Title: DETONATION AND COMBUSTION OF EXPLOSIVES: A SELECTED BIBLIOGRAPHY

Author(s): Brigitta Dobratz

Submitted to: 11th International Detonation Symposium
Snowmass Conference Center
Snowmass, Colorado
August 30-September 4, 1998

Distribution of this document is unlimited
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
DETONATION AND COMBUSTION OF EXPLOSIVES:
A SELECTED BIBLIOGRAPHY

Compiled by Brigitta Dobratz

Los Alamos, New Mexico

August 1998
ABSTRACT

This bibliography consists of citations pertinent to the subjects of combustion and detonation of energetic materials, especially, but not exclusively, of secondary solid high explosives. These references were selected from abstracting sources, conference proceedings, reviews, and also individual works. The entries are arranged alphabetically by first author and numbered sequentially. A keyword index is appended.

INTRODUCTION

The “science of explosives” grew over time as the number of energetic materials discovered and used proliferated, and chemical and physical properties, performance, applications, related properties, and theoretical aspects were studied. The study of combustion and detonation is one such discipline.

Reports of the first explosive - a mixture of saltpeter, sulfur, and charcoal - called gunpowder or black powder, was described in Chinese writing before 1000 AD. Various powder mixtures were used in bombs, rockets, pyrotechnics, and related items, which deflagrate but do not detonate. Such explosives are called “low” explosives. The next major development occurred when the DuPont de Nemours family built a plant in Wilmington, Delaware in 1802 to mass-produce gunpowder and initiators. They compiled the “Blaster’s Handbook” as a guide.

The 19th century saw rapid growth in the field of explosive science. Many detonating explosives were synthesized. These explosives are designated “high” explosives, and are divided into two classes: primary or initiating explosives, mostly inorganic metal azides and fulminates; and secondary, which are mostly CHNO compounds and mixtures. Nobel obtained a Swedish patent in 1863 for a nitroglycerin (NG) percussion detonator. After several fatal accidents, he incorporated NG in an absorbent inert substance named kieselguhr and patented it as dynamite in 1866. In 1875 Nobel introduced blasting gelatin, also called gelatin dynamite, which is nitrocellulose dissolved in NG. Many chemical compounds were synthesized in Europe and the USA that were recognized as explosives. Some compounds frequently used in secondary explosives are listed below.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>YEAR OF FIRST PREPARATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium nitrate (AN)</td>
<td>1659</td>
</tr>
<tr>
<td>ammonium perchlorate (AP)</td>
<td>1831</td>
</tr>
<tr>
<td>hexogen (RDX)</td>
<td>1899</td>
</tr>
<tr>
<td>nitroglycerin (NG)</td>
<td>1846</td>
</tr>
<tr>
<td>nitroguanidine (NQ)</td>
<td>1877</td>
</tr>
<tr>
<td>octogen (HMX)</td>
<td>1942</td>
</tr>
<tr>
<td>pentaerythritol tetranitrate (PETN)</td>
<td>1901</td>
</tr>
<tr>
<td>triaminotrinitrobenzene (TATB)</td>
<td>1888</td>
</tr>
<tr>
<td>trinitrotoluene (TNT)</td>
<td>1863</td>
</tr>
</tbody>
</table>

Many of these explosives and mixtures were used in WWI. Then came WWII with synthesis of HMX, the development of atomic bombs and propellants for weapons, rockets, and space flight. Theoretical developments, modeling, and data manipulation were aided by developments in computer hardware and software.

Because of this proliferation in development and applications of energetic materials with concomitant “explosion” of the literature, this bibliography is limited to references on combustion and detonation of high explosives (HE). Also, no attempt has been made to cover this ever-growing body of literature exhaustively. However, references on general works and milestone developments have been included in this compilation. Three journals have ceased publication: Explosifs 1948-1982 (Belgian), Explosivstoffe 1952-1973 (German); this has been resurrected as Propellants, Explosives, and Pyrotechnics (International), and the Zeitschrift fur das gesamte Schiess- und Sprengstoffwesen 1906-1944 (German). The users of this compilation may want to use additional sources of information. For example, a detailed index (LA-UR-2237) exists for the papers presented at the Detonation Symposia.
The citations, selected from abstracting sources, conference proceedings, reviews, and individual books, are arranged alphabetically by first author and numbered sequentially. A keyword index has been compiled at the end of the listing.

