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Aspherical bubble dynamics and oscillation times 
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ABSTRACT 

Novel features of asphericai bubble dynamics are explored Time-resolved experimental photographs and simulations of 
large aspect ratio (length:diametex -20) cylindrical bubble dynamics are presented. The experiments aud calculations 
exhibit similar dynamics. A small high-presm cylindrical bubble initially expands radially with hardly any axial motion. 
Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial 
motion. The &rowthcollapse period of these very aspherical bubbles differs only slightly from twice tbe Rayleigh collapse 
time for a spherical bubble with an equivalent maximum volume. This fact j d e s  using the temporal inwd between 
the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, 
hydrophone measurements can provide an estimate of the bubble energy even f a  aspherical bubbles. The prolongation of 
the oscihtion period of bubbles near d i d  boundaries relative to that of isolated spherical bubbles is also discussed. 

Keywordtc aspherical dynamics, bubble dynamics, bubble energy, bubble oscillation period, cavitation, cylindda 
dynamics, hydrodynamics laser-medical applicatiaas,nWnerical methods 
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1. INTRODUCTION 

The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue 
boursdaries, in vessels, etc., which introduce aspherical dynamics. It is, on the other hand, desirable to be able to determine 
a bubble's volume and energy by very simple means. The bubble oscillation period can be determined from hydrophone 
measurements of the pressure pulses emitted at bubble genezition and collapse. For spherical bubbles, the relation between 
bubble volume (radius) and oscillation period can often be approximated by the Rayleigh equation.'2 Bubbles associated 
with medical applications of lasers often have cylindrical geometry. Examples include long-pulse infrared laser 

and short-pulse water breakdown experiments? We have checked the accuracy of the Rayleigh relation for 
aspherical dynamics by experimental and numerical investigations of cylindrical bubble dynamics in an infmite fluid 
volume and of initially spherical bubbles near a wall and in a tube. For isolated cylindrical bubbles, we found that the 
Rayleigb model is a surprisingly good approximation. On the other hand, our studies indicate nearby planar and tubular 
walls sisnificantly increase the bubble oscillation period over that of Rayleigh's model. Nev&less, if information on the 
location of the bubble with respect to a d y  wall is available, coerectiolls to tiSe Rayleigh collapse time allow an estimate 
of the bubble energy scale from hydrophone signaJs even in this case. 

For a spherical cavitation bubble, Rayleigh's model gives a coilapse time6 

whem pv <e p, ; p, p I ,  p,, and R, are the fluid density, background fluid pressure, effective pressure of vapor and gas 
within the bubble which is assumed constant, and maximum radius of the bubble respectively. The bubble energy scale is 

where V, is the maximum bubble volume. The time difference between the actcouStic wave emitted at bubble creation and 
the wave emitted upon collapse is 2Tc. Thus, fava  spherical bubble, a hydrophone measurement of the interval between 
the acoustic signals associated with bubble creation and collapse provides a convenient measure of the bubble radius, 
volume, and energy. 

hes In S a .  2. and 3., we describe experimental and numerical studies of aspherical bubble dynamics at the Medmusc 
Lasenentrum Lubeck (Mu) and Los Alamos National Laboratory (LANL), respectively. Tbe hnplications of our studies 
are discussed in Sec. 4. Our main conclusion is that experiments and simulations both demonstrate that, if an q u i d a t  
spherical radius is appmpiately &fw Eq. (1) is a good approximation even f a  large aspect ratio cylindfical bubble. 

(2) = 5 (p-  - pv),  

. . .  



In addition, by using a correction procedure, Eq. (1) can be used for bubbles near solid planar walls. The reasons 
underlying the interesting dynamics of cylindrical bubbles are discussed in appendices. 

2. EXPERIMENTS 

2.1. Cyiindricai bubbles 

In photodisuption with ullrashort laset pulses, the breakdown region is elongated by self-focusing effects, and the bubbles 
produced by the expansion of the plasma generated during breakdown have a conical or even cylindrical shape?.' In order 
to check whether Eq. (1) may be used to obtain the bubble volume of cylindrical bubbles by measuring their oscillation 
period, we created bubbles with a large aspect ratio and recorded their dynamics by high-speed photography. 

