Using chloride to trace water movement in the unsaturated zone at Yucca Mountain

PDF Version Also Available for Download.

Description

The nonwelded Paintbrush Tuff (PTn) hydrogeologic unit is postulated as playing a critical role in the redistribution of moisture in the unsaturated zone at Yucca Mountain, Nevada. Fracture-dominated flow in the overlying low-permeability, highly fractured Tiva Canyon welded (TCw) unit is expected to transition to matrix-dominated flow in the high-permeability, comparatively unfractured PTn. The transition process from fracture to matrix flow in the PTn, as well as the transition from low to high matrix storage capacity, is expected to damp out most of the seasonal, decadal, and secular variability in surface infiltration. This process should also result in the homogenization ... continued below

Physical Description

5 p.

Creation Information

Fabryka-Martin, J.T.; Winters, S.T.; Wolfsberg, A.V.; Wolfsberg, L.E. & Roach, J.L. December 31, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The nonwelded Paintbrush Tuff (PTn) hydrogeologic unit is postulated as playing a critical role in the redistribution of moisture in the unsaturated zone at Yucca Mountain, Nevada. Fracture-dominated flow in the overlying low-permeability, highly fractured Tiva Canyon welded (TCw) unit is expected to transition to matrix-dominated flow in the high-permeability, comparatively unfractured PTn. The transition process from fracture to matrix flow in the PTn, as well as the transition from low to high matrix storage capacity, is expected to damp out most of the seasonal, decadal, and secular variability in surface infiltration. This process should also result in the homogenization of the variable geochemical and isotopic characteristics of pore water entering the top of the PTn. In contrast, fault zones that provide continuous fracture pathways through the PTn may damp climatic and geochemical variability only slightly and may provide fast paths from the surface to the sampled depths, whether within the PTn or in underlying welded tuffs. Chloride (Cl) content and other geochemical data obtained from PTn pore-water samples can be used to independently derive infiltration rates for comparison with surface infiltration estimates, to evaluate the role of structural features as fast paths, and to assess the prevalence and extent to which water may be laterally diverted in the PTn due to contrasting hydrologic properties of its subunits.

Physical Description

5 p.

Notes

INIS; OSTI as DE99002608

Source

  • High-level radioactive waste management, La Grange Park, IL (United States), 11-14 May 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99002608
  • Report No.: LA-UR--98-4084
  • Report No.: CONF-9805180--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 350840
  • Archival Resource Key: ark:/67531/metadc678649

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 18, 2016, 5:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fabryka-Martin, J.T.; Winters, S.T.; Wolfsberg, A.V.; Wolfsberg, L.E. & Roach, J.L. Using chloride to trace water movement in the unsaturated zone at Yucca Mountain, article, December 31, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc678649/: accessed July 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.