
mVqs= (Vqs-VOqs) /Ts; 
tl=O; 
for i=1:10, 
Tl=tl+Ts/lO; 
ids(l,i)=(mIds*Tl)+IOds; 
iqs(l,i)=(mIqs*Tl)+IOqs; 
vds(l,i)=(mVds*Tl)+VOds; 
vqs (1, i) = (mVqs*Tl) +VOqs; 
dFds (1, i) = (vds (1, i) -Rsm* (ids (1, i) ) ) ; 
dFqs (1, i) = (vqs (1, i) -Rsm* (iqs (1, i) ) ) ; 
tl=Tl; 
end 

Fds=Ts/lO*(sum(dFds)-O.5*(dFds(l,l)) 
-0.5* (dFds ( 1 , l O )  ) ) ; 

F=Fds+j*Fqs; 

%Equation #3- Determine Torque, EQN (3) of 
% Ref (1) 
T=(3*p/4)*( (Fds*Iqs)-(Fds*Ids)); 

%Equation #4a- Determine excitation frequency 
% "w",from EQN (8) of Ref (1) 
%w=(Fds*Vqs-Fqs*Vds)-Rsm*(Fds*Iqs-Fqs*Ids) 
/ ( abs ( Fds+ j * Fqs ) ) " 2 ; 

wreal= [ ( (Vqs*Fds) - (Vds*Fqs) ) - ( (Iqs*Fds) 
- (Ids*Fqs) ) *Rsm* ( (Fds"2) - (Fqs"2) ) 3 
/ [ (  (Fd~"2)-(Fq~~2))"2+(4*(Fd~"2)*(Fq~~2))]; 

wimag=[ ( (Vds*Fqs) - (Vqs*Fds) ) + ( (Fds*Iqs) 
- (Fqs*Ids) ) *Rsm*Z*Fds*Fqs) 
/ [  ( ( F ~ s " ~ ) - ( F c J s " ~ ) ) " ~ + ( ~ * ( F ~ S ~ ~ ) * ( F ~ S " ~ ) ) ] ;  
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%Equation #4b- Determine s l i p  frequency 
%"sw" defined in the sync rotating 
%reference frame aligned with the stator 
% flux.Fqs^e=O;T=Fds^e*Iqs"e. 
% This is for info only not used in the 
% rest of simulation 
%sw= (LS*Rr*Iqs) /LR* (Fds-Ls*Ids) ; 

%Equation #5- Determine back emf of the 
%motor "E", from EQN (7) of Ref (1) 
%E=j*w*( (Fds+j*Fqs)-Ls*(Ids+j*Iqs)); 
%Ed=real (E) ; , 

%Eq=imag (E) ; 
Ed=- (wreal*Fqs) - (wimag*Fds) +Lsm* 
[ (wreal*Iqs) + (wimag*Ids) ] ; 

Eq= (wreal*Fds) - (wimag*Fqs) + 
Lsm* [ (-wreal*Ids) + (wimag*Iqs) ] ; 
E=Ed+j *Eq; 

%Equation #6- Determine Change in Torque 
%"DT",from EQN (12) of Ref (1) 
%DT=(~*~*Ts/~*Ls) * ( (-Fds*Eq+Fqs*Ed) + 
% (FdS*Vqs-Fqs*Vds) ) ; 

%Equation #7-Determining Command Value of 
% Stator Flux,from EQN (16) of Ref (1) 

Frefd=Ts*(Vds-Rsm*Ids)+Fds; 
Fref q=Ts * (Vqs-Rsm*Iqs) +Fqs; 
Fref=( (Frefd)^2+(Frefq)^2)^0.5; 

%Equation #8- Determining Change in torque 
%which will ensure dead beat control 
%over a constant period. 
DTl=Tref-T; 

%Equation #9- Determining Kc, from 
%EQN (13) of Ref (1) 
Kc=(4*DTl*Lsm/3*p*Ts)+(Fds*Eq-Fqs*Ed); 

%Equation #lo- Determining the command 
% value of stator f l u x  magnitude 
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%Equation #11- Defining the quadratic 
%variables, EQN (18) of Ref (1) 
%Where (a)*VdA2 + (b)*Vd +(c) 
%will be used to determine the two possible 
%solutions for Vd. Once Vd is known Vq 
%can be determined- See Equation #13 
a=Ts"2+ ( (Fqs) "2/ (Fds) "2) *Ts"2; 

b= ( (2*Kc*Fqs*TsA2) /Fds"2) +2*Fds*Ts 
+ ( 2 *  (Fqs"2) *Ts) /Fds; 

c=( (Ts"2) * (Kc"2) ) / (Fds"2) + 
(Z*Fqs*Kc*Ts/Fds) + (Fds"2) + (Fqs"2) -Fref"2; 

%Equation #12- Lets find out what the 
% values of Vd are 
pl=[a b c]; 
r=roots (pl) ; 
rl=abs (r) ; 
Vdl=rl (1,l) 
Vd2=rl(Z,l) 

h=Vdl-VdZ; 
if h<O, Vd=Vdl; 
else Vd=Vd2; 
end 

%Equation #13- Determining the value of Vq, 
% from EQN (14) of Ref (1) 
Vq= (Kc+Fqs*Vd) /Fds; 

%Equation #14- Determining the voltage space 
% vector, from EQN(19) of Ref (1) 
Vs= (Vd+j *Vq) +Rsm* (Ids+] *Iqs) ; 
VD=real (Vs) ; 
VQ=imag (Vs) ; 

%Equation #15- Determining the Space Vector Angle 
A=angle (Vs) ; 

if Vs-abs(Vs)==O, SVA=A*180/pi; 
elseif VQ==abs(VQ), SVA=A*180/pi; 
else SVA=(A*180/pi) + 3 6 0 ;  
end 
SVA; 
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%Determining n for Steady State 
if SVA>=O & SVA<=60, n=l; 
elseif SVA>6O & SVA<=120, n=2; 
elseif SVA>120 & SVA<=180, n=3; 
elseif SVA>180 & SVA<=240, n=4; 
elseif SVA>240 & SVA<=300, n=5; 
else SVA>300 & SVA<=360, n=6; 
end 

%Equation #16- Determining inverter state times 
x=(abs (Vs) ) /Vdc; 
Sts= [ O  000 1 100 2 110 7 111; 

7 111 2 110 3 010 0 000; 
0 000 3 010 4 011 7 111; 
7 111 4 011 5 001 0 000; 
0 000 5 001 6 101 7 111; 
7 111 6 101 1 100 0 0001; 

Tk= ( (x*sin (pi/3-A) * T s )  /sin (pi/3) ) ; 
Tkl=( (x*sin(A)*Ts)/sin(pi/3) ) ;  

%For steady state condition 

if Tk>=O & Tkl>=O & TO>=O, 
disp('Steady State condition'), 
pause 

TO=TS-Tk-Tkl; 

if Sts(n,2)==Vr, Vi=Sts(n,2); 
Vk=Sts (n, 4) ;Vkl=Sts (n, 6) ;Vr=Sts (n, 8) ; 
else Vi=Sts (n, 8) ;Vk=Sts (n, 6) ; 
Vkl=Sts (n, 4) ;Vr=Sts (n,2) ; 
end 

else disp('Transient Condition') 
pause 
end 

B= (T-Tref) ; 
C= (abs  (F) -Fref) ; 
AF=angle (F) ; 
if F-abs (F) ==O, FVA=AF*180/pi; 
elseif Fqs==abs(Fqs), FVA=AF*180/pi; 
else FVA= (AF*180/pi) +360; 
end 
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%Determining value of N for 
%Transient Conditions 
if FVA>270 & FVA<=330, N=O; 
elseif FVA>330 & FVA<=360, N=l; 
elseif FVA>=O & FVA<=30, N=l; 
elseif FVA>30 & FVA<=90, N=2; 
elseif FVA>90 & FVA<=150, N=3; 
elseif FVA>150 & FVA<=210, N=4; 
else FVA>210 & FVA<=270, N=5;  
end 

%The Torque Transient Case 
if B==abs (B) I K=N+4; 
else K=N+1; 
Kl=K+l; 
end 

%Determining Values for VK 
%and Vkl for Torque Transient case 

2*pi/3) +j*sin ( (K-1) *2*pi/3) ) ) ; 
VKt=(2/3) *Vdc* ( (COS ( ( K - 1 )  * 

VKlt=(2/3) *Vdc* ( (COS ( (Kl-1) * 
2*pi/3) +]*sin ( (Kl-1) *2*pi/3) ) ) ; 

VKtr=real (Vkt) ; 
VKti=imag (VKt) ; 
VKltr=real (VK1 t ) ; 
VK1 ti=imag (VK1 t ) ; 

%Determining the switching times for 
% each state 
Tkt=(Fref-( (Vklt*Ts)+F)) /(Vklt-Vkt); 
FTkt=( ( [real(Tkt)IA2)+ 
( [imag (Tkt) ] "2) ) "0.5; 

T klt=Ts- FTkt ; 

if Tkt<O,disp('Flux Transient Condition') 
elseif Tklt<O, 
disp('F1ux Transient Condition') 
else disp('Torque Transient Condition') 
pause 
end 

s 

8 :g 
m 
I 

s 

%The Flux Transient Case 
if C==abs (C) I Kf=N+2; 
else Kf=N; 
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Kfl=Kf+l; 
end 

INVERTBU-DOC 

%Determining Values of Vk and 
% Vkl for Flux Transient Case 

2*pi/3) + j  *sin ( (Kf-1) *2*pi/3) ) ) ; 
VKf=(2/3) *Vdc* ( (COS ( (Kf-1) * 

VKlf=(2/3) *Vdc* ( (COS ( (Kfl-1) * 
2*pi/3) +]*sin( (Kfl-1) *2*pi/3) ) ) ; 

VKfr=real (VKf) ; 
VKf i=imag (VKf) ; 
VKlfr=real (VKlf) ; 
VKlfi=imag(VKlf) ; 

%Determining the switching times for 
% each state 
Tkf=[ ((DT1*4*Lsm)/(3*p*F))+ 
(E*Ts) - (VKlf*Ts) 3 / [VKf-VKlf] 

FTkf=( ([real(Tkf)]"Z)+ 
([imag(Tkf)]"2))"0.5; 

T kl f=Ts- FT kf ; 

if Tkf<O, 
disp('Torque and Flux Transient Condition') 
elseif Tklf<O, 
disp('Torque and Flux Transient Condition') 
else disp('F1ux Transient Condition') 
pause 
end 

%Determining Values of Single State 
% for Torque and FLUX Transient 
if B==abs (B) & C==abs (C) , Ktf=N+5; 
elseif B==abs (B), Ktf=N+4; 
elseif C==abs (C) , Ktf=N+2; 
else Ktf=N+l; 
end 

