Monte Carlo testing of unresolved resonance treatment for fast and intermediate critical assemblies

PDF Version Also Available for Download.

Description

The purpose of this study is to investigate the eigenvalue sensitivity to changes in unresolved resonance treatment by comparing RACER Monte Carlo calculations for several fast and intermediate spectrum critical experiments. Calculations performed using smooth, dilute-average, tabulated cross sections were compared with calculations using the probability table method to produce stochastically generated resonance cross sections in the unresolved resonance region. The use of the probability table method is superior to the dilute-average cross section method for representing the unresolved resonance region because the table method properly accounts for resonance self shielding; thereby, reducing the effectiveness of the cross sections in ... continued below

Physical Description

11 p.

Creation Information

Weinman, J. P. October 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Knolls Atomic Power Laboratory
    Publisher Info: Knolls Atomic Power Lab., Schenectady, NY (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The purpose of this study is to investigate the eigenvalue sensitivity to changes in unresolved resonance treatment by comparing RACER Monte Carlo calculations for several fast and intermediate spectrum critical experiments. Calculations performed using smooth, dilute-average, tabulated cross sections were compared with calculations using the probability table method to produce stochastically generated resonance cross sections in the unresolved resonance region. The use of the probability table method is superior to the dilute-average cross section method for representing the unresolved resonance region because the table method properly accounts for resonance self shielding; thereby, reducing the effectiveness of the cross sections in the region. The unresolved resonance region is typically found in the intermediate and fast energy range. Eleven benchmark critical assemblies that span a range of {sup 235}U enrichments (93.8 to 10.2%) and four highly enriched {sup 239}Pu and {sup 233}U assemblies were analyzed. These benchmarks were chosen to accentuate the reactivity importance of the unresolved resonance range.

Physical Description

11 p.

Notes

INIS; OSTI as DE99001567

Source

  • International conference on the physics of nuclear science and technology, Long Island, NY (United States), 5-8 Oct 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99001567
  • Report No.: KAPL-P--000089
  • Report No.: K--98083;CONF-981003--
  • Grant Number: AC12-76SN00052
  • Office of Scientific & Technical Information Report Number: 307909
  • Archival Resource Key: ark:/67531/metadc678474

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 18, 2016, 2:48 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Weinman, J. P. Monte Carlo testing of unresolved resonance treatment for fast and intermediate critical assemblies, article, October 1, 1998; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc678474/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.