Ceramic stabilization of hazardous wastes: a high performance room temperature process

PDF Version Also Available for Download.

Description

ANL has developed a room-temperature process for converting hazardous materials to a ceramic structure. It is similar to vitrification but is achieved at low cost, similar to conventional cement stabilization. The waste constituents are both chemically stabilized and physically encapsulated, producing very low leaching levels and the potential for delisting. The process, which is pH-insensitive, is ideal for inorganic sludges and liquids, as well as mixed chemical-radioactive wastes, but can also handle significant percentages of salts and even halogenated organics. High waste loadings are possible and densification occurs,so that volumes are only slightly increased and in some cases (eg, incinerator ... continued below

Physical Description

9 p.

Creation Information

Maloney, M.D. October 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

ANL has developed a room-temperature process for converting hazardous materials to a ceramic structure. It is similar to vitrification but is achieved at low cost, similar to conventional cement stabilization. The waste constituents are both chemically stabilized and physically encapsulated, producing very low leaching levels and the potential for delisting. The process, which is pH-insensitive, is ideal for inorganic sludges and liquids, as well as mixed chemical-radioactive wastes, but can also handle significant percentages of salts and even halogenated organics. High waste loadings are possible and densification occurs,so that volumes are only slightly increased and in some cases (eg, incinerator ash) are reduced. The ceramic product has strength and weathering properties far superior to cement products.

Physical Description

9 p.

Notes

INIS; OSTI as DE96013965

Source

  • 6. international symposium on hazardous waste management: a global perspective, Odense (Denmark), 10-13 Sep 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96013965
  • Report No.: ANL/DIS/CP--90911
  • Report No.: CONF-9609120--1
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 383038
  • Archival Resource Key: ark:/67531/metadc678522

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Dec. 16, 2015, 4:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Maloney, M.D. Ceramic stabilization of hazardous wastes: a high performance room temperature process, article, October 1, 1996; Illinois. (digital.library.unt.edu/ark:/67531/metadc678522/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.