The bubbles were generated by focusing N&YAG laser pulses (X = 1064 nm) with 30 ps duration and up to 4 mJ pulse 
energy into a cuvette filled with distilled water. To minimize spherical aberrations, an ophthalmic contact lens was built 
into the cuvette wall? We used a focusing angle of 4' and large pulse enexgies to produce stcongly elongated plasmas and, 
hence, cylindrical bubbles. The bubbles were imaged with 2x m a g n i f i i  on the photocathode of ao image converter 
camera (Hadland Photonics, Imacon 792, equipped with a Nikon 1050.8 macro lens), and the bubble oscillations were 
recorded with a framing rate of u>o,ooO s-'. The bubble volume was determined far each m e  assuming rotational 
symmetry of the bubbles around the optical axis of the laser beam? 

Figure 1 presents a photographic series of the bubble dynamics at laser pulse energk of 1 mJ and 4 mJ. The bubbles have 
a strongly aspherical shape during most of their life cycle. Initially they expand radially with hardly any axial motion. 
Then, afte? reaching their maximum volume, they CoUapse along their long axis with relatively slow radial motion. Figure 
2 shows the temporal evolution of the bubble length and diameter for the photo series of Fig. lb. Both the length 
diameter am in different degrees, asymmetric for the expansion and collapse phases of the cylindrical bubble. The 
temporal evolution of the bubble volume, howevex, is more symmetric. This symmetry is demonssrated by plotting the 
equivalent diameter of a spherical bubble which has at each time the same volume as the cylindrical bubble investigated 
experimentally. In Fig. 3, the evolution of the equivalent spherical diameter of the cylindrical bubble of Fig. lb is 
compared to the diameter-time curve of a spherical bubble with the same oscillation time. The curve for the spherical 
bubble is almost perfectly symmetric, whereas the curve for the cylindrkd bubble is slightly asymmetric. The cylindrical 
bubble initially grows faster (due to the larger surface area of the initiating plasma), reaches its maximum size slightly 
before half of the collapse rime has passed, and collapses somewhat more slowly than the spMcal bubble. ?be maximum 
size of both bubbles is, however, almost the same. 

The oscillation period of the very asymmetrical bubble of Fig. l b  (length to diameter ratio -2&1 initially and 5:l for the 
expanded bubble) only differed by 1.2% from twice the Rayleigh collapse time for a spherical bubble with an equivalent 
maximum volume. The oscillation time thus depends almost exclusively on the bubble volume and hardly at all on the 
bubble shape. This remarkable mult  jusaes the use of Eq. (1) to estimate the maximum bubble volume of aspherical 
bubbles h m  the time interval between the awustic signals emitted upon bubble creation and collapse. We will see in Sa. 
22, however, that this applies for bubbles prodwed in the bulk of a liquid, but not for bubbles near material boundaries. 

The fact that bubble wall segments with lars curvature collapse rapidly and segments witb smaU curvature collapse slowly 
leads to an invagination of the bubble ends at the long axis of the cylindrical bubble and thus bears a possibility for jet 
formation. This behavior becomes obvious in Fig. la where, after about 50 ps, a flattening of the bubble ends is observed. 
This flattening indicates that the ends have become concave and are beginning to jet inward. The tip of the jet is mostly 
obscuted in the photographs and is only faintly visible after 55 ps and again during rebound after collapse at 65 p. A 
similar feature was noted previously in bubble collapse near a solid boundary. Jet formation occurs very early when the 
bubble is elongated with the long axis perpendicular to the boundary. ll*D 
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Fig. 1. Cylindrical bubble dynamics induced by 30-pa NkYAG lasa pulsea of a) 1 mJ and b) 4 ml pulse energy which were focused 
into distilled woterwith afocusing angle of4'. The laser light was incident fiom the left 
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Fig. 2. Axial length and radial diameter SE a function of time for the cylindrical bubble photo series of Fig. lb. Also plotted is the 
diameter of a spherical bubble which has at each time the same volume as the cylindrical bubble. 



