Massively parallel fast elliptic equation solver for three dimensional hydrodynamics and relativity

PDF Version Also Available for Download.

Description

Through the work proposed in this document we expect to advance the forefront of large scale computational efforts on massively parallel distributed-memory multiprocessors. We will develop tools for effective conversion to a parallel implementation of sequential numerical methods used to solve large systems of partial differential equations. The research supported by this work will involve conversion of a program which does state of the art modeling of multi-dimensional hydrodynamics, general relativity and particle transport in energetic astrophysical environments. The proposed parallel algorithm development, particularly the study and development of fast elliptic equation solvers, could significantly benefit this program and other ... continued below

Physical Description

17 p.

Creation Information

Sholl, P.L.; Wilson, J.R.; Mathews, G.J. & Avila, J.H. January 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Through the work proposed in this document we expect to advance the forefront of large scale computational efforts on massively parallel distributed-memory multiprocessors. We will develop tools for effective conversion to a parallel implementation of sequential numerical methods used to solve large systems of partial differential equations. The research supported by this work will involve conversion of a program which does state of the art modeling of multi-dimensional hydrodynamics, general relativity and particle transport in energetic astrophysical environments. The proposed parallel algorithm development, particularly the study and development of fast elliptic equation solvers, could significantly benefit this program and other applications involving solutions to systems of differential equations. We shall develop a data communication manager for distributed memory computers as an aid in program conversions to a parallel environment and implement it in the three dimensional relativistic hydrodynamics program discussed below; develop a concurrent system/concurrent subgrid multigrid method. Currently, five systems are approximated sequentially using multigrid successive overrelaxation. Results from an iteration cycle of one multigrid system are used in following multigrid systems iterations. We shall develop a multigrid algorithm for simultaneous computation of the sets of equations. In addition, we shall implement a method for concurrent processing of the subgrids in each of the multigrid computations. The conditions for convergence of the method will be examined. We`ll compare this technique to other parallel multigrid techniques, such as distributed data/sequential subgrids and the Parallel Superconvergent Multigrid of Frederickson and McBryan. We expect the results of these studies to offer insight and tools both for the selection of new algorithms as well as for conversion of existing large codes for massively parallel architectures.

Physical Description

17 p.

Notes

OSTI as DE95009385

Source

  • Other Information: PBD: Jan 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95009385
  • Report No.: UCRL-ID--119803
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/34202 | External Link
  • Office of Scientific & Technical Information Report Number: 34202
  • Archival Resource Key: ark:/67531/metadc678451

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1995

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 19, 2016, 11:09 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sholl, P.L.; Wilson, J.R.; Mathews, G.J. & Avila, J.H. Massively parallel fast elliptic equation solver for three dimensional hydrodynamics and relativity, report, January 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc678451/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.