%IOds=Ids; IOqs=Iqs; VOds=Vds; 
VOqs=Vqs;g=G;ZIds (G) =Ids; 
%ZIqs ( G )  =Iqs; 
%ZFds (G) =Fds; 
%ZFqs (G) =Fqs; 
%Zw(G)=w; 
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%ZT (G) =T; 
%Zsw(G)=sw; 
%ZEd (G) =Ed; 
%ZEq (G) =Eq; 
%ZVdl (G)=Vdl; 
%ZVd2 (G)=Vd2; 
%ZVq ( G )  =Vq; 
%ZTk (G) =Tk; 
%ZTkl (G)=Tkl; 
%ZTO (G) =TO; 
%Zz (G)=z; 

%Computa,tion of Per Phase Motor Output Voltage 
%aa=[2.873E-04 .0373 0.1541; 
%bb=[0.03499 0 01; 
%ww=logspace (-1,l) ; 
%hh=freqs (bb,aa,ww) ; 
%mag=abs (hh) ;phase=angle (hh) ; 
%mv=hh*Vas; 
%Zmv(G) =mv; 
%f=ww'/ (2*pi) ; 

%Computation of Fer Phase Motor Output Current 
%aaa= [ 84.33E-03 01 
%bbb= [ 0.087 66 .4 15 1 
%www=logspace (-1,l) ; 
%hhh=freqs (bbb, aaa, www) ; 
%mi=hhh*Ias; 
%Zmi (G) =mi; 
%ff=www/ (2*p i )  ; 

end 
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APPEN.DE B- LISTING OF SUBSYSTEMS 

Subsystem- Determination of Ed (Transient Reactance Voltage -d axis Reference 

frame) 

Subsystem 1 -Determination of E, (Transient Reactance Voltage -q axis Reference 

&me) 

Subsystem 2-Determination of Vkr and Vki (Torque Transient Stator Voltage 

Vector -real and imaginary) 

Subsystem 3-Determination of whether steady state or transient condition 

Subsystem 4-Determination of abc- (For quadratic equation- Solution for Vd*) 

Subsystem 5-Determination of K, 

Subsystem 6-Determination of F, (Command Value of stator flux magnitude) 

Subsystem 7-Determination of Vd* (smallest d axis voltage necessary to drive torque 

and flux to their reference value) 

Subsystem %Determination of V, (smallest q axis voltage necessary to drive torque 

and flux to their reference value) 

D 

9 
-1 

8 
.I 
UJ 
rn 

http://APPEN.DE


Subsystem 9- Determination of SVA, A, VD and VQ (Space Vector Angle 

[Tan Vq*Nd*], Angle in radians, VD and VQ is the smallest d&q 

axis voltage plus the stator IR drop) 

Subsystem 10-Determination of Tk, Tkl and TO (Steady State times for stator 

voltage vector Vk and Vkl) 

Subsystem 1 1-Determination of state and times 

Subsystem 12-Determination of Zone 1 for steady state 

Subsystem 13-Determination of Zone 2 for steady state 

Subsystem 14-Determination of Zone 3 for steady state 

Subsystem 15-Determination of Zone 4 for steady state 

Subsystem 16-Determination of Zone 5 for steady state 

Subsystem 17-Determination of Zone 6 for steady state 

Subsystem 18-Determination of the flux angle 

Subsystem 19- not used 

Subsystem 20-Determination of the absolute value of the flux vector 

Subsystem 21-Determination of value of “n” for torque transient 



Subsystem 22-Determination of TVKlr and TVKl i (Torque Transient Stator 

Voltage Vector Vkl real and imaginary parts) 

Subsystem 23-Determination of TTK and TTKl (Torque Transient times) 

Subsystem 24-Determination of FVsKr and FVsKi (Flux Transient Stator Voltage 

Vector Vk real and imaginary parts) 

Subsystem 25-Determination of ‘,‘n’’ for flux transient (Used in Lookup Table) 

Subsystem 26-Determination of FVsKlr and FVsKl i (Flux Transient Stator 

Voltage Vector Vkl real and imaginary parts) 

Subsystem 27-Determination of FTK and FTKl (Flux Transient times) 

Subsystem 28- Not used 

Subsystem 29- Determination of W, (Excitation Frequency) 

Subsystem 30- Determination of transient torque and flux (Table IC) 

Subsystem 3 1 -Determination of “n” for transient torque and flux condition 

Subsystem 3ZResulting state times with stator voltage states for transient cases 

Subsystem 33-Determination of last valid input for steady state case 

0 

4 
s 

Subsystem 36Detennination of states for transients 
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Subsystem 

DeterminationofEd 

out-1 Ed 

Subsystem 1 

c 

0 

3 

0 

B 

in-1 
ws 

r_ 

F d s m  * +  
in-2 c+- - 

Sum 

Ids @ 
in-3 I - 

Constant 

Lsm 
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Subsystem 2 

etermining VK for toque transient case 2-1 
El-- 
in-2 

+J VKr 
out-1 

- 

a VKi 
out-2 

Fcnl Product9 

Subsystem3 

Relational 
Operator2 
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, Subsystem4 

I------ Detemhatiardabc 

Determination of Kc 

Ts 

DT 

Fds 

Subsystem 5 

lnport Product5 Fcn2 

LS 
outport Sum2 Product6 

ConstanP 

Constant3 

Inport3 

InDat4\ I '  ' I  

Kc 



Subsystem 6 

Detem'ning Fs2 
1 b 

I 
49 

vd P2 
2 
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l-Z1 Fsreal 



I 

'u- Fcn4 
Productl 1 

Productl 2 

youti J 
To Workspacel 

Switch4 

Determination of Vd* 
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Subsystem 8 

Subsystem 9 

2 p 
4 
# 
B 



VD 

VQ 

VdC 

TS 

A 
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Subsystem 10 



Subsystem 11 

H 
i 
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Subsystem 12 

Zone1 

I 

I 
in-2 

Subsystem 13 

zone 2 

El- 
in-l 

I 

in-2 

Subsystem 14 

zone 3 

in-1 

_I 

in-2 



page 10'of 22 

Subsystem 15 

I 

in-2 

Subsystem 16 

zone 5 

I 

in-2 

Subsystem 17 

zone 6 

I 

I 

in-2 
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Subsystem 20 

Absdute Value of Flux-used for Table 1 

u -- 
in-2 Fen' 

Subsystem 22,24,26 

tennining VKI fw toque transient case 

in- 1 

Fcnl Producls 

tennining VKI fw toque transient case 

in- 1 

+J wr 
out-1 

VKi 

Fcnl Producls 

-a wr 
out-1 



Determination of n for Torque Transient 

SV 

lnport 

Constant5 

Sum1 
cn 

N 
w C’L 

w 

or w 



Vskr 

Determining Tk and Tkl 

Vski 

Vskl i 
in-4 

Ts 
in-5 

Fds E 
in-6 

I 

Fcn9 
I I 

outport 

Relational 
Operator4 I I 

I 

m 

8 1 
p3 
w 



Determination of n for the Flux Transient 

FVA - 
- 

U u . . . . lnport 
Subsvstem Subsystem1 Subsystem2 Subsystem3 Subsystem4 

Subsystem5 Subsystem6 
270-330 330-360 0-30 30-90 90-1 50 150-21 0 21 0-270 

+ 

e l  
Suml 

U 

Constant5 Suml 1 

Constant 



Determination of FTK and FTK1 

4Lsm 

Constant1 

b *  
b,, 

- 
K lnport 

Sum 
Outport 

Constant Fcn . Product6 

Inportl 
Product5 

Eq * 
Inport2 Sum5 - 
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Inport3 SlJft4-b 
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Inport6 

Fqs p+- 
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I - 

I I - -  
Fcnl 

1 Product1 
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Sum1 

r- 

Sum7 Outportl 

0 
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z 
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Determination of W, 

I+- 
Fqs Inport1 

4 F l  1 /u 

Sum Fcn3 w s  
Fcn4 

\ =  +I f(u) p 
FcnS 

'ya-pi! Product1 

PLF' Product2 

-l Product3 

Rsm 
Constant1 

Product6 Outpott 



Transient for Torque and FLUX 
- ~, + 

,+ 4 

,+ <= 

outport 
Constant6 Sum1 1 

13t\ 
Inport2 

n 

7 -  

Relationhl 
8 Operatcr 

I 
Relational Productl Switch1 4 



Determination of n for transient torque and flux 

Sub=ml Subsystem5 U Subsystem2 

Subsystem 90-1 50 Subsystem6 30-90 
0-30 330-360 
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Subsystem 34 
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APPENDLX C.1- ANSI C Program Code (JULIE7.c) 



-4  
3 
' C  

0 

/*Setting up initial conditions-needed libraries*/ 
#include "stdio.h" 
#include "std1ib.h" 
#include "math.h" 
#include "math1.h" 
#include "misc1.h" 
#include "uti1.h" 
#include ''2 1020.h" 
#include "signa1.h" 
#defhe PI 3.1416 

/*Defining the Functions for this program*/ 
void STARTO; 
void STEAD-STATE(); 
void TORQUE-TRANO; 
void FLUX-TRAN(); 
void TORQUE-F%UX-TRAN(); 

/*Global Variables*/ 
volatile int mann; 
volatile int mann 1 ; 
volatile int z; 
int u=o; 
int ul=O; 
int yl=O; 
int yla=O; 
int y3=0; 
int y3a=O; 

int y5a=0; 

int y7a=0; 

int y5=0; 

int y 7 4 ;  
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/*03/14/97: C Program developed to simulate inputs (VD and VQ), 
calculate states and corresponding times to be fed back to 
the inverter(phases a,b and c) which feeds the 
induction motor.*/ 

I 

t 

int SLVAL=O; /*This is the initial "last valid state" to be 
used for various htions*/ 
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/*TAB will be used later in the torque*/ 
/*and flux transients*/ 

float RESULT[ 10][9]=(0,070,v,~,0,0,0,0}; /*Initial Condition c 
Statedcorresponding times will be 
stored in this matrix*/ 

int RESULTl[10][4]=(0,0,0yO}; /*RESULT1 will be used to store converted 
times that will be used by the timer-set 
instruction*/ 

void timer-isr(int t); 
void timer l-isr(int t); 
void timer2_isr(int t); 
void timer3_isr(int t); 

/*Declaring timers for this program*/ 

void main( ) 

{ float Vdc; 
float Ts; 