ACKNOWLEDGMENTS

The author would like to thank J. E. Kennedy for suggesting this project, providing many useful suggestions as well as several source works, and taking the time to proofread the entire document. Thanks go also to W. E. Deal and J. Vorthman for many helpful suggestions and to J. H. Carter for providing the computerized literature searches.
BIBLIOGRAPHY

534. C. O. Leiber, "Detonation Model with Spherical Sources."

590. F. McMurphy, “Cylinder Tests of HE Materials [Data Sheets],” Lawrence Livermore National Laboratory report.

693. L. R. Rothstein and R. Petersen, “Predicting High Explosives Detonation Velocities from their Composition and Structure,” Propellants and Explosives 4 56 (1979) and 6 91 (1981).

INDEX

Accidents 81, 536, 593
Activation Energy 44, 45, 111, 783, 901
Additives 503, 644
 Effect on Detonation Parameters 9, 227, 672, 673, 724, 814, 846, 859-861
Aluminized Explosive 197, 326, 584, 505, 526, 670, 765, 787, 856
Ammonium Nitrate (AN) 191, 207, 400, 602, 834
Ammonium Perchlorate 291, 542, 790
ANFO 437
Aquarium Test see Underwater
Baratol 355, 497
Black Powder 402
Books
 Accidents 81
 Blasting 277, 647
 Combustion 105, 350, 475, 548, 553, 632, 735, 763, 888, 905
 Explosions 41, 101, 105, 475, 643, 905
 Explosives 15, 16, 49, 91, 176, 177, 185, 189, 214, 251, 278, 308, 345, 377, 438, 568, 578, 598, 613, 726, 767, 807, 819-821, 915
 Modeling 567, 568
 Nitroglycerin 616
 PETN 72
 Primary Explosives 303
 Pyrotechnics 110, 281, 282, 589
 Reactions 103
 Safety 593
 Shock Waves 109, 480, 548, 605, 907
 Spectroscopy 888
 Underwater 172
Bubbles 47, 139, 309, 460, 491, 534F, 540, 589, 593, 598, 605, 616, 632, 645, 647
Burning 24, 160, 330
 Model 182, 440, 559, 749, 785
Burning-to-Detonation Transition see Deflagration-to-Detonation Transition
Carbon 50, 402, 672
Cast Explosives 75-77, 85, 92, 98, 262, 326, 342, 549, 607, 608, 857
Chapman-Jouguet see also Equation of State, Hugoniot
 Detonation 145, 147, 315, 901
 Point 188, 213, 327, 357, 462, 788
 Pressure 184, 186, 223-225, 276, 336, 393, 406, 520, 752
Charme 231
CL-20 730, 796, 891
Codes
 Charme 231
 Eulerian 122, 231, 252, 286, 753, 805
 Forest Fire 559, 749
 Huygens 42, 55, 56
 Lagrange 195, 196, 199, 200, 231, 324, 331, 434, 513, 626, 840
 Sesame 70
Dense Explosive 131, 138
EOS 108, 692, 713, 800
Shock Initiation 862, 864
Detasheet see also Sheet Explosive 28, 590
Buildup 78, 233, 436, 808
Curvature 6, 18, 29, 32, 36, 42, 61, 97, 116-120, 122, 139, 149, 203, 291, 307, 327, 358, 370, 374, 448, 456, 511, 586, 595, 617, 662, 733, 742, 805, 806, 852-854, 878, 900, 901
Comp B 545
NM 664, 665
PBXN-111 329, 545
Front 42, 117, 121, 138, 151, 152, 204, 260, 265, 291, 339, 346, 395, 396, 718, 742, 809, 818
Limit 213, 356, 493
Nonideal 601, 757
Parameters 5, 8, 9, 12, 154, 156, 193, 216, 279, 293, 295, 299, 311, 313, 323, 376, 385, 390, 405, 443, 451, 502-504, 506, 522, 523, 525, 539, 554, 561, 562, 565, 688, 716, 723, 748, 766, 778, 815, 824, 873, 892, 903, 908, 912
AN 602
DATB 173
Effect of Additives 9, 672, 673, 724, 814, 859
HMX 833, 845
LX-14 682
NTO 845
PBX 9404 681, 682, 760, 805, 806
PBXW-123 889, 890
PE4 154
PETN 21, 678, 680, 681
RDX 738, 833, 835
Slurry Explosives 916
TATB 415, 423, 424, 781
Tetryl 541
TNAZ 729
TNT 416, 857
Pressure 178, 222, 454, 456, 531, 585, 603, 765, 814, 896
