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Abstract

A new implicit method has been developed for
solving the viscous full multi-fluid equations, which
incorporale transport and generation of mass and
momentum for each component present in a system.
This work presents stability analysis and application of
the important full multi-fluid system in a fully implicit
algorithm. The stability analyses presented demonstrate
the performance of several iterative schemes applied to
the solution of the linearized systems which arise in the
formulation. These include block Jacobi and symmetric
block Gauss-Siedel schemes with various precondition-
ers applied. A hierarchy of increasing physical complex-
ity is pursued, starting with one-dimensional, two-fluid
systems with minimum inter-field dynamic coupling and
no mass transfer. These analyses are extended to sys-
tems employing physically important inter-field forces
(drag, turbulence dispersion, virtual mass). The effects
of mass transfer, multiple fields (i.., n¢ > 2) and multi-
ple dimensions are also considered. A two-fluid Navier-
Stokes code has been developed based on this new
scheme. Results are presented which verify the validity
of l:he stability analyses presented for the coupled
scheme.

Introduction

Multi-phase flows which require full multi-fluid
modelling arise in a wide class of engineering problems,
where non-equilibrinm dynamics and thermodynamics
of the interfaces between constituents play important
roles in the evolution of the ensemble averaged mean
flow. Examples include cyclone separators, two-phase
flow in jets and curved ducts and boiling flow in heat
exchangers. Though much CED research to date has
been performed for reacting flows, the interfacial
dynamics and thermodynamics in many of these “aero-
dynamic” multi-constituent flows occur on such small
spatial scales that mixture momentum and energy equa-
tions can be employed. For the many cases that such
homogeneous mixture approximations are not valid, full
two-fluid modelling is appropriate. There, separate
equations for the transport and generation of mass,
momentum and energy for each component present in a
system are solved.

This level of modelling greatly complicates the
numerics of the problem. To date, the appearance of
numerical stability analysis of multi-fluid models in the
CFD literature has been limited to several semi-implicit
methods rf,lgtgd to the Implicit Courant Eulerian (ICE)
algorithm™ “ ° and analyses focused on maximizing
inter-ﬁelﬁl goupling in segregated pressure based
methods™ . This work represents stability analysis and

application of the important multi-dimensional full
multi-fluid system in a fully implicit algorithm.

I ical Formulati
Governing Equations

In full multi-fluid formulations, independent
equations are employed for the transport/generation of
mass, momentum and energy for each field present in a
system. The ensemble averaged governing equations for
steady state, one-dimensional two-fluid flow without
heat and mass transfer can be written as”:

3 op . d du,
5;(P1“1“1“x) = "“13%*3;(“1!11;‘)
9 dp @ du,
&-(92“2“2“2) = —aZ'a—§+ ﬁ(azuza—x)

3 1)
I P1%y) =0

a
TP202uy) = 0
o+, =1

where a conventional single pressure approximation has
been invoked. In what follows, each field’s density and
viscosity are assumed constant. For brevity, a factor of
4f3 is assumed embedded within the molecular viscosi-
ties.

As written, equation 1 employs no dynamic cou-
pling (e.g., drag) between fields 1 and 2, other than a
common pressure. This model system serves as a plat-
form for developing the implicit method presented
below. The influence of dynamic coupling terms due to
drag, virtual mass and dispersion will be introduced.
Also, the effects of mass transfer, alternate lineariza-
tions, multiple-dimensions, and multiple fields on stabil-
ity are investigated.

Discretization
Equation 1 is written in vector form as:

RQ =&+ 4H =0

Q=(u,uy05,0,,p) . H=(0,0,0,0,0, +0o,-1)"

du,
pyoquguyg —alul'a"; 0000 o, (2)
du, 0000 a,
E= P20t =Olhgr ], B= 1000 o
Py 00000
P, 0,u, 00000
L 0




A host of finite volume spatial discretization strate-
gies can be applied. For the present work, in the momen-
tum equations, second order central differencing is
selected for pressure gradient and viscous terms and first
order upwinding is employed for convection. In the vol-
ume fraction equations first order upwinding is used to
evaluate cell face values of o, and central differencing
with 2 conventional pressure weighted artificial dissipation
term’ is employed for cell face values of u. The rationale
for this choice stems from analogy to pseudocompress-
ibilty techniques®, and is detailed below where compari-
son to single phase analysis is provided. Without loss of
content in the development which follows, Ax is taken as
constant, and u is assumed positive.

e ¢ o v @
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Figure 1. 1D control volumes on a Cartesian grid.