/*Start of main program, defining variables to be used*/ 
/*Vdc is the dc input voltage to the inverter*/ 
/* Ts is the switching period(sec)- time in which to sample input 

to induction motor,calculate new values for matrix RESULT 
while executing previous switching period RESULT*/ 

float VD; /*d axis portion of the calculated space vector*/ 
float VQ; /+q axis portion of the calculated space vector*/ 
float Tref; /*This is the torque reference value*/ 
float T; /*This is the simulated value of torque as observed 

float F; /* This is the simulated value of flux as observed 

float F1; /*absolute value of F*/ 
float F2; /* F*F */ 
float F3; 
float Free 
float AF; 

float Fds; 
float Fds 1 ; 
float Fds2; 

during the execution of the simulink model*/ 

during the execution of the simulink model*/ 

/* This is the flux reference value*/ 
/* This is the simulated flux angle as observed in the 

simulink model*/ 
/* This is the d axis portion of the calculated flux angle*/ 
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float Fqs; 
float Fqs 1 ; 
float DTI; /* This is the change in torque from the reference value*/ 
float Ed; /* This is the transient reactance in the d axis*/ 
float Eq; /* This is the transient reactance in the q axis*/ 
float Lsm; /* This is the stator inductance of the modeled induction motor*/ 
float p; /* This is the number of poles for the modeled induction motor*/ 
float y; /* The "y*' values will be used to convert times(sec) to values 

to be used with the timer-set instruction*/ 

/* This is the q axis portion of the calculated flux angle*/ 

float y2; 
float y4; 
float y6; 
float tl; /*tl will be used for the for loop found in the main program*/ 
float t2=0; 
int t; 

Lsm=0.0046777; 
m.0; 
mann=O; 
mannl=l; 
Vdc=lO.O; 
Ts= 0.000250; /*Period for this program is 250 usec or a switching fiequency 

Tref=100.0; 
T= 1000.0; 
F=250; 
Fref=300; 
Ed=400; 
Eq=200; 
DTl =Tref-T; 

of 4000 Hz*/ 

timer_set(8334,8334); /*Setting the initial timer for 250 usec[8334*30nsec] 

interrupt(S1G-TMZO, timer-isr); 
where 30 ns is the cycle time for the dsp*/ 

/*This is the initial interrupt which directs 
that the interrupt handler "timer-isr" be serviced 
at the end of the 250 usec*/ 

timer-on(); /* The timer starts counting down*/ 

set-flag( SET-FLAG 1 ,CLR-FLAG); 

set_flag( SET-FLAG3,CLR-FLAG); /*flags for viewing*/ 
set-flag(SET-FLAG2,CLR-FLAG); /*Setting initial*/ 

/*The flags are used to represent the output of the dsp which will feed the 
six step inverter. Phase a will be flag1,phase b is flag2 and phase c is 
flag3. When the phase is high(1) then the associated light will be on. 
Likewise when the phase is low(0) the associated light will be off.*/ 

0 .o 
3 
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/*Start of the infinite for loop*/ for(;;) 

t2++; 
t-mannl; 
t 1 %ann 1 *PU6; 
VD=sin(t 1 +PI); 
VQ=sin(t 1 +PI*2.0/3.0); 

Fds=sin(t 1 ); 
Fdsl =fabs(Fds); 
if (Fdsl !=O) 
Fds2=Fds 1 *Fds 1 ; 
else Fds2=O; 

/*Simulating the calculated space vector*/ 

AF=sin(t 1); 

F l=fabs(F); 
if (F1 !=O) 
F2=FI*F1; 
else F2=0: 

F3zF2-Fds2; 
if (F3 !=O) 
Fqs=pow( (F3),0.5); 
else Fqs=O; 

if (Fdsl !=O && F3 !=O) 
AF=tan (Fqs/Fds); 
else AF=O; 

START( VD,VQ,Vdc,Ts,T,Tref,F,Fref7AF7Fqs,Fds,Lsm7DTl ,Eq,Ed,p,t); 
/*START will calculate times to determine if the condition is a steady 

state condition or a potential torque transient condition*/ 

y=RESULT[mann I][O]; 
y 1 =(y/0.00000003 0); 
RESULT1 [mannl][O]=yI ; 

u=RESUJ-.T[mann l][S]; 

/*Calculating times for timer-set*/ 

/* Additional timer interrupts may be needed 
depending on the resulting condition*/ 

:8 
3 
m 
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switch (u) 
f 

case 3: 
case 2: 

y2=RESULT[mann 1][2]; 
y3=(y2/0.000000030); 
RESULT1 [mannl][ 1173; 
break; 

/*This is the flux transient case*/ 
/* This is the torque transient case*/ 

case 1 : 
y2=RESULT[mann 1][2]; 
y3=(y2/0.000000030); 
RESULTl[mannl][l]=y3; 

/* This is the steady state case*/ 

y4=RESULT[mann 1][4]; 
y5=(y4/0.000000030); 
RESULT1 [mann1][2]=y5; 

y6=RESULT[mann 1][6]; 
y7=(y6/0.000000030); 
RESULT1 [mann1][3]=y7; 
break; 

default: 

if (z==I) /*Interrupts are obviously asynchronous, therefore 
it is necessary to have idle conditions established 
to ensure that the interrupts are handled properly 
and at the right time.Each of these idle conditions 
ensures that the program stays in an idle condition 
until it is time to service the next interrupt handler*/ 

idle(); 
if7z=2) 
idle(); 
if (z==3) 
idle(); 
if (z==O) 
idle(); 

1 
1 
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void timer-isr(int t) /*This is the first interrupt handler and is 
used for all four cases(steady state,torque transient, 

flux transient or torque and flux transient).*/ 

{ if (mann==8) 
{mann=O;> 

else man++; 
if (mann 1 =8) 

{mannl=O;} 
else mann 1 ++; 

/*This sets up RESULT to fill the next row in the matrix 
and creates a loop in the matrix*/ 

ul=RESULT[mann][ 13; /*This value is the first state (State 1) 

switch (ul) 
t 

calculated*/ 

/*The lights will be used to reflect the appropriate 
state*/ 

case 0: 

set-flag( SET-FLAG 1 ,CLR-FLAG); 
set-flag(SET-FLAG2,CLR-FLAG); 
set-flag( SET-FLAG3 ,CLR-FLAG); 
break; 

/*For example, phases a,b and c are all low(O), therefore 
the lights shall be of€.*/ 

case 1: 
set-flag(SET-FLAG 1 ,SET-FLAG); 
set-flag( SET-FLAG2,CLR-FLAG); 
set-flag( SET-FLAG3,CLR-FLAG); 
break; 

case 2: 
.%-flag( SET-FLAG 1 ,SET-FLAG); 
s&-flag( SET-FLAG2,SET-FLAG); 
set-flag(SET-FLAG3,CLR-FLAG); 
break; 

case 3: 
set-flag(SETFLAG 1 ,CLR-FLAG); 
set-flag(SET-FLAG2,SET-FLAG); 
set-flag( SET-FLAG3,CLR-FLAG); 
break; 

case 4: 
set-flag( SETFLAG 1 ,CLR-FLAG); 
set-flag( SET-FLAG2,SET-FLAG); 
set-flag( SET-FLAG3 ,S ET-FLAG); 
break; 

3 
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case 5: 
set-flag( SET-FLAG 1 ,CLR-FLAG); 
set-flag( SETFLAG2,CLR-FLAG); 
set-flag( SET-FLAG3, SET-FLAG); 
break; 

case 6: 
set-flag( SET-FLAG 1 ,SET-FLAG); 
set-flag( SETFLAG2,CLR-FLAG); 
set-flag(SET-FLAG3 ,SET-FLAG); 
break; 

default: 
set-flag(SET-FLAG 1 ,SET-FLAG); 
set-flag(SET-FLAG2,SETFLAG); 
set-flag( SET-FLAG3, SETFLAG); 
1 

timer-of€o; /*Shutting the timer off in preparation for starting a new 

clear_interrupt( SIG-TWO); /*Clearing the interrupt in preparation for 

yl=RESULTl[mann][O]; /*This is the associated time for State 1*/ 
y 1 a=yl-270; 

timer*/ 

establishing a new interrupt handler routine*/ 

/*"270" represents the cycle time needed to execute 
the instructions &om the beginning of this 

interrupt, prior to starting the clock*/ 

timer-set(yla,yl a); /*This instruction established the lenth of time 
the new timer will run prior to executing the 
interrupt handler routine*/ 

u=RESULT[mann][ 81; 

it7u==4) 

{ interrupt(S1G-TMZ0,timer-isr); 

z=o; 1 

/*This determines which condition we calculated 
during the LAST switching period(-250usec)*/ 

/*If u=4, then it was the torque and flux transient 
case*/ 

/*This means for the entire time"y1a" 
STATE 1 will be displayed*/ 

/*Resets the value of z in preparation for the idle 
instruction*/ 

else 
{ interrupt(SIGTMZ0,timerl-isr); /*If the condition is steady state or 

the torque or flux transient case, 
STATE 1 is only used until that 
time expires(<250 usec) at which 
time STATE 2 will be displayed*/ 

Z=1;} 

1 
timer-on(); /*The timer is started and counts down ffom the value yl */ 
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void timerl-isr(int t) /*This is the second interrupt handler routine which 
is only used for the steady state, torque or flux 
transient conditions*/ 

i 
ul=RESULT[mann][3]; /*Determining STATE 2 as calculate during the 

switch (ul) 
{ caseo: 

previous cycle+l 
/*Lights will reflect 3 phase input to inverter*/ 

set-flag(SET-FLAG1 ,CLR-FLAG); 
set-flag( SET-FLAG2,CLR-FLAG); 
set-flag( SETFLAG3 ,CLR-FLAG); 
break; 

case 1: 
set-flag(SET-FLAG1 ,SET-FLAG); 
set-flag(SET-FLAG2,CLR-FLAG); 
&-flag( SETFLAG3 ,CLR-FLAG); 
break, 

case 2: 
set-flag(SET-FLAG1 ,SET-FLAG); 
set-flag(SET-FLAG2,SET-FLAG); 
set-flag(SET-FLAG3,CLR-FLAG); 
break; 

case 3: 
set-flag(SET-FLAG 1 ,CLR-FLAG); 
se-flag(SET-FLAG2,SET-FLAG); 
set-flag(SET-FLAG3 ,CLR-FLAG); 
break, 

case 4: 
set-flag(SET-FLAG 1 ,CLR-FLAG); 
se-flag( SET-FLAG2,SET-FLAG); 
set-flag(SET-FLAG3,SET-FLAG); 
break; 

case 5 :  
set-flag(SET-FLAG 1 ,CLR-FLAG); 
set-flag(SET-FLAG2,CLR-FLAG); 
set-flag( SET-FLAG3,SET-FLAG); 
break; 

case 6: 
set-flag(SET-FLAG 1 ,SET-FLAG); 
set-flag( SET-FLAG2,CLR-FLAG); 
set-flag( SET-FLAG3, SET-FLAG); 
break, 
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default: 
set-flag(SETFLAG 1 ,SET-FLAG); 
set-flag( SETFLAGZ, SET-FLAG); 
s&-flag( SETFLAG3 ,SET-FLAG); 
1 

timer-ofl); 
clear-intermpt(SIG-TMZ0); / *Clearing interrupt in preparation for 

y3=RESULTl[mann][l]; /*This will be used to establish the time that we 

/*Shutting timer off in preparation for starting new timer*/ 

setting new timer interrupt*/ 

remain in STATE 2*/ 

y3a=y3-253; /*"253" represents the cycle time needed to 
execute the instructions fiom the beginning 
of the interrupt, prior to starting the clock.*/ 

timer-~et(y3a,y3a); 

u=RESULT[mann][l]; 

if (u!=l) 