Fig. 3. Equivalent spherical diameter of the cylindrical bubble in Fig. lb d diameter-thc curve for 8 spMcal bubble (data taken 
from Ref. 10). To faditare comparisoR themasammu data for thc sphaical bubble mmrmabd. using Jzq. (1X tourhibit thesame 
co~ t imeas~cy l ind r i ca lbubb le .  

2.2. Bubbles near solid boundaries 
-- 

When a cavitation bubble is produced in the vicinity of a sdidboundary, its collapse time is plonged as compared to the 
collapse of an isolated spherical bubble. 

between bubble and boundary, where s is the distance between bubble center and boundary at the time of bubble 
generation, and R, is the maximum bubble radius. Rattray'' derived an approximate relationship betwem the prolonged 
collapse Td andy 

The pmlongation facm k depends on the dimenshless distaace 
y=sl%, (3) 

- TE = k = 1+ 0.41- 1 
TC 2Y * 

(4) 

where Tc is the collapse time of an isolated spherical bubble. In a previous publi~arion,'~ we showed that Eq. (4) yields 
satisfactury Tesults for el. It can, however, not be correct for very small y, because itpredictsk + - for 7+ 0. 

In order to &tennine the prolongation factor k with better precision than in Refs. 14 and 15, we measured the bubble 
oscillation peaiods for laser-produced bubbks as a function of yin a setup similar to that used in the expuiments described 
in Sec. 2.1.* The bubbles were produced by N&YAG laser pulses with 6 ns duration and 5 m3 energy which were focused 
into a cuvette of W e d  water with a convergence angle of 2 2 O .  The large focusing angle was chosen to produce highly 
spherical bubbles. The pulse-to-pulse fluctuations of the energy were e96 and we assumed that, regardless of y. the 
volume fluctuatiam of the laser-generated bubbles also remained within these limits. To avoid vignetting of the laser beam 
at the solid bun-, which would change the effective laser pulse energy, we focused the laser pulses through a glass 
plate (microscope siide) submerged into the cuvette. The glass plate served as the solid bunday (Fig. 4). The bubble 
oscillation periods 2Tg at various yvalues were determiaed using a PVDF hydrophone (CERAM minhhm hydrophone) to 
detect the pressure pulses emitted upon bubble generation and collapse. The reference time 2Tc for spherical bubble 
oscillations was determined at p 20. 

Figure 5 shows the results of our measurements compared to the predictions of Eq. (4). The agreement is fairiy good for 
P I ,  but foryel, the actual collapse times (or A- valua, respectively) are much smaller than predicted. Note that the 
collapse time has a maximum at y = 1 and decreases for y+O. This behavior is probably related to the fact that the 
collapse at y=  0 is nearly hemispkrical, that is, exhibits less deviation from spherical than the collapse aty= 1. (In truly 
inviscid flow, there is no viscous boundary layer and the collapse of a hemispkricai bubble on a wall is identical to the 
collapse of an isolated spherical bubble.) 
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Fig. 4. Schematic of the experimental setup used for the investigation of bubble oscillation times near a solid wall. 
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Fig. 5. Prolongation factor, k , for the oscillation period of a bubble near a solid wall plotted against the distance to the wall normalized 
by the maximum bubble radius. The dashed line qesen ts  the predictions of Eq. (4). 



3. SIMULATIONS 

3.1. Cylindrical bubbles 

Using the LANL MESA2D code, we have numerically investigated the dynamics of cylindrical bubbles geometrically 
similar to those of the Mu experiments described in Sec. 2.1. The initial shape of the volume in the simulations was a 
cylinder with hemispherical end caps. Two initial conditions w m  examined: a water cavity filled with a x=1.4 pedect gas 
at a pressure of either 50.5 or 505 bars; x is the gas specific heat ratio. We compared the dynamics of these initially 
cylindrical bubbles (initial length to diameter ratio -20: 1) to the dynamics of spherical bubbles of the same initial volume 
and gas fill. Except for the cylindrical cavity shape, these numerical studies weze similar to those we carried out earlier 
with a d high-pressure spherical seed bubble. 14''~1r Our studies concentrated on the purely hydrodynamic aspects of 
asymmetrical bubbb dynamics. In order to focus on hydrodynamics, we have chosen to avoid the potentially important 
issue of geometrical effects on the balance between vaporization and con&nsation of water vapor within the cavity by 
using an ideal gas equation of state for the bubble fill. In doing so, we have given up reaIistic energy accoUnting since the 

water vapor filled b~bble.'~ The symmetrizing effect of surface tension is a dominant feature of bubble dynamics for 
extremely small bubbles, for example, those produced upon explosive Vaporization of melanosomes by lasex pulses. 
Surface tension is, however, negligible for bubbles the Size of those in the expeaiments described in Sec. 2, and it is not 
modeled in the simulations discussed here. 