Referring to Figure 1, the discretization of equation
2 can be summarized as: .

aix(ocuu) = (B_,0) (E_yu) (E_u)_—(E_ ) (E_u) (E_u)_

2 {0ndh) - u@ (3,0, - (@, G,

X

3

a%% - (3(1,(82,(p)p

%(ocu) = (B_,®) (R,u)_ - (E_a) (R,u)
where the operators used in equation 3 are defined as:
(B_x0) = bp, (9), = (9p + 95)/2
(859), = (¢ — 9p)/AX, (85,0)p = (95 ~ dyw)/2Ax
“)
R,w), =), + z__u:l“g ((85P). — (3p),]
Ax  p42
mplici ign Pr r

Applying an exact Newton linearization to equa-
tion 2 yields:

R'(Q)AQ = -R(Q) (5)

. _9,, ,0(pdQ c
RQ = Z‘;A +B—(QBa_x) *
and Jacobians:

where:

2E 2(30) ¢l
A=3q 30 %% ) ©T3q
are given in the Appendix.
The spatial discretization, equations 3, is applied
~ consistently on the RHS and LHS of equation 5. The fully
implicit discrete linearized system to be solved becomes:

PQn+l - S(Qn) (6)
where, for notational simplicity in what follows, a non-A
formulation is adopted. In equation 6, the block banded
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matrix P (tridiagonal with 5 x 5 blocks for 1D, two-field)
corresponds to the discretization of R'(Q"), and S&Q“) n
corresponds to the discretization of RQH+R'(QMeQ .
For completeness, vectors PQ™ and S(Q") are given in
the Appendix. This basis scheme serves as a useful plat-
form for investigating the effectiveness of solution strate-
gies for solving the discrete system.

General Iterative Solution
A class of iterative schemes for the solution of

equation 6 can be defined from:
MQn+1.k+l _ NQn+1.k+-S(Qt?) (7)
where
P=M-N )

represents the iterative splitting adopted.

To facilitate discussion of the preconditioning and
iterative strategies developed below, P can be decom-

posed as:
P=D+(L+U) &)
A decomposition of D is also introduced as:
D=D,;+D +D, (10)

where, for the linearization and discretization invoked,
block diagonal matrix D is given in the Appendix and has
the structure: :

X X
X X
D =diaglx X X (11)
X XX
11
D, and D, correspond to diagonal and off diagonal terms
inrows 1-4 in each block of D . D contains only the row
5 entries corresponding to the compatibility condition,
o+ 0y =1.
ime- hin ion K lation,

Iterative procedures defined by equation 7 in gen-
eral require some form of pseudo-time-stepping or under-
relaxation, to obtain stability and/or optimum damping. A
simple scalar relaxation procedure can be invoked:

(M + Dd((—-————l ;m)))Q“‘ = NQ*+5+ L= )" (12)
Equation 12 can be written as the equivalent time-march-
ing scheme:

rs%? +MQ®! = NQ¥ +s (13)
by making the identification:
1-

rg = 4=, (14)

Alternatively, a block-relaxation procedure can be defined:
(M . D((l -m)))Qku - NQF S+ (1 ;(D)(D)Qk (15)

[0)]

Equation 15 can be written as an equivalent time-marching
scheme with block Jacobi preconditioning:




ng_? +MQY! = NQE+S (16)
by making the identification:
ry = L=Dam (17)

In practice, the algebraic compatibility condition
Yo, = 1 is enforced exactly. Accordingly, D isreplaced
by D -D, in equations 15 and 17.

A relaxation convention is utilized in the authors’
flow solver, and much of the discussion which follows
below. This is because over-relaxation (i.e.,® > 1 -->
At < 0) provides optimum preconditioning for two of the
schemes investigated, so the “unattractiveness” of utilizing
a negative time-step is precluded. Also such an approach is
consistent with the segregated pressure based forerunner
to the present code. Equations 13 and 16 illustrate, how-

ever, that relaxation and time-marching approaches are
identical.