{ interrupt(SIG-TMZO,timer-isr); 

else 

{ interrupt(SIG-TMZO,timer2-isr); 
z=2; ] 
timer-on(); 

/*Setting up on the timer to count fiom time "y3a" down to zero 
where the next interrupt handler will be run*/ 

/* Determining which condition we calculated during 
the LAST switching period(<25Ousec)*/ 

/*If the condition was either the torque or flux transient 
case then we go back to the timer-isr interrupt handler routine*/ 

E O ;  1 
/*The previous condition was steady state, therefore we will use the 

timer2-isr interrupt handler*/ 

/*Setting up the program to idle until timer2-isr is reached*/ 
/*The timer is turned on and counts fiom time "y3a"*/ 

1 

void timer2_isr(int t) /*This interrupt handler is only used for the 
steady state condition*/ 

f 
ul  =RESULT[mann] [5];  
switch (ul) 
f caseo: 

/*Determining STATE 3*/ 
/*Lights will reflect phases a-c to the inverter*/ 

set-flag(SET-FLAG 1 ,CLR-FLAG); 
set-flag(SET-FLAG2,CLR-FLAG); 
set-flag( SET-FLAG3,CLR-FLAG); 
break; 

case 1: 
set-flag( SET-FLAG 1 ,SET-FLAG); 
set-flag( SET-FLAG2,CLR-FLAG); 
set-flag(SETFLAG3 ,CLR-FLAG); 
break; 
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case 2: 
set-flag(SET-FLAG 1 ,SET-FLAG); 
&-flag( SETFLAG2,SET-FLAG); 
set-flag(SET-FLAG3 ,CLR-FLAG); 
break; 

case 3: 
set-flag(SET-FLAG 1 ,CLR-FLAG); 
set-flag(SET-FLAG2,SET-FLAG); 
set-flag(SET-FLAG3,CLR-FLAG); 
break; 

case 4: 
set-flag( SET-FLAG 1 ,CLR-FLAG); 
se-flag(SET-FLAG2,SET-FLAG); 
set-flag(SET-FLAG3,SET-FLAG); 
break; 

case 5: 
set-flag(SET-FLAG1 ,CLR-FLAG); 
set-flag(SET-FLAG2,CLR-FLAG); 
set-flag(SET-FLAG3 ,SET-FLAG); 
break; 

case 6: 
set-flag(SET-FLAG 1 ,SET-FLAG); 
set-flag( SETFLAG2,CLR-FLAG); 
set-flag(SET-FLAG3 ,SET-FLAG) ; 
break, 

default: 
se-flag(SET-FLAG 1 ,SET-FLAG); 
set-flag( SETFLAG2,SET-FLAG); 
set-flag( SET-FLAG3 ,SET-FLAG); 
1 

thereof€(); 

clear-intermpt(SIG-TMZ0); /*Interrupt is cleared in preparation for 

yS=RESULTI [mann][2]; /*The timer will be set based on time"ySa"*/ 
y5 a75-229; 

execute the instructions fiom the beginning of 
the interrupt, prior to starting the clock.*/ 

/*Timer is shut off in preparation for starting the next timing 
sequence*/ 

setting up the next (timer3-isr) interrupt handler*/ 

/*"229" represents the cycle time needed to 

timer_set@5a,y5a); 
interrupt(SIG-TMZO,timer3-isr); /*Next interrupt to be handled will be 

2=3; 

timer-ono; 

/*Setting up the timer to count fkom time "y5a"*f 

timer3jsr*/ 
/*Program will idle inti1 interrupt handler timer3-isr is 

reached*/ 
/*Timer starts counting from "y5a"*/ 

s 
3 
0) m 
t 
8 
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-6 -n 
‘8 
:p ‘ C  

0 

I3 s 
-8 
m void timer3_isr(int t) /*This interrupt handler is only used for the steady 

state condition*/ 

ul=RESULT[mann][7]; /*Determining STATE 4 fiom the previous switching period 

switch (ul) 

{ caseo: 

( 4 5 0  usee)*/ 
/*Lights to be set to reflect STATE 4-By definition STATE 

4 can only be all phases high( 1 1 1) or all phases low(OOO)*/ 

set-flag(SET-FLAG 1 ,CLR-FLAG); 
&-flag( SETFLAG2,CLR-FLAG); 
set-flag(SET-FLAG3,CLR-FLAG); 
break, 

defbuIt: 
&-flag(SET-FLAG 1 .SET-FLAG); 
&-flag( SETFLAG2,SET-FLAG); 
&-flag( SETFLAG3 ,SET-FLAG); 

1 

timer-of€o; 
clear-interrupt(S1G-TMZO); /*Clear interrupt in preparation for starting 

new interrupt handler routine*/ 
y7=RESULT1 [mann][3]; /*New timer value will be based on time “y7a”*/ 
y7a=y7-205 ; 

/*Shutting timer off in preparation for starting new timer*/ 

/*“205“ represents the cycle time neede to execute 
the instructions fiom the beginning of the interrupt, 
prior to starting the clock.*/ 

timer_set(y7a,y7a); 
interrupt(S1G-TMZ0,timer-isr); /*Next interrupt handler to be serviced will 

/*Setting the timer for time “y7at‘*/ 

be back to the original timer-isr which begins 
the new cycle.*/ 

/*Starts the new timer based on time “y7a“*/ 
z=o; 
t her-on(); 

* 
3 
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/* ................................................................... *I 
/*This funtion will determine the times for a given set of conditions 
and determine if the conditionis a steady state condition or if it is one 
of the three transient conditions*/ 

void START(VD,VQ,Vdc,Ts,T,TreCF,Fre&4F,Fqs,Fds,Lsm,DT 1 ,Eq,Ed,p,t 1 ) 
float VD,VQ,Vdc,Ts,T,Tref,F,Fref,AF,Fqs,Fds,Lsm,DT 1 ,Eq,Ed,p,t 1 ; 

{ 
float A,x,xl ,Tk,TK,Tkl ,TK 1 ,TO,VD 1 ,VD2,VQ 1 ,VQ2; 

/*A is the space vector angle in radians*/ 

(A=atan(VQND);VDl =fabs(VD);VD2=VDl *VDl;} 

{A=O.O;VD2=0;} 

if (VD !=O.O) 

else 

if (VQ !=O.O) 
(VQ l=hbs(VQ);VQ2=VQ 1 *VQ 1 ;} 

VQ2=0; 
else 

x 1 =VD2+VQ2; 
if (xi !=O) 
x--~ow(( x 1 ),0 .S)Ndc; 
else 
x=o; 

/* [( (VD)"2+( VQ)*2)W. S]/Vdc*/ 

Tk=(x*sin((PY3.O)-A)*Ts)/sin(PY3.0); 
if (Tk>O.OO && Tk<O.OOOOl) 
TK=0.00001; 
else TK=Tk, 

/*Calculated time for State 2(Vk)*/ 

Tkl =(x*sin(A)*Ts)/sin(PU3 .O); 
if (Tkl>O.OO && Tk1<0.00001) 
TK1 =O.OOOO 1; 
else TK 1 =Tk 1 ; 

/*Calculated time for State 3 (Vkl)*/ 

TO=Ts-TK-TKl; 

if (TO>O.OO && T0<0.00001) 
TO=O.OOOOl; 

/*Remaining time in period Ts to be split between States 
1 and4*/ 

if (TK>O && TKl>O && TO>O) /*If all three values are positive, then a 
steady state condition exists*/ 

STEAD_STATE(VD,VQ,A,TO,TK,TK 1); 
1 

else /*If any time is negative, then a transient condition exists*/ 
TORQvE_TRAN(Vdc,Ts,T,Tref,F,Fref,AF,Fqs,Fds,Lsm,DT 1 ,Eq,Ed,p,t 1 ); 
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/* ................................................................ */ 
/*This function will determine the appropriate States for the steady state 
condition*/ 
void STEAD_STATE(VD,VQ,A,TO,TK,TKl) 
float VD, VQ, A, TO, TK, TKl; 
t 
float SVA,TO 1 ; 
int n, us, STI, STl, ST2, STF; 

/*Matrix to be used to define the states*/ 

/*Determining the Space Vector Angle(SVA)*/ 
if(VD==fhbs(vD) && VQ==fabs(VQ)) 

else if (VQ==fabs(VQ)) 

else 

SVA=A* 18O.OIPI; 

SVA=A* 1 SO.O/PI; 

SVA=(A* 180.0/PI)+360.0; 

if (SVA>=O.O && SVA<=60.0) n=O; 
else if (SVA>60.0 && SVA<=120.0) n=l; 
else if (SVA>120.0 && SVA<=180.0) n=2; 
else if (SVA>180.0 && SVA<=240.0) n=3; 
else if (SVA>240.0 && SVA<=300.0) n=4; 
else n=5; 

us=l; 

/*To determine the sequence for displaying states, the following instructions 
are used. The objective is to ensure that only ONE phase changes state for each 
update. For a given period, all three phases will change state once as observed 
below*/ 

SLVAL.=TAB[SLVAL][ 11; 
if (Sts[n][O]==SLVAL) /*SLVAL is the last valid sequence and reflects 

the condition of all three phases prior to 
executing the results of this cycle.*/ 
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t 
STI=Sts[n][O]; /* To be used as STATE 1 in the interrupt timer-isr*/ 
STl=Sts[n][l]; /* To be used as STATE 2 in the interrupt timerl-isr*/ 
ST2=Sts[n][2]; /* To be used as STATE 3 in the interrupt timer2_isr*/ 
STF=Sts[n][3]; /* To be used as STATE 4 in the interrupt timer3_isr*/ 
RESULT[mann1][2]=TK, /*This time will be used in timerl-isr to determine timer-set 