latent heat of water is large. By using a proper water equation of state, our computational tools can realisticafl Y-a 

Figure 6 shows the MESA simulated evolution of bubble shape for the low (50.5 bar) initial pressure case. The bubble 
retains a cylindrical shape throughout most of the dynamics, but M y  collapses with jet formation inward along the 
cylindrical axis. The behavior in this simulation is similar to that of the experimental photo series of Fig. lb. ?he a@ 
jetting, which is easy to see in the collapse phase of the hulation, is present (but difficult to see) in eXperimental @OW: 
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Fig. 6. Simulated dynamics of a cylindrical warn bubble with an initid lengtkdiametg ratio of 20 and an initial ideal gas fill pressurc 
of 50.5 bar = 5.05 MPa; a) uppa plot - expansion phase and b) lower plot - amtraction phase. 

In Fig. 7, the evolution of bubble shape calculated for the cylindrical bubble with an initial fill pressure of 505 bars is 
displayed. This bubble grows to a more spherical shape (aspect ratio 1.21 at maximum expansion) before u3-g with 
an inward jet developing along the cylindrical axis. With still higher initial pressures, the bubble dynamics becomes ne-@ 
spherical at all but very early and very late times in the growthcollapse cycle. 



Fig. 7. Simulated dynamics of a cylindrical bubble with an initial 1ength.diameta ratio of 20 and an initial ideal gas fill pressure of 
505 bar = 5055 MPa; a) uppex plot -- expansion and b) lowet plot - contractian. 
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Fig. 8. plot of volume VI. time for p a i d  sphbcal and cylindrical simulations. Thc initial volume was identical m the four cases 
shown. but om pair was run with 50.5 bar initial pressure and the second with 505 bar initial pressure. The cylindrical cases are 
those of Figs. 6 and 7. 



We have plotted inFig. 8 the volume as a function of time forthe four cases simulated. Of greatest interest is the fact that, 
as in the MLL experiments of Sec. 2.1, the collapse times are quite similar between the cylindrical and sphdcal cases, 
Initialiy the cylindrical bubbles, having more surface area than the spherical bubbles of the same volume, i~~reasc theii 
volume faster than do the spherical bubbles. ?his situation occurs because the local pressure gradients, and therefore the 
local velocities, must be similar in both cases. When the bubble reaches its maximum volume, the wmr surrounding the 
bubble is quiescent in the spberical case. At the maximum spherical volume, all of the kinetic energy has been converted 
to potential energy. In the case of a cylindrical bubble, the bubble is stiU growing radially after it has b e p  to contract 
axially. In the cylindrical case, the kinetic energy invested in the fluid is never completely converted to bubble potential 
energy because of the lack of quiescence at the maximum volume. As a dt, the maximum bubble volume for a given 
initial seed bubble energy is somewhat larger for a spherid bubble than far a cylindrical bubble. This minor difference in 
the partition of energy makes the growtb-collapse oscillation time of a cylindrical bubble less than that of a spherical 
bubble of equivalent initial energy, but only slightly less. As in the experiment Fig. 3), the cylindrical bubble reaches its 
maximum slightly before half of the oscillation cycle has passed. 

3.2. Bubbles near solid boundaries I 
The Mu experimental results of Sec. 2.2 can be compared for specitic y values to data from numerical investigations on 
bubble dynamics. Szymczak et al.” calculated the dynamics for y =1 and were able to follow the dynamics after the jet hit 
the opposite bubble wall. In this way, they could determine when the minimum bubble volume was reached and the 
collapse pressure transient emitted. The calculations yielded a prolongation factor kl.20, in good agreement with the 
experimental result, k = 1.18fo.02. 