Products 18, 96, 125, 127, 141, 148, 230, 253, 254, 296, 751, 855, 856, 914
Propagation 42, 122, 151, 152, 287, 328, 344, 371, 758
Review 89, 300, 302, 426, 628, 872
Slurry Explosives 683
Spectroscopy 684, 685
Temperature 123, 459, 588, 803
Tetryl 543
Time 52
AN 602, 934
Comp B-3 217
EDNA 180
Effect of Additives 227
Effect of Curvature 118, 358, 596, 757, 894, 901
Effect of Density 752
Effect of Diameter 180, 582, 602, 894
HMX 860
LX-10 36
LX-17 36
Octol 113
PBX 9404 217, 840
PBXW-115 441
PETN 180
RDX 180, 860
RX-26-AF 36
Tetryl 180
TNT 860, 874
Waves 1, 3, 10, 11, 23, 121, 152, 238, 258, 260, 271, 342-344, 354, 373, 396, 410, 412, 417, 585, 648, 686, 774, 790-792
Divergence see Detonation Curvature
EDNA 180
Electrical/Electrostatic Parameters 208, 269, 527, 528, 805, 806, 913, 914
Emulsion Explosive see Slurry Explosive
Energy Transfer 47, 90, 111, 213, 228, 250, 354, 397, 457, 468, 527, 737, 783, 788, 800, 855
Baratol 355
Carbon 50
Comp B 355, 514, 515, 736
H6 446
HMX 514, 515, 731, 836, 845
HNS 388, 721
LX-04 831, 887
LX-14 838
NM 514, 515
NTO 845
Nonideal 114, 126, 197, 202
PBX 9404 116, 357, 364, 514, 515, 837-839, 887
PBX 9501 784
PBX 9502 780, 782
PBXN-103 773
PBXN-111 96
Pentolite 355, 357
PETN 357, 363, 447
RDX 447
RX-26-AF 626
Slurry Explosives 603
TATB 640, 657
TNT 355, 357, 514, 515
Eulerian see Codes
Explosions 41, 101, 105, 174, 475, 537, 629, 643, 841, 905
Failure Diameter see Critical Diameter
Forest Fire 559, 749
Fracture/Molecular Structure 534, 642, 649, 658, 693, 707, 813
Friction 490
Gap Test 325, 891
Gruneisen Parameter 84, 127, 336
Gurney 399, 403, 450, 463, 600, 771
High-Density Explosive see Dense Explosive
H-6 549
HMX and Mixtures 65, 73, 94, 231, 307, 354, 374, 381, 396, 611, 619, 784, 833, 860
DDT 34, 587
Hugoniot 727, 784
Detonation 211, 358, 373, 587, 660, 683, 695, 774, 784, 836, 860, 861
Particle Size 78, 731
HNAB 382
HNS 388, 389, 705-707, 721, 881
Hugoniot see also Equation of State 191, 192, 224, 226, 244, 309, 329, 357, 372, 519, 534, 539, 546, 584, 692, 868
AN 191
Comp B-3 546, 547
HMX 727
LX-14 838
PBX 9404 760
PBX 9501 784
PBXN-103 773
PBXN-111 329
RDX 838
TATB 656, 782
TNAZ 717
TNT 341, 838, 874
Huygens see Codes
Ideal Detonation 175, 304, 368, 601
Impact 37, 107, 164-168, 170, 171, 178, 183, 275, 280, 381, 405, 433, 597, 606, 696, 712
Initiation 2, 17, 21, 91, 208, 246, 349, 386, 394, 415, 424, 532, 534, 621, 623, 662, 698, 710, 833, 865, 899
Model/Theory 534E, 577, 690, 910
Kinetics 18, 62, 111, 491, 644, 857
Lagrangian see Codes
Laser Initiation 232, 634, 737, 771, 899
Liquid Explosive 107, 212, 372, 687
Detonation 2, 43-45, 47, 105, 123, 136, 255, 256, 263-265, 383, 534G, 832, 882
Low-Density Explosive see Porous Explosive
Low Velocity Detonation (LVD) 22, 136, 241, 371, 383, 413, 489, 508, 534, 539, 543, 585, 635, 656, 725, 764, 832, 842
LX-04 358, 360, 831, 887
LX-07 361, 364, 636
LX-09 360
LX-10 36, 361, 802
LX-14 682, 838
LX-15 375
LX-17 36, 86, 364, 791, 801, 828, 829
Metal Acceleration/Expansion See also Cylinder Test 30, 31, 39, 87, 140, 213, 316, 324, 335, 339, 375, 382, 386, 399, 403, 410, 452, 457, 463, 468, 516, 519, 521, 530, 588, 634, 653, 654, 690, 698, 730, 744, 771, 772, 782, 794, 861, 897
HNS 881
LX-14 797
LX-17 797, 798
Microballoons 471, 665

