Simultaneous Removal of \(\text{H}_2\text{S} \) and \(\text{NH}_3 \) in Coal Gasification Processes

CONTRACT INFORMATION

Contact Number: DE-FG22-93MT93005

Contractor: Hampton University
Department of Chemical Engineering
Hampton, VA 23668
(804) 727-5817

Principal Investigators: K. Jothimurugesan
Adyinka A. Adeyiga
Santosh K. Gangwal (RTI)

DOE Project Officer: Kamalendu Das

Reporting Period: April 1, 1996-June 30, 1996

OBJECTIVES

The objective of this study is to develop advanced high-temperature coal gas desulfurization mixed-metal oxide sorbents with stable ammonia decomposition materials at 550-800° C (1022-1472° F). The specific objectives of the project are to:

(i) Develop a combined sorbent-catalyst materials shall be capable of removing hydrogen sulfide to less than 20 ppmv and ammonia by at least 90 percent.

(ii) Carry out comparative fixed-bed studies of absorption and regeneration with various formulations of sorbent-catalyst systems and select most promising sorbent-catalyst type.

(iii) Conduct long-term (at least 30 cycles) durability and chemical reactivity in the fixed-bed with the superior sorbent-catalyst.

BACKGROUND INFORMATION

Nitrogen (\(\text{N}_2 \)) occurs in coal in the form of tightly bound organic ring compounds, typically at levels of 1 to 2 wt% on a dry-ash-free basis. During, coal gasification, this fuel-
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
bound nitrogen is released principally as ammonia and nitrogen, with smaller levels of HCN. The
formation of NH₃ in a coal gasification processes is a function of the fuel gas composition and the
gasifier operating conditions. During the use of coal gas to generate electricity in gas-fired turbines,
fuel bound(N₂) is converted to nitrogen oxides(NOₓ), which are difficult to remove and are highly
undesirable as atmospheric pollutants. Recent results indicate that while the efficiency of molten
carbonate fuel cell (MCFC) anodes is not effected by exposure to NH₃, NOₓ is generated during
combustion of the anode exhaust gas. Thus, NH₃ must be removed from the coal gas before it is used
in IGCC or MCFC applications.

The product stream from a high temperature, oxygen-blown gasifier, such as Texaco, contains
about 2000 ppmv of NH₃, where higher concentrations (about 5000 ppmv) occur when the
gasification is conducted at lower temperatures, such as in the Lurgi or GE air-blown gasifier. A
range of 1500 to 3000 ppmv is considered for this study.

Removal of H₂S using zinc-based sorbents, particularly zinc titanate, to < 20 ppmv levels has
been well established (Lew et al., 1989; Jothimurugesan and Harrison, 1990; Woods et al., 1990;
Gupta and Gangwal, 1993). Previous literature study indicated that catalyst have high activities for
NH₃ decomposition (Krishnan et al., 1988). If desulfurization sorbents such as zinc titanate could be
used along with the NH₃ decomposition catalysts to decompose ammonia present in hot coal gas, then
the number of unit processes necessary to clean hot coal gas could be reduced by one.

The objective of this project is to develop successful combination of an NH₃ decomposition
catalyst with the mixed-metal oxide sorbent so that the sorbent-catalyst activity remains stable for
NH₃ decomposition in addition to H₂S removal under cyclic sulfidation-regeneration conditions in the
temperature range of 550-800° C (1022-1472° F).
PROJECT DESCRIPTION/RESULTS AND ACCOMPLISHMENTS

The project consists of three major experimental tasks (Tasks 1-3) addressing the contract objectives described above.

Task 1: Sorbent - Catalyst Preparation and Characterization

Task 2: Experimental Testing

Task 3: Cyclic Testing

Both Task 1 & 2 has been completed.

Task 3: Cyclic Testing

Since HART-51 sorbent-catalysts showed a very promising catalyst activity for ammonia decomposition it was decided to run the multicycle runs using HART-51 sorbent-catalysts.

The HART-51 sorbent-catalyst showed excellent catalytic activity for ammonia decomposition in the 30-multicycle tests as shown in Figure 1. Initially, up to 180 - 200 min the sorbent catalyst showed a very high activity (> 90%). The decline in activity after 180-200 min, is mainly due to the poisoning of the catalyst by H₂S. The pre-breakthrough H₂S level was below 20 ppm as shown in Figure 2.

FUTURE WORK

We are in the process of started writing the final report.

REFERENCES

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Figure 1. Conversion of ammonia on HART-51 catalyst-sorbents.
Figure 2. H₂S Breakthrough Curves in Successive Sulfidation Cycles of Sorbent-Catalyst HART-51