-_ 
We simulated with MESA2D bubble dynamics nema rigid wall for y -1.1 with three slightly Werent situations:z - 

1. Collapse of an initially spherical empty cavity of radius 1 mm (that is, a problem ccnresponding to Rayleigh void 
collapse except near a wall), 

2. a lmm radius spbeaical cavity with a low-pressure gas fill, and 
3. the growthallapse cycle of a smaU high-pressure (505 bar) spherical seed bubble with the pressure chosen so that, m 

the absence of acoustic emission, the maximum volume wouldcorrespond to that of the bubble of case 2 in the absence of 
a wall. The k values deduced from these three numeaical simulations are 1.18,1.19, and 1.16, respectively; all in good 
agreement with both the Mu, measurements and the simulation of Szymczak eta 

We have also simulated the effect of both elastic and rigid tubular walls on the bubble osciUation period of an initially 
high-pressure seed bubble.= These cases approximate the configutation of many faboratory and clinical laser medical 
applications. As one might expect, the period prolongation of nearby tubular walls is much saonger than that of a nearby 
planar wall. For comparable bubble-wall distances, a planar wall produces a prolongath of do9b and a tub& wall a 
prolongation of -2x. 

Knowledge of the prolongation factor k(y) (Fig. 5) and of the stand-off distance s between the initial bubble centex and a 
planar solid boundary allows the determination of the cavitation bubble Size 8,  by measuring the oscillation period 2 Ti 
with a hydrophone. In a first step, approximate values R- andy, are calculated fmm the experimental data Using Eq. (1). 
Correction of 2 Ti by the factor kl(yJ yields the more precise values R- and ys Correction of 2T‘ by the factor 
yields R,, and so on, until the required precision is reached. ~ 

4. SUMMARY 

Both experiments and simulations show convincingly that the oscillation period of large aspect ratio cylindrical bubbles 
differs only slightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. 
(We have not rigorously proved that one cannot imagine extremely long cylindrical bubbles for which this is not true. We 
are convinced, however, that it is true for bubbles of interest in laser medical applications.) The oscillation time depends 
almost exclusively on the bubble volume and hardly at all on the bubble shape. ?his remarkable result justifies the use of 
Eq. (1) to estimate the maximum bubble volume of aspherical bubbles from the time interval between the acoustic signals 
emitted upon bubble creation and collapse. In order to use Eq. (l), one needs only to define the equivalent maximum 
bubble radius as 

I 



where V, is the W u m  bubble volume. 'Ihe bubble energy of large aspect ratio cylindrical bubbles can be estimated 
using Eq. (2). This approximation will be also be useful for non-spherical bubbles with shapes other than cylindrical. 
Miles showed that Eq. (1) can be applied to the collapse of cavities of arbitrary shape! 

This approximation cannot, however, be used with bubbles near m a t e d  interfaces. Experimental, analytical, and 
numerical investigations show that nearby rigid walls significantly increase the bubble growth-collapse period. This 
prolongation of the period is a systematic function of the distance of the bubble from the wall, As a result, if one knows 
the distance of a bubble from a nearby wall and the prolongation factor k(y), one can relate the measured growth-collapse 
oscillation period demined from hydrophone signals to the maximum bubble volume and thereby to the bubble energy. 

Bubble dynamics close to a solid boundary exhibits larger deviations from twice the Rayleigh collapse time than does the 
dynamics of large aspect ratio cylindrical bubbles. This result is, at first sight, Surprising since the deviations of the bubble 
shape from spherical for a bubble near a wall are less obvious than in the case of isolated cylindrical bubbles. Closer 
investigation reveals, however, that bubble collapse at a material boundary is accompanied by the development of toroidal 
flow (ring vortex)" which distorts and delays flow toward the bubble center. A similar distortion is not observed in 
cylindrical bubble collapse. A second reason for the delayed collapse of a bubble close to a wall is that the wall inhibits 
fluid flow toward the bubble. The flow around an isolated cylindrical bubble is, in contrast, governed only by the 
difference between the hydrostatic pressure and the pressure within the bubble and by inertial forces. 