Modeling
Aluminized Explosives 505, 526, 787
Burn 160, 182, 440, 559, 749, 785
Combustion 17, 115, 475, 483, 553, 599, 632, 905
Critical Diameter 139, 444, 544, 750
DDT 34, 35, 54-58, 66, 455, 478, 488, 533, 740, 847
Detonation 22, 54, 114, 126, 140, 150-152, 161, 195, 196, 231, 248, 441, 462, 476-478, 481, 513, 526,
 533, 534, 567, 568, 651, 652, 678, 689, 775, 776, 779, 789, 792, 817, 818, 847, 885
Detonation Curvature 789, 792, 885
Energy Transfer 354
EOS 223, 631, 744, 752, 784, 793
Fracture/Structure 534D, 642
Hot Spot 65, 579, 638, 660, 786
Impact 171, 275
Initiation 534, 577, 690, 910
Reaction 83, 210, 638, 785, 786, 885
Sensitivity 575, 653
Shock Initiation 95, 161, 171, 192, 195, 196, 275, 324, 379, 380, 462, 474, 513, 517, 564, 568, 576, 579,
 582, 614, 637, 639, 789, 791, 792, 795, 876, 886
Underwater 202, 505, 524, 604, 641
Wave Propagation 122, 150-152, 511, 631
Nitroglycerine (NG) 68, 538, 616
Nitromethane (NM)
Critical Diameter 664, 665
Detonation 44, 459, 664, 665
Reaction 43, 64, 570, 571
Shock Initiation 45, 714, 902
Nonideal Detonation 175, 197, 213, 305, 400, 461, 462, 601, 602, 618, 757, 873, 889, 890
Model 114, 126, 202, 252, 304, 367, 368, 441, 524, 544, 599, 641
Oblique Shock 273, 617, 878
Octol 113
Overdriven Detonation 336, 479, 736, 760, 836, 837
Model/Theory 39, 40, 784, 793
Particle Size Effects 162, 667
Cast HE 607, 608
HMX 78, 731
LX-17 86
RDX 98, 608, 747
TATB and Mixtures 162, 638
PBX 9404 132, 195, 217, 241, 290, 466, 467
Detonation Parameters 358, 498, 681, 682, 760, 791, 813, 840, 866
Electrical Parameters 805, 806
EOS 116, 364, 837, 838, 887
Gruneisen 84
Shock Initiation 432, 439
PBX 9501 336, 611, 784
PBX 9502 27, 241, 244, 401, 718, 786
Critical Diameter 675
Shock Initiation 609-612, 865
PBXN-19 891
PBXN-103 773
PBXN-109 74-77
PBXN-111 96, 327, 329, 545, 696
PBXN-301 see XTX-8003
PBXW-108 74-77
PBXW-109 74-77, 540, 546, 549
PBXW-114 696
PBXW-115 88, 328, 441, 462, 528
PBXW-123 889, 890
Pentolite 355, 357
PETN and Mixtures 92, 235, 240, 307, 405, 447
 Critical diameter 494
 DDT 20, 556, 558
 Detonation Parameters 21, 147, 180, 405, 585, 678, 680, 681, 695, 899
 EOS 363, 447, 744, 793
 Reaction Rate 43, 180, 555
 Shock Initiation 142, 234-238, 242, 243, 245, 297, 564, 580, 604, 700, 762, 862, 864
PE4 154
Pop Plot 237, 345, 676