FSSULT[rnannl][4]=TKl; 
value*/ 

value*/ 
/*This time will be used in timer2-isr to determine tha-set 

I 
else 

STI=Sts[n][3]; /* To be used as STATE 1 in the interrupt timer-isr*/ 
STl=Sts[n][2]; /* To be used as STATE 2 in the interrupt timerl-isr*/ 
Sl2=Sts[n][ 11; /* To be used as STATE 3 in the interrupt timer2-isr*/ 
STF=Sts[n][O]; /* To be used as STATE 4 in the interrupt timer3_isr*/ 
RESULT[mannl][2]=TKl; 

RESULT[mannl][4]=TK; 

/*This time will be used in timerl-isr to determine timer-set 

/* This time will be used in timer2-isr to determine timer-set 
value*/ 

value*/ 
1 

TOl=T0/2; /*This time will be used in timer-isr and timer3-isr for the timer-set value*/ 

SLVAL=STF; /*Setting up last valid State for next cycle*/ 

RESULT[mann l][O]=TO 1; 
RESULT[mannl][ l]=STI; 
FESULT[mann 1][3]=STl; 
RESULT[mann1][5]=ST2; 
RESLJLT[mannl][6]=TOl; 
RESULT[mann1][7]=STF; 
RESULT[mannl][S]=us; 

1 

/*This will identify in the timer interrupt routines 
that when us=l, the condition is steady state*/ 

/* ............................................................. */ 
/*This function initially assumes a torque transient case. However, 
if the calculated times are negative, the program jumps to the flux 
transient condition*/ 

void TORQUE-TRAN(Vdc,Ts,T,Tref,F,Fref,AF,Fqs,Fds,Lsm,DT 1 ,Eq,Ed,p,t 1 ) 
float Vdc,Ts,T,Tref,F,Fref,AF,Fqs,Fds,Lsrn,DT 1 ,Eq,Ed,p,t 1 ; 

int us,N,K,Kl,KT,KTl,ipl ,ip2,hilo,hilol; 
float B,C,FVA,TVKtr,TVKti,TVK ltr,TVKl ti,al ,b 1 ,cl ,d 1 ,a2,b2,c2,a3,b3, 
c3,d3,a4,b4,wI,d4,TTKl ,TTK2,h 1 ,TTkt,TTk 1 t,el ,e2,e3,&,e5,e6; 
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/*Determine sign(+ or -) for Table la-lc*/ 
B=( T-Tref); 
C=(fabs(F)-Fref); 

/*Determine flux vector angle*/ 
if (F-f$bs(F)=O) 

else if (Fqs=fabs(Fqs)) 

else 

FVA=AF* lSO.O/PI; 

FVA=AF* 180.0/PI; 

FVA=(AF* lSO.O/PI)+360.0; 

/*Determine value of N for transient condition*/ 
if (FVA>270.0 && FVA<=330.0) 

else if (FVA>330 && FVA<=360.0) 

else if (FVA>=O.O && FVA<=30.0) 

else if (FVA>30.0 && FVA<=90.0) 

else if (FVA>90.0 && FVA<=150.0) 

else if (FVA>l5O.O && FVA<=210.0) 

else N=5; 

N=O; 

N=l; 

N=l; 

N=2; 

N=3; 

N=4; 

if (B=fabs(B)) 

else K=N+ 1 ; 
K1 =K+ 1; 

K=N+4; 

ip l=(K- 1)/6; 
ip2=(K1-1)/6; 

/*This is equivalent to the rem function in MATLAB*/ 

KT=((K-l)-ip1*6)+1; 
KTl =((Kl- 1)-ip2*6)+ 1 ; 

/*Determine b a g  and real parts of States VK and VKl for the torque transient 
case*/ 
TVKtr=(2.0/3 .O)*Vdc*cos((KT- 1)*2.O*PI/3 .O); /*real*/ 
TVKti=(2.0/3 .O)*Vdc*sin((KT- 1)*2.O*PI/3 .O); /*hag*/ 

TVKltr=(2.0/3.O)*Vdc*cos((KTl- 1)*2.O*PI/3 .O); /*real*/ 
TVK 1 ti=(2.0/3.O)*Vdc*sin((KTl- 1)*2.O*PI/3 .O); /*hag*/ 

'E m 

I: 
8 



/*Determine switching times for torque transient case*/ 
al=TVKtr-TVKltr; 
bl =Ts*TVK 1 tr+Fds; 
cl=TVKti-TVKlti; 
dl=Ts*TVKlti+Fqs; 

if (a1 !=O) 
{ a3=fabs(a l);a4=a3 *a3;} 

else a4=0; 

{ c3=fabs(c l);&=c3 *c3;} 
else d = O ;  

if (cl !=O) 

a2=(a4+4); 
b2=((2.0*al *bl)+(2.0*cl*dl)); 

if (bl !=O)  
{ b3=fabs(b l);M=b3*b3;} 

else b4=0; 

(d3=fabs(dl);d4=& *d3; 1 
else d4=0; 

if (dl !=O) 

c2=(M)+(d4)-(FrePFref); 
/*Solving quadratic equation*/ 
el =b2*b2; 
e2=4.0*a2*c2; 
e3=2.0*a2; 
e4=e 1 -e2; 
if (e4 !=O)  
e5=pow(e4,0.5); 
else e5=0; 

if (e3 !=O) 
TTK 1 =-b2+e5/e3; 
else TTK 1 =-b2; 

if (e6 !=O && a2 !=O) 

else TTK2=O; 

eS=((b2*b2)-(4.O*a2*~2)); 

TTK2=-b2 -(~0~(&,0.5)/2.0*a2); 

/*Determine smaller value*/ 
h 1 =TTK 1 -TTK2 ; 

if (TTK1>=0.0 && TTK2>=O.O && h1<0.0) 
TTkt=TTK 1 ; 

else if (TTKl>=O.O && TTK2>=O.O && h1>0.0) 
TTkt=TTK2; 

else if (TTK 1 >=O.O) 
TTkt=TTK 1 ; 

else if (TTK2>=O.O) 
TTkt=TTK2; 

else TTkt=- 1 .O; 

page 16 of 21 
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if (-0 && TTkWO.00001) 
TTkt=o.oooo 1 ; 

TTk 1 FTs-TTkt, 

if(TTklP0 && TTklt<O.OOOOl) 
TTk1t=0.00001; 

hilo=0.0; 
hilol=l.O; 
us=2; /*This will be used in the interrupt handler routines 

to identify that this is a torque transient condition*/ 

iqTTkt>O && " k 1 ~ 0 )  
{ RESULT[mannl][4]=hilo; /*The values for [mann1][4-61 are place holders*/ 

RESULT[mann 1][5]=hilo 1 ; 
RESULT[mann 1][6]=hilo; 
RESULT[mann 1][8]=us; 

if (SLVAL-KT) 
{ SLVAL=KT 1 ; 
RESULT[mann 1 ][O]=TTkt; 
RESULT[mannl][ l]=KT; 
RESULT[mannl][2]=TTk 1 t; 
RESULTEmann 1 3 [3]=KT 1 ; 
RESULT[mann 1][7]=SLVAL;} 

else if (SLVAL=KTl) 
f SLVAL=KT; 
RESULT[mannl][O]=TTklt; 
RESULT[mannl][ l]=KTI; 
RESULT[mann1][2]=TTkt, 
RESULT[mann 1][3]=KT; 
RESULT[mannl][7]=SLVAL;] 

else if (TAB[SLVAL][2]==KT) 
{SLVAL=KTl; 
RESULT[mann l][O]=TTkt; 
RESULT[mannl][ l]=KT; 
RESULT[mann 1][2]=TTk 1 t; 
RESULT[mann1][3]=KTl; 
RESULT[mann 1][7]=SLVAL; 

else if (TAB[SLVAL][4]==KT 
{ SLVAL=KT 1 ; 
RESULT[mann l][O]=TTkt; 
RESULT[mannl][ l]=KT; 
RESULT[mann 1][2]=TTkl t; 
RESULT[mann 1][3]=KTl; 
RESULT[mann 1][7]=SLVAL;} 
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else 
{ SLVAL=KT; 
RESULT[mann I][O]=TTkl t; 
RESULT[mann 1 ][ 1 ]=KT1 ; 
RESULTEmann 1][2]=TTkt; 
RESULT[mann 1][3]=KT; 
RESULT[mann 1][7]=SLVAL;) 

/*RESULT[mannl][O]=This is the time which will be used in timer-isr 
to set the timer-set value. 
RESULT[mann 1][ 1]= This is STATE 1 to be used in timer-isr. 
RESULT[mannl][2]= This is the time which will be used in timerl-isr 
to set the timerl-set value. 
RESULT[mann1][3]= This is STATE 2 to be used in timerl-isr. 
RESULT[mann1][7]= This sets up the last valid state for the next cycle.*/ 

1 

1 

else 
FLUX-TRAN(Vdc,Ts,Fqs,Fds,Lsm,DTl ,Eq,Ed,p,B,C,N,t 1); 

/*... . . . . . . . . .I. I.. ... .. . . . . . .. . . . . . . . . . . .. . . . .... . . . */ 
/*This function initially assumes that the transient case is flux transient. 
However, if the calculated times are negative, the case is a torque and flux 
transient case and the program jumps to the torque-flux-transient case*/ 

void FLUX-TRAN (Vdc,Ts,Fqs,Fds,Lsm,DTl ,Eq,Ed,p,B,C,N,t 1) 
float Vdc,Ts,Fqs,Fds,Lsm,DTl ,Eq,Ed,p,B,C,t 1 ; 
int N; 

int us,Kf,Kfl ,FKf, FKfl ,ip2,ip3,hilo; 
float FVKf?,FVKfi,FVKlfi,FVKl fi,Tkf,Tklf,gl; 

hilo=O; 
us=3; /*This will be used later in the interrupt handlers to 

identi@ that the case is a flux transient case*/ 

if (C==fabs(C)) 
Kf=N+2; 

else Kf-N; 
Kfl =Kf+ 1 ; 

8 
-12 
0) 
m 
t 
B 

ip2=(Kf-I)/6; 
ip3=(Kfl- 1)/6; 
FKf=((Kf- l)-ip2*6)+ 1; 
FKfl=((Kfl- 1)-ip3*6)+ 1 ; 

/*This is similar to the rem function in MATLAB*/ 
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/*Determining real and imag parts of Vk and VK1 for the flux transient 
condition*/ 
FVKfi=2.0/3.0*Vdc*cos((FKf- 1)*2.0*PI/3.0);/*rml*/ 
FVKfi=2.0/3.0*Vdc*sin((FKf- 1)*2.O*PV3.O);/*imag*/ 
FVKl fi=2.0/3.0*Vdc*cos((FKfl- 1)*2.0*PI/3.0)$*real*/ 
FVK 1 fi=2.0/3.O*Vdc*sin((FKfl- 1)*2.0*PI/3.0);/*imag*/ 

g l=(F&)*(FVKfi-FVK 1 fi)+(FqS*(FVKl fi-FVKfi)); 
if (81 !=O) 

else T k F O ;  
TkF(4.0*Lsm*DT 1 /3 .O*p)+(Ts*(-Fds)*(Eq+FVK 1 fi)+(Fqs)*(Ed+FVK 1 fi))/g 1 ; 

if (Tk60 && Tkf<O.OOOOl) 

if(Tk160 && Tklf<O.OOOOl) 
TkFO.0000 1 ; 