Block Jacobi Schemes
For a block Jacobi iteration:
Mpg;=D,Ny;=— (L+U) (18)
When vsed with block Jacobi preconditioning, this
scheme (hereafter designated BP-BJ) is written:
l"BaQ+DQk+1 = _(L+U)Q"+S (19)

A block Jacobi iteration with scalar relaxation
(hereafter designated SP-BJ scheme) is written:

aQ+1)Q = —(L+U)Q+S (20)
1 -Si h
For a forward sweep block Gauss-Siedel scheme:
Mppgs=D + L, Ngggs=-U (21)

Analogous to equations 19 and 20, BP-BFGS and
SP-BFGS schemes are defined:

ngg +(D+L)Q™! = _uQF+s (22)
rsg—? +(D+L)Q" = —uQk+s (23)

In practice the forward sweep block Gauss-Siedel
schemes are used in conjunction with symmetric backward
sweeps, defined analogously to equations 22, 23. These
symmetric schemes are designated BP-BSGS and SP-
BSGS, below.

Stability Analysi

Equation 6 represents the fully implicit discrete
system to be solved. Newton linearization and consistent
LHS and RHS discretizations were employed in its deriva-
tion. Accordingly, in the stability analysis of the proposed
iterative schemes, no contribution to the amplification
matrices arises from inexact linearization or discretization
inconsistencies.

Vector VonNeumann analysis is employed to inves-
tigate the stability characteristics of the four precondi-
tioned systems defined by equations 19-20 and 22-23.

i
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These can be written in the common form:

G,Q""! = G,Q"+s (24

The iteration matrix associated with the general
scheme defined by equation 24 is:

=676, 25)

The stability of the iterative schemes are assessed
below by examining the eigenvalues of the Fourier sym-
bol, G = G; G, of their iteration matrix, G,

For a non-preconditioned, fully implicit scheme,

G = P, where P is given in the Appendix. For the
schemes considered, G, and G, can be easily constructed
by splitting P appropnately, and applying the precondi-
tioning operators used.

There are eight physical parameters which appear
in the system: cell Reynolds numbers associated with each
phase (Re;, Re,), density ratio (p;/p,), velocity ratio (uy/
Uy), field 1 volume fraction (c(;) and pressure and velocity
gradient terms arising from the Newton linearization
(8,5, 5,.p). In what follows, stability characteristics are
studled %’c()r the proposed iterative procedures applied to
equation 6, for a range of physical parameters of interest.

A three-dimensional, four-field Navier-Stokes
code, designated COMAC, which is based on the class of
precondmoned iterative schemes introduced above, is
under development by the authors. The vector Fourier
analysis presented has been used to guide selection of iter-
ative and preconditioning scheme, discretization and lin-
earization. To understand the effects of physical boundary
conditions, and to verify the results of the vector analysis,
matrix stability results for COMAC are also included.

Block hem

The Fourier iteration matrix associated with the
BP;BJ scheme defined in equation 19 is Gpp.py =
MBp BJNBP py . For this scheme, the stability characteris-
tics given in Figure 2 are obtained. There, the spectral
radius of the amplification matrix for the BP-BJ scheme is
plotted vs. non-dimensional wave number.

©=0.25

p(G)

O‘O i 1 ] ] 1 1 1 5

Figure 2. Stability of BP-BJ scheme.

The BP-BJ scheme is clearly conditionally stable
for this case, where unity Reynolds numbers and zero




pressure and velocity gradients were assumed. An opti-

mum relaxation factor of approximately © = 45 is

observed, though this scheme exhibits significant stiffness

at low wave numbers. The scheme is unstable for ¢ > .57.
If scalar relaxation is used with the block Jacobi

iteration (SP-BJ scheme defined by equation 20), the sta-
bility characteristics shown in Figure 3 are obtained.

@=0.20

Figure 3. Stability of SP-BJ scheme

The SP-BJ scheme is observed to be uncondition-
ally unstable,

Block Gauss-Siedel Schemes

Forward and backward block Gauss-Siedel
schemes exhibit stability characteristics similar to block
Jacobi. Specifically, both BP-BEGS and BP-BBGS
schemes are conditionally stable, with o, = 0.5, and
exhibit considerable low wave number stitfness. Also,
both scalar preconditioned systems, SP-BFGS and SP-
BBGS, are unconditionally unstable. For brevity, the sta-
bility plots for these four directionally biased schemes are
not presented.