Porous/Low-Density Explosive 212, 337, 372, 473, 478, 627
 DDT 4, 292, 496, 768, 769
 EOS 186
 Detonation 22, 297, 724, 738
Pressure Effects 2, 7, 53, 178, 433, 464, 495, 715
Primary Explosives 106, 246, 298, 303, 764
Pulse Detonation 211, 259, 321, 322
Pyrotechnics 418, 579
 Book 110, 281, 282, 589
Rarefaction Wave 59, 206, 582
RDX and Mixtures 19, 98, 307, 447, 503, 838
 Critical Diameter 494
 DDT 669
 Detonation 92, 180, 656, 694, 695, 738, 860
 Reaction Rate 91, 180, 555, 909, 913
 Shock Initiation 38, 93, 94, 153, 274, 552, 746, 833, 899
Reaction 2, 43, 62, 103, 180, 202, 226, 295, 326, 346, 439, 465, 477, 646, 718, 782, 804, 831, 858, 865, 870, 885
 Model 83, 202, 231, 477, 524, 599, 625, 626, 638, 641, 740, 787
 Zone 46, 53, 59, 60, 118, 119, 122, 169, 276, 286, 290, 301, 305, 362, 369, 374, 384, 417, 503, 517, 530, 555, 591, 741, 742, 756, 913
 Baratol 355
 Comp B 355
 HMX 358
 LX-04 358
 Model 210
 NM 570, 571
 PBX 9404 358
 Pentolite 355
 TATB 530, 702, 703
 TNT 355, 570, 571
Reflected Shock see also Shock Waves, Wave 69, 226, 310, 412, 550, 852
Review 32, 69, 137, 232, 287, 298, 426, 628, 775, 790, 823
 Detonation 89, 300, 302, 872
Run Distance 73, 113, 187, 365, 373, 517, 612, 731, 831
RX-03-BB 290
Gruneisen 84
RX-26-AF 36, 364, 626, 794
Safety 429, 532, 536, 593
Sensitivity 38, 94, 98, 230, 235, 575, 649, 710, 712, 823
Sesame 70
Shear 115, 235, 239, 240, 481, 840
Sheet Explosive see also Detasheet 550, 898
Shock 122, 188, 266, 326, 501, 838, 870
Front 2, 46, 212, 249, 258, 434, 734, 812, 852
AN and Mixtures 207
Cast Explosives 75-77
CL-20 796
Comp A4, B 30, 153, 432, 614
Dense HE 862, 864
DNI 827
HMX and Mixtures 73, 94, 619, 634, 719
HNAB 382
HNS 389, 623, 705-707, 709, 881
Liquid Explosives 133, 134
LX-04 360, 831
LX-07 360
LX-09 360
LX-10 360, 802
LX-17 791, 798, 801, 828, 829
NM 44, 45, 902
PBX 9004 432, 439, 517, 564, 610-612, 708, 791, 839, 840, 866
PBX 9501 610, 611
PBX 9502 244, 609-612, 865
PBXW-108 74-77
PBXW-109 74-77
PBXW-115 528
PE4 154
Pentolite 170, 893
PETN 142, 234-238, 242, 243, 245, 297, 517, 555, 580, 634, 700, 762, 862, 864, 902
Porous HE 699
RDX and Mixtures 92-94, 153, 552, 555, 835, 898
RX-26-AF 794
Slurry Explosives 525
TATB 13, 14, 163, 209, 239, 407, 517, 529, 712, 789
Tetryl 551
TNAZ 717, 728
TNT 170, 200, 262, 288, 352, 517, 661
XTX-8003 31, 762