Tk 1 f-0.0000 1 ; 

if (TkBO && Tk 1 B O )  
{ RESULT[mann 1][4]=hilo; 
RESULT[mann 1][5]=hilo; 
RESULT[mann 1 ][6]=hilo; 
RESULT[mann 1][8]=us; 

/*RESULT[mann 1][4-61 are place holders*/ 

/*Identifies the condition(flux tran) for the 
interrupt handler*/ 

if (SLVAL==FKf) 
{ SLVAL=FKfl ; 
RESULT[mann I ][O]=Tkf; 
RESULT[mannl][ l]=FKf; 
RESULT[mann 1][2]=Tk 1 f; 
RESULT[mann 1][7]=SLVAL;} 

else iqSLVAL==FKfl) 
{ SLVAL=FKf; 
RESULT[mann l][O]=Tklf; 
RESULT[mann 1][ l]=FKfl ; 
RESULT[mann 1][2]=Tkf; 
RESULT[mann 1 ] [ 7]=SLVAL;} 

else if (TAB[SLVALJ[2]==FKf) 
{ SLVAL=FKfl ; 
RESULT[mann 1 J[O]=Tkf; 
RESULT[mannl][ l]=FKf; 
RESULT[mann 1][2]=Tk I f ;  
RESULT[mann 1 ] [ 7]=SLVAL;} 

-8 
9 -m m 
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else if (TAB[SLVAL][4]==FKf) 
(SLVAL=FKfl ; 
RESULT[mann l][O]=Tkf; 
RESULT[mann 1][ l]=FKf; 
RESULT[mann1][2]=Tkl f; 
RESULT[mann 1][7]=SLVAL; 1 

else 
(SLVAL=FKfy 
RESULT[mannl][O]=Tkl f; 
RESULT[mann 1][ l]=FKfl ; 
RESULT[mann 1][2]=Tkf; 
RESULT[mannl][7]=SLVAL;) 

/*RESULT[mannl][O]=This is the time which will be used in timer-isr 
to set the timer-set value. 
RESULT[mann 1][ 1]= This is STATE 1 to be used in timer-isr. 
RESULT[mann1][2]= This is the time which will be used in timerl-isr 
to set the timerl-set value. 
RESULT[mann1][3]= This is STATE 2 to be used in timerl-isr. 
RESULT[mann1][7]= This sets up the last valid state for the next cycle.*/ 

f 
else 

TORQVE_FLLJX-TFWN(B,C,N); 
1 

/* ....... ............. ... ......... .. . ... ............. .*/ 
/*This function is the remaining condition. The torque-flux 
transient case results in a single state for the entire Ts period*/ 

void TORQUE-FLUX-TRAN(B,C,N) 
float B,C; 
int N; 
(int us,Ktf,ip4,KTF,hiloyhilol ; 
hilo=O; 
hilol= 1 ; 
us=4; /*This is used in the interrupt handler routines to identify 

that the case is a torque-flux transient case*/ 

if (B==fabs(B) && C==fabs(C)) 

else if (B==fabs(B)) 

else if (C=fabs(C)) 

Ktf=N+S; 

Kt+N+4; 

Ktf=N+2; 

else KtfsN+l; 
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ip4=(Ktf- 1)/6; 
KTF=((Ktf- 1 )-ip4*6)+ 1 ; 

SLVAL=KTF; 

RESULT[mann 11 [0]=0.000250 ; /*Ts*/ 
RESULT[mannl][ l]=KTF; 
RESULT[mann1][2]=hilo; /*RESULT[mannl][2-6] are place ho1L-r: 
RESULT[mann 11 [3]=hilo I ; 
RESULT[mann 1][4]=hiIo; 
RESULT[mann 1][5]=hilol; 
RESULT[mann 1][6]=hilo; 
RESULT[mann 1][7]=SLVAL; 
RESULT[mannl][S]=us; 

/*Setting up last valid for next cycle*/ 

/*This is STATE 1 for timer-isr*/ 

} 

/*END OF PROGRAM*/ 

I 
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.SYSTEM jb7; 

.PROCESSOR = ADSp21020; 

.SEGMENT PM /RAM /BEGIN=Ox000000 /Em-OxOOOlFF seg-rth; 

.SEGMENT /PM /RAM /BEGIN=Ox0200 /END=OxO3FF seg-hit; 

.SEGMENT /PM /RAM /BEGIN=Ox0400 /END=OxlFFF segqmco; 

.SEGMENT /PM /RAM /BEGIN=Ox2000 /END=OxFFF segqmda, 

.SEGMENT LDM /RAM /BEGIN=OxOOOO END=Ox3FFF seg-dmda, 

.SEGMENT /DM /RAM /BEGIN=Ox4000 /END=OxSFFF/cheap seg-heap; 

.SEGMENT LDM /RAM /BEGIN=Ox6000 /END=Ox7FFF seg-st& 

.Bank LDMO /wtstates=O/wtmode=internal/BEGIN = 0x00000000; 

.Bank /DMl /wtstates=O/wtmode=htemal/BEGIN = Ox20000000; 

.Bank /DM2 /wtstates=l/wtmode=htemal/BEGIN = 0x40000000; 

.Bank /DM3 /wtstates=O/wtmode=htemal/BEGIN = 0x80000000; 

.Bank /PMO/wtstates=O/wtmode=de=internaVBEGIN = 0x000000; 

.Bank /PMl/wtstates=O/wtmode=de=internaVBEGIN = 0x008000; 

.SEGMENT /PORT /BEGIN=0x40000000 /END=0x40000005 /DM cports; 

.SEGMENT /PORT /BEGIN=Ox400000 10 /END=Ox400000 10 /DM hip-re@; 

.SEGMENT /PORT /BEGIN=Ox4OOOOO 1 1 /END=Ox400000 1 1 /DM hip-regl; 

.SEGMENT /PORT /BEGIN=Ox400000 12 /E~-Ox400000 12 /DM hip-reg2; 

.SEGMENT /PORT /BEGIN=Ox400000 13 /END=Ox400000 13 /DM hip-reg3; 

.SEGMENT /PORT /BEGIN=Ox400000 14 ~~D=Ox400000 14 /DM hip-reg4; 

.SEGMENT /PORT /BEGIN=Ox400000 15 /E~-Ox400000 15 /DM hip-reg5; 

.SEGMENT /PORT /BEGIN=Ox400000 16 /END=Ox4000002 1 /DM hip-regs; 

.SEGMENT /PORT /BEGIN=Ox40000040 /ENJl=Ox40000058 /DM aports; 

.SEGMENT PORT /BEGIN=0x40000060 /END==Ox40000060 /DM adc-a; 

.SEGMENT /PORT /BEGIN=Ox40000068 /END=Ox40000068 /DM adc-k 

.SEGMENT PORT /BEGIN=0x40000070 /END=Ox40000070 /DM dac-a; 

.SEGMENT /PORT /BEGIN=Ox40000078 /ENJl=0x40000078 /DM dac-k 

.ENDSYS; 





LXOd 
AaOd 
LXOd 
LXOd 
LXOd 

LXOd 
UIOd 
LXOd 
LXOd 
LXOd 
L8Od 
LXOd 
mod 
m 
rn 
m 

0 ******** ******** q-=Q 
0 ******** ******** E - w  
0 ******** ******** Q-DPV 

0 ******** ******** e - w  
0 ******** ******** sl.rode 

0 ******** ******** ssaJ-d!q 
0 %******* ******** SSDJ--d?Y 
0 ******** ******** @aJ-d!Y 
0 ******** ******** EsaJ-d!!y 
0 ******** ******** @aJ--d!V 
0 ******** ******** m-d!Y 
0 ******** ******** &J-d!Y 
0 ******** ******** s3mi3 

0 ******** ******+* w-ss 
0 ******** ******** dm!y-a 
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Memory Usage Summaries: 

MemoryType Attribute Total 

ProgramMemory ROM 0 
ProgramMemory RAM 5280 
ProgramMemory PORT 0 
DataMemory ROM 0 
DataMemory RAM 543 

DataMemory PORT 0 

Cross Reference for file -> C:WI-DSPD 1 kUib\O2O-hdr.obj : 

Symbol Type Address Class 

- lib-CB151 PM 000060 static 
- lib-CB7I PM 000058 static 
- lib-FEU PM 000078 static 
- lib-FLTII PM 000090 static 
- lib-FLTOI PM 000080 static 
- lib-FLTUI PM 000088 static 
- lib-IRQOI PM 000040 static 
- lib-IRQ 1 I PM 000038 static 
- lib-IRQ21 PM 000030 static 
- lib-IRQ3I PM 000028 static 
- lib-RSTI PM 000008 static 
- lib-SOW1 PM 000018 static 
- lib-Th4ZI PM 000070 static 
- lib-TMZOI PM 000020 static 
- lib-US1151 PM OOOOe8 static 
- lib-USROI PM OOOOcO static 
- lib-USRI I PM OOOOc8 static 
- lib-USE1 PM OOOOdO static 
- lib-USR3 I PM OOOOd8 static 
- lib-USR4I PM OOOOeO static 
- lib-USR61 PM OOOOR) static 
- lib-USR7I PM OOOOfs static 

lib-int-table DM OOOOOOe9 external 
(C:\ADIpsPD 1 kUibUibc.a:seg-dmda) 

- libqrog-term PM OOOOOe global 
lib-setup-environment PA4 001287 external 

lib-setup-hardware PM 00127b external 

lib-setup2rocessor PM 001224 external 

(C:\ADI-EPD 1 kUibUibc.a:segqmco) 

(C:\ADI-=PE 1 kUibUibc.a:segqmm) 

(C:WI-EPD 1 kUibUibc.a:segqmco) 
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- main PM 000400 external (julie7.o:segqmco) 

Cross Reference for file -> julie7.0: 

Symbol 

- FLUX-TRAN 
- L1 
- L10 
- L11 
- L115 
- L116 
I L117 
- L118 
- L119 
- L12 
- L120 
- L121 
- L122 
- 1.123 
- L124 
- L125 
- L13 
- L14 
- L15 
- L152 
- L153 
- L154 
- L155 
- L165 
- L166 
_. L167 
- L168 
- L169 
- L17 
- L170 
~ 