However, the construction of symmetric schemes
from forward and backward block Gauss-Siedel compo-
nent steps yields good damping properties. In Figure 4,
P(Gnp.BsGs) » where Gap.psgs = Gpp.sBGS GBP-BFGS » IS
plotted vs. error phase. The BP-BSGS scheme alleviates
much of the low wave number stiffness associated with the
BP-BJ scheme. Optimum damping is achieved through
over-relaxation, 0, = 1.3. The BP-BSGS scheme
remains stable to @ = 2.00.

In Figure 5, the stability for the SP-BSGS scheme
is plotted. Unlike the Jacobi and forward and backward
sweep Gauss-Siedel schemes, scalar preconditioning does
not yield an unconditionally unstable scheme when used
for the symmetric Gauss-Siedel. Indeed, the damping
characteristics of the SP-BSGS scheme are quite good.
Optimum damping is achieved near o, = 1.3. However,
the scheme becomes rapidly unstable at low wave numbers
just above this optimum value (0, = 1.37).

Of the four schemes investigated, BP-BSGS was
chosen for further investigation, since it exhibits excellent
damping properties and does not exhibit the potentially
dangerous low wave number instability of SP-BSGS near
its optimum damping rate.

i
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Figure 4. Stability of BP-BSGS scheme
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Figure 5. Stability of SP-BSGS scheme
C “ ith Single Pl

The lack of dynamic coupling in the basis scheme
defined by equation 1, renders the two ficlds dynamically
uncoupled. Indeed, the analyzed model equation repre-
sents the independent response of the uncoupled phases to
the same pressure distribution. Accordingly, the stability
results presented above are independent of density ratio
{p1/p2), velocity ratio (u;/uy), and field 1 volume fraction
{0p). Consistent with this observation, the multi-field sta-
bility results correspond closely to those obtained for the
discrete single phase analog to Equations 1. In particular,
the eigenvalues of the basis two-field system contain as a
subset, the eigenvalues arising in the single field system.

To illustrate this, Figure 6 shows an eigenvalue
constellation for the BP-BSGS scheme (® = 1.3) applied
to equation 6 with R.; =Ry = 1.0. Eleven modes (-t < ¢ <
T) were examined. At each wave number the two-field
scheme returns four complex eigenvalues (A5 = 0, since
compatibility is enforced without relaxation). The rank 2
single phase system returns two complex eigenvalues. As
seen in Figure 6, these are equal to two of the four eigen-



values returned by the two-field system at the same wave
number.

Im
0.4t o 2-field
Q 1-field
| Re
— @___
0.0 1.0

Figure 6. Comparison of two-field eigenvalues to one-
field analog for BP-BSGS scheme.

A full Newton linearization must be maintained in
the field continuity equations:

(au)ml ~ (anuml) ~ (un(ln+1) (26)
“Frozen coefficient” linearization, i.e., (o)™ = (u"a™*),
is singular in the coupled scqeme gon ipspection of D).
The other alternative, (cu)™" = (a™u™"), is singular
unless a full Newton linearization is also employed for the
momentum equations. In that case all four linear schemes
are conditionally stable, but this non-standard linearization

choice is catastrophic to the non-linear convergence proce-
dure, :

Despite this restriction on the continuity equations,
a frozen coefficient linearization can be employed for the
convection terms if the momentum equations, i.e.,
(ouu)™ = (o"u"u ), with little effect on the linear per-
formance of the scheme.

This is illustrated in Figure 7 which shows a com-
parison of full Newton and frozen coefficient lineariza-
tions on the stability of the 1D system for the BP-BSGS
scheme (® = 1.3). Clearly the choice of momentum equa-
tion convection term linearization has little impact on the
linear stability of the multi-fluid scheme.

1.0
i Exact linearization in momentum
\
PG ‘\ """""" Frozen linearization in momentum
0 O 1 1 1 ] 1 I i J
0 T2 14
¢

Figure 7. BP-BSGS stability for Newton and frozen
coefficient linearization in the momentum equations.
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Physical Parameters
Reynolds Number

The effect of cell Reynolds number on stability can
be assessed by parameterizing the Reynolds numbers for
the constituent fields. Figure 8a shows the stability plots
for the BP-BSGS scheme (o = 1.3) fora rzglge of Rey-
nolds numbers (R,; = R,p) from 10! - 100, Clearly the
effect of Reynolds number is a weak one, with only
slightly deteriorated damping observed at infinite cell Rey-
nolds numbers.