Parameters 205, 492,
Comp B-3 132
Effect of Additives 846
Effect of Microballoons 471
Effect of Particle Size 607, 608, 667
PBX 9404 132
PBX 9502 244
RDX 274
Theory 64
TNT 274
Temperature 714
Waves see also Reflected Shock, Wave 80, 135, 168, 211, 215, 240, 263, 269, 273, 286, 343, 420, 506, 633, 617, 774
Short Pulse/Shock 48, 85, 87, 239, 335, 349, 352, 529, 701, 785, 795, 839, 875, 881, 883
Slurry/Emulsion Explosive 460, 523, 525, 603, 683, 841, 903, 916
Sound Speed 326, 336, 857
Spin Detonation 146, 211, 499, 500
Spectroscopy 586, 684, 685
Steady-State Detonation 51, 138, 143, 169, 194, 198, 283, 286, 370, 398, 641
TATB and Mixtures 13, 14, 65, 162, 209, 348, 401, 702, 703, 789
Critical Diameter 130
Detonation 415, 423, 424
EOS 640, 657
Reaction Zone 530, 638, 702, 703
Run Distance 365
Shock Initiation 13, 163, 239, 407, 408, 423, 660, 701, 712
Wave Spreading 203, 401
Temperature Effects 19, 27, 53, 68, 123, 162, 209, 296, 407, 497, 588, 609, 677, 715, 828-831, 836, 841, 842
Tetryl 24, 79, 180, 541, 543
Critical diameter 494
Shock Initiation 551, 899
Theory 16, 145, 146, 181, 230, 289, 469, 470
Book 15, 314, 367, 906
Combustion 115, 475, 553, 904, 905
Detonation 2, 221, 261, 294, 300-302, 304, 387, 445, 446, 510, 650, 682, 697, 869, 872
Mixture 34, 389
Shock Initiation/Sensitivity 64, 288, 458
Shock Waves 80, 485
Tiger 201, 744
Time Effects 52, 59, 60, 661
TNAZ 717, 728, 729
Critical Diameter 68, 494, 750
Detonation 190, 200, 211, 213, 274, 288, 332, 342, 498, 604, 656, 807, 857, 874
Velocity 822, 860
Reaction Zone 570, 571, 718, 909
Underwater/Aquarium Events 82, 172, 397, 419-422, 437, 454, 505, 601, 603, 765, 777, 903
Effect of Diameter 615, 896
PBXW-115 88, 441
Pentolite 893
Model 202, 505, 524, 604, 641, 734
Unsteady Detonation 187, 212, 256, 260, 263, 426, 483, 573, 758
Model 150-152, 159, 294
Wave

Evolution 465-467, 623, 813
Front 175, 253, 307
Interactions 54, 58, 59, 61, 63, 97, 149, 153, 293, 340, 412, 563, 595, 654, 732, 733, 798, 801, 815, 826,
 827, 852-854, 878
Model/Theory 512
Propagation 21, 135, 371, 572, 574, 627, 651, 664, 666, 794, 908
Spreading 121, 203, 390, 391, 659, 754, 785
PBXN-111 329
TATB and Mixtures 203, 401, 638
Structure 1, 3, 29, 42, 204, 212, 248, 307, 342, 395, 482, 648, 724, 790, 818
Wedge Test 78, 244, 245, 687, 701, 731
XTX-8003 31, 762