The investigations in this paper focused on bubbles generated by laser pulses considerably shorter than the bubble 
oscillation time. The bubble dynamics is modified when free-running laser pulses with a duration comparable to the 
bubble osciliation time are used. 

For fibts delivery, the accuracy of Eq. (1) was confirmed when Q-switched holmium laser pulses were used fop bubble 
generation? When EcYSGG pulses were used, the oscillation times were, however, shorter than the collapse t he  
predicted by Eq. (1): This phenomenon is not yet completely explained and may be associated with violation of the 
conditions for which Eq. (1) is valid.6 

Further aspects of cylindrical bubble dynamics arc discussed in the appendices. In Appendix A we demonstrate that one 
cannot create in cylindrical geometry a radial collapse model analogous to the spherical Rayleigh model. In Appendix B, 
we discuss the curious fact that cylindrical bubbles move ever closer to spherical. 
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APPENDICES 

A. There is no cylindrical analog of Rayleigh cavity collapse 

Rayleigh's cavity collapse model is extremely useful in bubble dynamics, but it cann~l be naively applied to non-spherical 
bubbles, While it may seem intuitively obvious that a similar model can be used for cylindrical bubbles of "large enough" 
length to diameter ratio, one cannot create a cylindrical analog of the spherical Rayleigh paradigm. Following the 
development of the Rayleigh model demonstrates the impossibility of a cylindrical analog. For the spherical case, the 
velocity of flow and its associated velccity potential are, 

where R and R are the cavity wall location and velocity. The cylindrical analogs are 

The required boundary conditions cannot be satisfied in cylindrical geometry because the potentid does not vanish at 
infinity. This mathematidy rigorous proof of the impossibility of a cyiinQicat model has profound implicationS for the 
dynamics of cylindrical bubbles. 

V, = - d # / c k = - R 2 R / t 2  and 4 = -R2 R / r ,  (A 1) 

V, = -a/ ck = - R R / r  and 4= -RRlnr.  (A.3 



Using insight gained from Eqs. (A.1) and (A.21, together with the experiments and simulations of Secs. 2.1 and 3.1, we 
postulate that the radiarportion of the dynamics of a large aspect ratio cylindrical bubble will behave as if 

This postulated potential leads to the “genedized Rayleigh” cavity wall equation of motion 
v, = -&/ & = -R1’aR / and $=-R1+aR/ra .  (A31 

*. (2 + a) 4 2  + a- P” = 0 RR+- 
2 P 

with the solution 

When a=l, Eqs. (A.4) and (As) reduce to the familiar spherical Rayleigh case. A zeto radial velocity is predicted for 
d, pure cylindical geometry. This result is interesting since we found in our inve.stigarions a very small initial collapse 
velocity for large aspect ratio cyhdrical bubbles; a is rem to the aspect ratio of a cyIindrical bubble of finite length and 
is time dependent. 

In the sphcriccal case, significant fluid dynamics extends over a volume several times that of the bubble. During cavity 
collapse, the bubble potential energy is transformed into fluid kinetic energy 

1 2  APE = P-(V’ - V) = AKE =?eve .  
Given apprapnate ’ definitions for the effective mass, 6, and velacity, v,, Eq. (A.6) provides an accurate description of the 
collapse dynamics. Let v, = R and assume the fluid mass me = p4zR2AR , where AR is the fluid thickness just outside 
the bubble, b obtain 

(A.6) 

R2 =(?)p[(J 2 P” Ro -1Iz. R 

comparison with the the proper solution ofthe spherical Rayleighmodel, that is, m. (AS) with a=l, shows AR = R. ?his 
result justifies the defmition of the Minnaert effective mass, m, = p 4 z R 3 ,  as three times the missing cavity mass and 
demonstrates that the important dynamics associated with a spherical bubble occurs near the bubble. Applying the same 
heuristic a p p m h  to the cylindrical case yields a distinctly - different - dt. One finds the collapse velocity equation 

(A.8) 

In order for this result to agree with Eq. (A.3, 
AR=(%)R. 

In cylindrical geometry with u=O, the predicted radial region of bubble influence extends to infinity. 

