A new 3D computational model for shaped charge jet breakup

PDF Version Also Available for Download.

Description

This paper reviews prior 1D and 2D axisymmetric, analytical and computational studies, as well as empirical studies of the shaped charge jet particulation problem and discusses their associated insights and problems. It proposes a new 3D computational model of the particulation process, based upon a simplified version of the observed counter-rotating, double helical surface perturbations, found on softly recovered shaped charge jet particles, from both copper and tantalum jets. This 3D approach contrasts with the random, axisymmetric surface perturbations which have previously been used, to try to infer the observed length distribution of jet particles, on the basis of the ... continued below

Physical Description

15 p.

Creation Information

Zernow, L.; Chapyak, E.J. & Mosso, S.J. September 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This paper reviews prior 1D and 2D axisymmetric, analytical and computational studies, as well as empirical studies of the shaped charge jet particulation problem and discusses their associated insights and problems. It proposes a new 3D computational model of the particulation process, based upon a simplified version of the observed counter-rotating, double helical surface perturbations, found on softly recovered shaped charge jet particles, from both copper and tantalum jets. This 3D approach contrasts with the random, axisymmetric surface perturbations which have previously been used, to try to infer the observed length distribution of jet particles, on the basis of the most unstable wavelength concept, which leads to the expectation of a continuous distribution of particle lengths. The 3D model, by its very nature, leads to a non-random, periodic distribution of potential initial necking loci, on alternate sides of the stretching jet. This in turn infers a potentially periodic, overlapping, multi-modal distribution of associated jet particle lengths. Since it is unlikely that all potential initial necking sites will be activated simultaneously, the 3D model also suggests that longer jet particles containing partial, but unseparated necks, should be observed fairly often. The computational analysis is in its very early stages and the problems involved in inserting the two helical grooves and in defining the initial conditions and boundary conditions for the computation will be discussed. Available initial results from the 3D computation will be discussed and interpreted.

Physical Description

15 p.

Notes

OSTI as DE96014642

Source

  • 16. international symposium on ballistics, San Francisco, CA (United States), 23-28 Sep 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96014642
  • Report No.: LA-UR--96-2727
  • Report No.: CONF-960982--8
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/373903 | External Link
  • Office of Scientific & Technical Information Report Number: 373903
  • Archival Resource Key: ark:/67531/metadc678300

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • March 1, 2016, 6:10 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zernow, L.; Chapyak, E.J. & Mosso, S.J. A new 3D computational model for shaped charge jet breakup, report, September 1, 1996; New Mexico. (digital.library.unt.edu/ark:/67531/metadc678300/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.