For small cell Reynolds numbers, the two addi-
tional eigenvalues per wave number which appear in the
two-field system can be larger in magnitude than the two
arising in the single field system. This feature of the two-
field scheme is suggested in Figure 6. The damping deteri-
oration associated with this phenomena is illustrated quan-
titatively in Figure 8b, which shows 1-¢ stability plots for
R.; =.1, 1 and 10. Comparison with Figure 8a shows that
the influence of the additional eigenvalues in the two-fluid
system can significantly reduce the low wave number
damping characteristics of the scheme at very low cell
Reynolds numbers, but the effect is a weak oneatRy =1
and is undetectable at R = 10.

24, Ry, = 10"
—————————— 2'¢’ Rcu = 100 a)
" 24,R,,=10'
p(G) " 24,R,,=10
———————— 2'¢1 Re1.2 = 1010
1.0
\‘\.
\\‘\_\
W
R\ \\
DA :} S
0.0 A L 1 i 1 ! 1 : !
b
l'q)’ Rel - 10—‘ )
PG | 1-4,R,, =10’
—m———— 1-,R = 10'
1.0
.,
\\ A Y
‘\\ \\‘
‘\\‘\.,__ R e
0.0 -1 1 3 ! 4 L 1 =
0 ’Efz tp

Figure 8. BP-BSGS stability for a range of cell Rey-
nolds numbers. a) two-field, b) one-field.




Inter-field Transfer

The introduction of interfacial dynamics and mass
transfer couples the constituent fields. The impact of such
terms on the physics of the flow and stability of the algo-
rithm becomes dependent on the density ratio (p/p5),
velocity ratio (u;/u;), and field 1 volume fraction (0iy)-
Therefore, in order to meaningfully parameterize the sta-
bility of inter-field transfer terms, relevant engineering
scales are adopted for these three flow parameters, and the
ficld Reynolds numbers. In particular, for high pressure
steam-water boiling heat exchanger systems, the choices
P1/p2 = 10, uj/uy = .5 and o) = .5 are relevant (hereafter
designated HPW), For “bubbly” air-water flows, the
choices p/p, = 1000, u,/u; = 0.8 and o) = .95 are relevant
(hereafter designated BAW). Typically, cell Reynolds
numbers of > 10! are deployed in practical engineering
computations. The values R,; = R, = 10 are used below.

The most commonly employed models for interfa-
cial momentum transfer are drag, virtual mass and disper-
sion. The stability characteristics of these forces, and mass
transfer, are each treated below. The augmentation of the
Fourier symbol, P, arising from implicit treatment of
these interfacial coupling terms is P = P + Pyc , where
Pyc is given in the Appendix.

Drag

Drag is incorporated within the momentum equa-
tions as:

M1 =M1 +D(u; —v)
M2 = M2 +D(u; ~u,) 27}

where M1 and M2 denote the momentum equations in the
baseline formulation (equations 1). Drag is incorporated
within the momentum equation inerpolation procedure
used for facial flux reconstruction” and, therefore, appears
in the operator R, (equations 4, A.5). D is generally mod-
elled for all interfaces as:

D = Cppefu;—u A 28)
D. = 0.0, BAW
__________ D. =] 0.1. BAW
p(G) B =N D‘ = 1.0, BAW
B — D‘ = 0.]’ HPW
1.0

O‘O It ] H 1 1 1 1 H

Figure 9. BP-BSGS stability for a range of
nondimensional drag.
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where Cp is the drag coefficient, p.is the “carrier” field
density, and A;"”" the interfacial area density. A practical
range for drag parameterization is defined from:

<1 29)

Figure 9 shows a comparison of the effect of drag
on the damping properties of the BP-BSGS scheme (0 =
1.3). In this plot, the two sets of physical scales introduced
above (HPW, BAW) are used, and R,; =R, = 10.The
scheme remains stable in the physicafl relevant range
D* < 1. Indeed, the influence of drag is small, though
extremely large values of drag (viz., unrealistic values as
may occur in early iteration) have been observed to desta-
bilize the scheme.