- L171 
- L172 
- L173 
- L174 
- L175 
- L176 
- L177 
- L178 

PM 
PM 
PM 
PM 
Ph4 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
DM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 

PM OOOB5 global 
000576 static 
0004a2 static 
000548 static 
00086 static 
0008ac static 
0007ef static 
000807 static 
0008 1 f static 
0004fa static 
000837 static 
00084f static 
000867 static 
00087f static 
000897 static 

OOOOOOaf static 
0004fa static 
00050f static 
000548 static 
00093c static 
000919 static 
0008s static 
000904 static 
000a54 static 
00096a static 
00096e static 
00097d static 
00097f static 
000553 static 
0009a 1 static 
0009a3 static 
0009d5 static 
0009d7 static , 

OOOa06 static 
000a08 static 
OOOalb static 
OOOa33 static 
OOOa54 static 



- L18 
- LIS7 
- LIS8 
- L189 
- L19 
- L190 
- L191 
- L192 
- L193 
- L194 
- L195 
- L196 
- L197 
- L198 
- L199 
- L2 
- L20 
- L200 
- L20 1 
- L202 
- L203 
- L205 
- L206 
- L207 

- L209 
- L208 

- L210 
- L211 
- L212 
- L213 
- L214 
- L215 
- L216 
- L217 
- L218 
- L219 
- L220 
- L22 1 
- L222 
- L223 
- L224 
- L225 
- L226 
- L227 
- L228 
- L229 
- L230 

PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 

PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
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00055e static 
OOObd7 static 
000a8e static 
OOOabc static 
000569 static 
OOOaa9 static 
OOOabc static 
OOOacc static 
OOOb12 static 
OOOadd static 
OOOb12 static 
OOOaee static 
OOOb12 static 
OOOaff static 
000b12 static 

000443 static 
000573 static 
OOOblO static 
OOOb12 static 
000b5d static 
OOOb95 static 
OOOf76 static 
000~12 static 
000~40 static 
000c2d static 
000~40 static 
000~51 static 
OOOca7 static 
000062 static 
OOOca7 static 
000~72 static 
OOOca7 static 
000~83 static 
OOOca7 static 
000~94 static 
OOOca7 static 
OOOca5 static 
OOOca7 static 
OOOcb7 static 
OOOcba static 
000d86 static 
OOOd88 static 
OOOd97 static 
OOOd99 static 
OOOdb6 static 
OOOdb8 static 
000dc7 static 



- L23 1 
- L232 
- L233 
- L234 
- L235 
- L236 
- L237 
- L238 
- L239 
- L240 
- L24 1 
- L242 
- L243 
- L244 
- L245 
- L246 
- L247 
- L248 
- L249 
- L250 
- L25 1 
- L26 1 
- L262 
- L263 

- L265 
- L266 
- L267 
- L268 
- L269 
- L270 
- L271 
- L279 
- L280 
- L28 1 
- L282 
- L283 

- L264 

- L284 
- L285 
- L3 
- L35 

- L37 
- L36 

- L38 

PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 
PM 

PM 
PM 
PM 
PM 
PM 
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OOOdc9 static 
OOOdf2 static 
OOOdf4 static 
OOOela static 
OOOeld static 
000844 static 
OOOe46 static 
000e5e static 
OOOe88 static 
OOOe72 static 
OOOe88 static 
OOOe7c static 
OOOe88 static 
000e86 static 
OOOe88 static 
OOOe95 static 
OOOea6 static 
OOOf59 static 
OOOt24 static 
OOOf56 static 
OOOf76 static 
001165 static 
OOOfa6 static 
OOOfa8 static 
001090 static 
001092 static 
001Oa3 static 
0010bO static 
00115d static 
001128 static 
00115a static 
001165 static 
00 12 1 f static 
001 194 static 
001 lb5 static 
0011a3 static 
001 lb5 static 
00 1 1 b2 static 
0011b5 static 

000576 static 
0006a3 static 
000660 static 
0005a3 static 
0005bb static 



- L39 
- LA 
- LAO 
- LA1 
- LA2 
- LA3 
- L44 
- LA5 
- LA6 
- LA7 
- L5 
- L6 
- L7 
- L75 

- L77 

- L79 

- L76 

- L78 

- L8 
- L80 
- L8 1 

- L83 
- L84 
- L85 
- L86 
- L87 

- L82 

- L9 
- LCO 

- SLVAL 

- TAB 

- RESULT 
- RESULT1 

- START 
- STEAD-STATE 

- TORQUI-FLUX-TRAN PM 001 172 global 
- TORQUI-TRAN PM OOObdd global 

clea-intermpt020 PM 0015a6 external 

divsi3 PM 0012eO external 

interrupt020 PM 001515 external 

memcpyDD PM 001399 external 

(C:WI-EPD 1 kUibUibc.a:segqmw) 

(C:\ADI-EP\;! 1 kUibUibc.a:segqmco) 

(C:WI-Dsp\2 1 kUibUibc.a:segqmco) 

(C:\ADI-EP\;! 1 kUibUibc.a:seggmco) 

(C:\ADI--SPD 1 kUibUibc.a:seggmw) 
atanf PM 001492 external 

page6of 16 
PM 0005d3 static 
PM 000573 static 
PM 0005eb static 
PM 000603 static 
PM 00061b static 
PM 000633 static 
PM 00064b static 
DM OOOOOOal static 
PM 000697 static 
PM 0006aO static 
PM 000479 static 
PM 0004% static 
PM 00048a static 
PM 0007~9 static 
PM 000786 static 
PM 0006~9 static 
PM 0006el static 
PM 0006B static 
PM 00048c static 
PM 000711 static 
PM 000729 static 
PM 000741 static 
PM 000759 static 
PM 000771 static 
DM 000000a8 static 
PM 0007bd static 
PM 00076 static 
PM 0004aO static 
DM OOOOOOb6 static 
DM OOOOOOlf global 
DM 00000079 global 
DM 00000006 global 
PM 000940 global 

DM 00000007 global 
PM 000a5a global 



page 7 of 16 

cos€ PM 001463 external 
(C:WI-iDSPD 1 kUibUibc.a:segqmco) 

(C:WI-DSPE 1kVibUibc.a:segjmco) 
exit PM 00137e external 

- idle PM 0015bd external (C:WI-DSP\2IkUibUibc.a:segqmco) 
- main PM 000400 global 
- mann DM OOOOOOe6 global 
mannl DM OOOOOOe7 global 

-JOWf. PM 0013d3 external 

-set_flag PM 001558 external 

sinf PM 001466 external 

(C:WI-DSPD 1 kUibUibc.a:segpmco) 

(C:lAD-DSP\2 1 kUibUibc.a:segqmco) 

(C:WIIDSP\2 1 kUibUibc.a:seggnco) 

- timerl-isr 
- timer2-isr 
- timer3-isr 
- timer-isr 
U - 
u l  
3 
Y 3  
Y 5  
Y 7  
z - 

PM 0006a8 global 
PM 0007ce global 
PM 0008d4 global 
PM 00057a global 

DM 00000000 global 
DM 00000001 global 
DM 00000002 global 
DM 00000003 global 
DM 00000004 global 
DM 00000005 global 
DM 000000e8 global 

Cross Reference for file -> C:WI-DSP\21kUibUibc.a: 

Symbol 

- inits 
- lib-clear-cache 
-1ib-clear-irptl 
- lib-dmbankl 
- lib-setup-hardware 
- lib-setup-memory 
-1ib-setup-modes 
-1ib-setup~rocessor 
- lib-setup-register s 
blk-inits-dm 
blk-initsqm 
end-setup 
finish-inits 
init-blk-dm 
init-blkgm 

Type Address Class 

PM 000208 external (C Support 0bject:seg-hit) 
PM 00122b static 

PM 
PM 001228 static 

000202 external (C Support 0bject:seg-init) 
PM 00127b global 
PM 00124e static 

PM 00124a static 
PM 001224 global 

PM 00122f static 
PM 00126f static 
PM 001279 static 

PM 001246 static 
PM 00127a static 

PM 00126e static 
PM 001278 static 



init-dm 
ini t jm 
zero-bk-dm 
zero-bkjm 

zero-inits-dm 
zero_initsjm 
zerojm 

ZtXO-dm 
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PM 001266 static 
PM 001270 static 

PM 00125b static 
PM 001264 static 

PM 0012% static 
PM 001265 static 

PM 001254 static 

PM 00125d static 

Cross Reference for file -> C:WI-DSP\;!lkUibUibc.a: 

Symbol Type Address Class 

lib-exit-table DM 000001~8 external 
(C:\ADI-=PL2 1 kUibUibc.a:seg-dmda) 

- lib-heap-space PM 000209 external (C Support 0bject:seg-init) 
lib-int-table DM OOOOOOe9 external 

lib-rand-seed DM 000001~7 external 

lib-setup-args PM 0014fc external 

- lib-setup-environment PM 001287 global 
- lib-setup-enno PM 0012a6 static 
-lib-setup-exit PM 001293 static 
lib-setup-heaps PM 0012b5 static 
- lib-setup-ints PM 001298 static 
- lib-semp-rand PM 00128f static 
- lib-setup-stacks PM 0012aa static 
_. lib-stack-length PM 00020 1 external (C Support 0bject:seg-init) 
- lib-stack-space PM 000200 external (C Support 0bject:segginit) 
- lib-swe-rts PM 0012dc global 
enn0 DM 0000021e external 

(C:\ADI-Dsp\;! 1 kUibUibc.a:seg-dmda) 

(C :\ADI-=PD 1 kUibUibc.a:seg-dmda) 

(C:\ADI-=P\2 1 kUibUibc.a:segjmco) 

(C:\ADIIDSPL2 1 kUibUibc.a:seg-dmda) 
defitult-int-table PM 0012a4 static 
loop_thru_heaps PM 0012b7 static 
Pm-heaP PM 0012cf static 
zero-exit-table PM 001296 static 
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Cross Reference for file -> C:WI-DSPDl kUibUibc.a: 

Symbol Type Address Class 

- lib-int-table DM OOOOOOe9 global 

Cross Reference for file -> C:WI-DSPD1kUibUibc.a: 

Symbol Type Address Class 

- divsi3 PM 0012eO global 
- dtoi PM 00135d global 
- dtoui PM 001366 static 
- fixdfii PM 00135d global 
- fixunsdfii PM 001366 global 

float-divide PM 0015~2 external 
(C:WI-EPD 1 kUibUibc.a:seggmco) 

- ldtoi PM 00135d global 
-1dtoui PM 001366 static 

lib-dtoi PM 00166b external 

lib-dtoui PM 001678 external 
(C :\ADI-EP\;! 1 kUibUibc.a:segqmw) 