Consider a large aspect ratio cylindrical bubble of radius R and half-length Z. Viewed from a sufficiently great distance, 
the bubble will appear as a point with dynamics similar to those of a spherical cavity. For the sake of this discussion, 
assume that the fluid flow dynamics talres on a spherical character at a distance -22 from the bubble center. We expect 
that the flow dynamics wiIl behave as if AR - 22 (equivalently, a - R/(22))  and Eqs. (AS) and (A.8) predict 

(A. 10) 

that is, low radial collapse velocities. The cow-dynamics-occurs predominately in the regions of smd radius of 
curvature at the ends of cylindrical bubbles. A large fluid mas must be accelerated for the bubble collapse normal to the 
bubble axis resulting in a small average radial fluid velocity. In contrast, the axial velocity can be. very high at the bubble 
ends, because Iittle mass is invdved in this motion. 

B. Cyliadrical dynamics moves toward spherical 

Consider a bubble with a surface figure described by the combination of a spherical s d & x  and a PI surface harmonic. 
We assume an inviscid fluid and an ideal gas bubble fill. The bubble surface is 

(B.1) rs(W = RO) + +~(t)p~@), 



wherep=cos8. Let p-betheliquiddensityand pI thepressureatin6nity. Thebubblecontainsaconstantgasmass 
with a polytropic exponent 2. Tbe equations of motion axe the Rayleigh-Plesset equation6 

R R  4 + 3-4--% 0. 
R R  03.3) 

Equation (B.3) is valid only f a  gnaU a m p l i h ~ & . ~  & a CoCIcrete example, we examine tbe initial bubble 
geometryR(O)=R, andq(O)=A,,,sothat rs(6,0)=R0 + 4 P 2 @ )  n,equivalently, 

and 

The R tern in ~ q .  p.3) can be neglected during the early phase of cow (and late phase of growtfi) giving 

a,=kR,withkconstant,isasolution. Thus, Z=Ro(l+k) and R = R 0 ( 1 - k / 2 )  forsmalltima. Theaxresponding 
bubble lengthxhmeter aspect ratio of this cylindrical bubb& is rhea 

Z=rs(O,O)=R, +A@P,(l)=Ro +A@ 03.w 

R = r g ( ~ 1 2 , O ) = R ,  + A @ P 2 ( 0 ) = R O - 4 / 2 .  (B.4b) 

& / % - & / R * O ;  (B.7) 

z l + k  z ---=os 
R 1 - k / 2  R ,  (8.8) 

Near the bubble maximum its volume, but not its shape. changes with time. Figure 9 is a plot of the length to dhmeter 
ratio as a function of normalized time for the experimental photo k e a  of Fig. lb. The bubble aspect ratio is a weak 
function of time aftex the bubble expansion in qualitative agreement with Eqs. (B.7) and (B.8). 
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Fig. 9. Time evohtkm of the aspect ratio, lea@diamekr, for the e q e r h m h l  @to saier of Fig.lb. The simulhns of Figs. 6 
and 7 have a similar aspect ratio history. 

Later in the dynamics the velocity product tenn of Eq. (B.3) causes bubble shape changes. More importantly, time reversal 
changes the S@ of the velocity product tern, since k is an odd function and R an even function oft. By about 70% of 
the collapse  time,^,, the magnitude of the normalized velocityJradius ratio, h,, l R  , is above 2 and increasing rapidly 
with time Causing a rapidly changing aspect ratio. As a result of the change of sign of the velocity term, a tiny high- 
pressure cylindrical bubble wil l  expand rapidly in the Fadial direction. Near its maximum volume, it will expand and then 
contract rather slowly with little shape change. Finally, during the later stages of collapse, it will rapidly contract axially. 



Figure 9 exhibits the dynamics history. The aspect ratios as a function of rime for the MESA simularim of Figs. 6 and 7 
are similar. During the entire dynamics histmy, the lengthhdius ratio of the cylindrical bubble constantly decreases, that 
is, the bubble dynamics bxings the bubble evex nearer spherical. (Actually, inertial effects cause the dynamics to overshoot 
spherical. The axial collapse at late time drives the aspect ratio to less than unity producing inward jeuing along the axis.) 
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