Treatment methods and comparative risks of thorium removal from waste residues

PDF Version Also Available for Download.

Description

This study was done to examine the risks of remediation and the effectiveness of removal methods for thorium and its associated radioactive decay products from various soils and wastes associated with DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). Removal of {sup 230}Th from uranium process residues would significantly reduce the buildup of {sup 226}Ra (half-life of 1600 years), and since {sup 230}Th concentrations at most of the important sites greatly exceed the {sup 226}Ra concentrations, such removal would reduce the accumulation of additional radiation risks associated with {sup 226}Ra and its products; and, if treatment also removed {sup 226}Ra, ... continued below

Physical Description

Medium: P; Size: 57 p.

Creation Information

Porter, R.D.; Hamby, D.M. & Martin, J.E. July 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 26 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This study was done to examine the risks of remediation and the effectiveness of removal methods for thorium and its associated radioactive decay products from various soils and wastes associated with DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). Removal of {sup 230}Th from uranium process residues would significantly reduce the buildup of {sup 226}Ra (half-life of 1600 years), and since {sup 230}Th concentrations at most of the important sites greatly exceed the {sup 226}Ra concentrations, such removal would reduce the accumulation of additional radiation risks associated with {sup 226}Ra and its products; and, if treatment also removed {sup 226}Ra, these risks could be mitigated even further. Removal of {sup 232}Th from thorium process residues would remove the source material for {sup 228}Ra, and since {sup 228}Ra has a half-life of 5.76 years, its control at FUSRAP sites could be done with land use controls for the 30--50 years required for {sup 228}Ra and the risks associated with its decay products to decay away. It must be recognized, however, that treatment methods invariably require workers to process residues and waste materials usually with bulk handling techniques. These processes expose workers to the radioactivity in the materials, therefore, workers would incur radiological risks in addition to industrial accident risks. An important question is whether the potential reduction of future radiological risks to members of the public justifies the risks that are incurred by remediation workers due to handling materials. This study examines, first, the effectiveness of treatment and then the risks that would be associated with remediation.

Physical Description

Medium: P; Size: 57 p.

Notes

INIS; OSTI as DE99001161

Source

  • Other Information: PBD: Jul 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99001161
  • Report No.: DOE/EW/00001--T2-Pt.1
  • Grant Number: FG02-96EW00001
  • DOI: 10.2172/290911 | External Link
  • Office of Scientific & Technical Information Report Number: 290911
  • Archival Resource Key: ark:/67531/metadc678379

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • June 14, 2016, 1 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 26

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Porter, R.D.; Hamby, D.M. & Martin, J.E. Treatment methods and comparative risks of thorium removal from waste residues, report, July 1, 1997; United States. (digital.library.unt.edu/ark:/67531/metadc678379/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.