(C:\ADI-%PD 1 kUibUibc.a:segqmco) 
- modsi3 PM 001321 global 
_. sdiv PM 0012eO global 
- sldiv PM 0012eO global 
S h o d  PM 001321 global 
- Smod PM 001321 global 
- truncdfsi PM 00135d global 
_. udiv PM 0012fd global 
- udivsi3 PM 0012fd global 
- uldiv PM 0012fd global 
- U h O d  PM 001339 global 
- umod PM 001339 global 
- umodsi3 PM 001339 global 
fix-neg 1 PM 0012ee static 
fix-neg2 PM 00132d static 
fixed-up 1 PM 0012EL static 
fixeC-up2 PM 001331 static 
g&-outta-here PM 00131b static 
restore-state PM 0012f7 static 
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Cross Reference for file -> C:WI-DSPDlkUibUibc.a: 

Symbol Type Address Class 

- lib-rand-seed 
- rand 
- srand 
restore-state 

DM 000001~7 global 
PM 001373 global 
PM 00136f global 
PM 0013% static 

Cross Reference for file 3 C:WI-DSPDlkUibUibc.a: 

Symbol Type Address Class 

- lib-exit-table DM 000001~8 global 
libqrog_tam PM OOOOOe external 

(C:\ADI_DSp\2 1 kUib\O2O-hdr.obj:seg-rth) 
- exit PM 00137e global 
execute-routine PM 001389 static 
find-end PM 001387 static 
finished-table PM 001396 static 
found-end PM 001388 static 
label-1 PM 001391 static 

Cross Reference for file -> C:WI-DSP\2lkUibUibc.a: 

Symbol Type Address Class 

PM 001399 global 
PM 00139c global 
PM 00139f global 
PM 0013a2 global 

PM 001399 global 
PM 0013a5 static 
PM 0013bf static 
PM 001315 static 

PM 0013bb static 
PM 0013cl static 

PM 0013cb static 
PM 0013dl static 

PM 0013~7 static 
PM 0013cd static 

PM 0013b4 static 
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Cross Reference for file -> C:ViDI-DSPDlkUibUibc.a: 

Symbol Type Address Class 

float-divide PM 0015~2 external 
(C:\ADIpsPD 1 kUbUibc.a:segpmco) 

(C:WIIDSPD 1kUibUibc.a:seg-dmda) 
effn0 DM 0000021e external 

q o w f  PM 0013d3 global 
al-values DM OOOOOle8 static 
a2-values DM OOOOOlfa static 
check3 PM 00145d static 
determine-R PM 001403 static 
determine-Z PM 00143a static 
determine3 PM 0013e3 static 
determine-m PM 0013eO static 
determine-mp PM 001431 static 
determineq PM 001384 static 
determine-ul PM 00140e static 
determine-& PM 001409 static 
determine-w PM 001413 static 
determine-z PM 0013f6 static 
flow-to-a PM 00142c static 
overflow PM 00145f static 
power-array DM 00000203 static 
restore-state PM 001448 static 
underflow PM 001455 static 
x-neg-error PM 001459 static 

Cross Reference for file -> C:WI-DSPDlkUibUibc.a: 

Symbol Type Address Class 

- singath 
- cosf 
- sinf 
compute-R 
compute-f 
compute-modulo 
computeqoly 
compute-sign 
reg-save 
restore-state 
sine-data 

PM 001473 static 
PM 001463 global 
PM 001466 global 

PM 001483 static 
PM 00147d static 

PM 001477 static 
PM 001486 static 
PM 00148a static 

PM 001468 static 
PM 00148b static 
DM 0000020d static 
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Cross Reference for file -> C:\ADI-DSPU 1 kUibUibc.a: 

Symbol Type Address Class 

float-divide PM 0015~2 external 
(C:\ADI-EPU 1 kUibUibc.a:segqmco) 

- atan2f PM 001495 global 
- atanf PM 001492 global 

adjust-by-AN 
do-divide 
do-division 
f3et-f 
input-error 
overflow 
overflow-tst 
restore-state 
save-stack 
tst-N 

tst-for-eps 
tst-sim-x 
tst-sipy 
underflow 

tst-f 

PM 00146 static 
PM 00149c static 
PM 0014ab static 

PM 00149f static 
PM 0014f6 static 
PM 0014a2 static 
PM 0014ef static 
PM 001497 static 

PM 0014af static 

PM 0014d8 static 
PM 0014b8 static 

PM 0014~6 static 
PM 0014ec static 
PM 0014e9 static 
PM 0014f9 static 

Cross Reference for file -> C:\ADI-DSPU 1kUibUibc.a: 

Symbol Type Address Class 

- lib-argl DM 00000219 static 
- lib-argv DM 00000218 static 
- lib-setup-args PM 0014fc global 
- lib-setup-argv PM 001502 static 
clear-argv PM 001506 static 
init-arg 1 PM 001509 static 
init-argv PM 001507 static 
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Cross Reference for file -> C:\ADI-DSPD 1 kUibUibc.a: 

Symbol Type Address Class 

- interrupt020 PM 001515 global 
- intmpt020f PM 00150f global 
-interrupt02Os PM 001512 global 

lib-faster-int-cntrl PM 00173a external 

lib-int-cntrl PM 0016ba external 

lib-int-table DM OOOOOOe9 external 

lib-super-int-cntrl PM 001774 external 

lib-sure-rts PM 0012dc external 

(C:\ADI-zPD 1 kUibUibc.a:segjmco) 

(C:\ADI-Dsp\2 1 kUibUibc.a:segjmco) 

(CMDI-EPU 1 kUibUibc.a:seg-dmda) 

(C:MDI_DSp\2 1 kUibUibc.a:segjmco) 

(C:\ADI-Dsp\;! 1 kUibUibc.a:segjmco) 
continue PM 001517 static 
default-int PM 001540 static 
error-return PM 001555 static 
ignore-int PM 001537 static 
real-fimc PM 00152b static 
restore-state PM 001550 static 
retm-address PM 00154~ static 
stop-ints-def PM 001543 static 
stop-ints-ignor PM 00153a static 
stq-in&-real PM 00152e static 
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Cross Reference for file -> C:WI-DSP\;! 1 kUibUibc.a: 

Symbol Type Address Class 

- set-flag 
error-return 
flgo 
flgl 
fl@ 
flg3 

tSt-ck-flgO 
tst_ck-flgl 
tSt_ck-flg2 
tSt-ck-flg3 
tst-flgo 
tSt-flg 1 
&t-fl@ 
tst-flg3 
tSt-tgl-flg0 
tst-tgl-flg 1 
tst-tgl-flg2 
tst-tgl-flg3 

restore-state 

PM 001558 global 
PM 001560 static 

PM 001562 static 
PM 001572 static 
PM 001582 static 
PM 001592 static 

PM 0015a2 static 
PM 001567 static 
PM 001577 static 
PM 001587 static 
PM 001597 static 

PM 00156f static 
PM 00157f static 
PM 00158f static 
PM 00159f static 
PM 00156b static 
PM 0015% static 
PM 00158b static 
PM 00159b static 

Cross Reference for file -> C:WI_DSPY21 kUibUibc.a: 

Symbol Type Address Class 

- clear~interrupt020 PM 0015a6 global 
error-return PM 0015ba static 
restore-state PM 0015b7 static 
stop-in&-real PM 0015bl static 

Cross Reference for file -> C:WI-DSP\Z 1 kU3Alibc.a: 

Symbol Type Address Class 

- idle PM 0015bd global 
idle-loop PM 0015be- static 
restore-state PM 0015bf static 
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Cross Reference for file -> C:\ADI-DSPWkUibUibc.a: 

Symbol 

- float-divide 
- lib-dadd 
- lib-dmult 
- lib-dsub 
- lib-dtof 
-1ib-dtoi 
- lib-dtoui 
- lib-dtox 
- lib-fiod 
-1ib-fiold 
-1ib-itod 
- lib-itold 
- lib-ldtof 
- lib-ldtoi 
- lib-ldtoui 
- lib-ldtox 
- lib-xtod 
- lib-&old 
add-core 
check-MSW 

extradj-man t 
inv&-result 

i n v & j  
largejrod 
normalize 
placx-exp-sign 
shift-x-op 
small-result 
SWP-WS 
zero-resul t 

invert_x 

Type Address Class 

PM 0015~2 global 
PM 001625 global 
PM 0015e7 global 
PM 001624 global 

PM 0015ca global 
PM 00166b global 
PM 001678 global 
PM 001699 global 
PM 0015d6 global 

PM 001687 global 
PM 001687 global 
PM 0015- global 
PM 00166b global 
PM 001678 global 
PM 001699 global 
PM 0016a7 global 
PM 0016a7 global 

PM 001641 static 

PM ooi5d6 giobar 

PM 00164a static 

PM 00163a static 
PM 001646 static 

PM 001637 static 
PM 00163e static 
PM 001620 static 
PM 001645 static 

PM 00162c static 
PM 00165d static 
PM 001629 static 
PM 001621 static 

PM 00165a static 

Cross Refmence for file -> C:\ADI-DSPD 1kUibUibc.a: 

Symbol Type Address Class 

- elTIl0 DM 0000021e global 
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Cross Reference for file -> C:\ADI-DSPUlkUibUibc.a: 

Symbol Type Address Class 

- lib-DC-NOT-EMU-STEP 1 PM 001714 static 
- lib-DC-NOT-EMU-STEP2 PM 001717 static 
- lib-D(-NOT-EMU-STEP3 PM 00171a static 
- lib-DO-NOT-EMU-STEP4 PM 00171d static 
- Iib-DO-NOT-EMU-STEPS PM 001720 static 
- lib-DO-NOT-EMU-STEP6 PM 001723 static 
- lib-int-cntrl PM 0816ba global 
emPtY_staCk PM 001726 static 
int-mt PM 001706 static 
stop-ints PM 0017Od static 

Cross Reference for file -> C:MDI-DSPUl kUibUibc.a: 

Symbol Type Address Class 

- lib-faster-in-cntr 1 PM 00173a global 
int-mt PM 001757 static 

Cross Reference for file -> C:WI-DSP\;! 1 kUibUibc.a: 

Symbol Type Address Class 

- lib-super-in-cntrl PM 001774 global 
int-mnt PM 001788 static 

Cross Reference for file -> C Support Objects: 

Symbol Type Address Class 

- inits 
-lib_dmbankl 
- lib-dmbank2 
- lib-dmbank3 
-1ib-dmwait 

PM 000208 global 
PM 000202 global 
PM 000203 global 
PM 000204 global 

PM 000205 global 

- lib-heap-space 
- libqmbankl 
- libqmwait 
- lib-stack-length 
-1ib-stack-space 

PM 000209 global 
PM 000206 global 

PM 000201 global 
PM 000200 global 

PM 000207 global 
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