Mass Transfer

Mass transfer is incorporated within the momen-
tum and continuity equations as:

M1=>M1+T g, - Ty

M2 = M2 + T2y, - Ty, (30)

Cl=Ct+12_r'?

c2=c2+T2_1%

where C1 and C2 denote the continuity equations in the
baseline formulation (equations 1). Here T™" are mass
transfer rates from field m to field n in kg/m3s, defined
such that T™" > 0. These terms are similar to drag, but are
non-sxxmmetric, and, appear in the continuity equations.
For I'%=T""  the impact of mass transfer is similar to
drag, so the non-sxpmetric cases are considered here. For
the case where I'™" =0, the maximum physically plausi-
ble vatue of I'™" to be considered can be estimated from
realizability constraints (i.e., o™ >0) to be:

S WP (1)

= PmUmC, /AX <

™ =0,0, o, =0.5, HPW

---------- ™ =1,0, e =0.1, HPW
pG) [ ™ =0, 1, a,=09,HPW
........................ r«m’= =0.1, w
10} 1,0, & =0.1, BA
00 1 1 _t t 1 ! ! |
0 /2 T
¢

Figure 10. BP-BSGS stability for a range of
nondimensional mass transfer.




Figure 10 illustrates that values of '™ at the real-
izability limit do not significantly affect the linear stability
of the scheme, even at high density ratio. For these results,
small values of donor field volume fraction are taken,
(o, = .05), consistent with the realizability limit. Other
%ales are taken as above (i.e., HPW, BAW, R =R, =

D' =0).

Dispersion
Dispersion is incorporated within the momentum
equations as:
’ 2
M1 = M1 + Cyp, (u,y— ul)zg_‘;:
, (32)

200t
M1 = M1 — Cypy(uy—u;) 5=

Physically reasonable values of dispersion coeffi-
cient are Cp < 1.0. As with drag and mass transfer, the
influence Fthese terms on the stability of the linear
scheme was found to be small (plot not included for brev-
ity).

Yirtual Mass

_ Virtual mass is incorporated within the momentum
equations as:

155 ~Y25%x

du, du;
M2 = M2 - Cya,p [uzB ulﬁ]
Considering the case of no mass transfer, equation

33 can be manipulated to yield modified effective convec-
tion terms in the two momentum equations:

du;  duy,
M1=MI - Cyoup, [u ]

(33)

Y] @
g [1 + Cv(&;)]ﬁ(mal“l“x)
a—x(Plo‘lulux) = P13
1
- ‘:Cv(p:)]g(()zazuzuz)

(34)

[1 + Cv(%)]%@z%“z“z)
- [Cv(%)]%(ﬁ“l“l“l)

Physically reasonable values of virtual mass coeffi-
cient are Cy,< 0.5 . For low density ratio scales (HPW), a
fully unphcxt treatment of virtual mass (i.e., all four terms
on the RHS of equation 34 appearing in PIC) has only
minor impact on the linear stability of the BP-BSGS
scheme. This is illustrated in Figure 11a. Here, the stan-
dard HPW scales are taken as above with D = 0.1 and Cy
=0.1.

d
E(Pzazuzuz) =

At high density ratios (BAW) the fully implicit
treatment can be destabilizing to the linear scheme, though
retaining only the virtual mass terms which contribute to
the d1agona1 of Pyc stabilizes it. These observations are
illustrated in Figure 11b. The impact of this semi-implicit
treatment on the non-linear performance of the code is not
yet known.

l
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€, =00, HPW, fully implicit &)
pG) | T C, =0.1, HPW, fully implicit
---------- C, = 0.5, HPW, fully implicit

O'O 1 L 1| 1 [ 1 1 I
0 /2 T
C, =0.0, HPW b)
- C,=0.5, HPW, fully implicit
p(G) - €, =0.5, HPW, semi-implicit

- Cy=00;BAW
- Cy 05 BAW fully lmphCIt

0.0 L 1 I 1 1 1 1 1

0 /2 T

Figure 11. BP-BSGS stability for arange of virtual mass
coefficients and linearization strategies.

ison of nd Matri ili
To illustrate the validity of the foregoing vector sta-
bility analyses, and to investigate the effect of physical
boundary conditions on the scheme, a matrix stability
analysis was performed. The platform for the matrix anal-
ysis is the authors” multi-fluid Navier-Stokes code,

COMAC, which utilizes the BP-BSGS scheme introduced
above.

A vertical air-water bubbly flow is mvestlgated
Here, problegm parameters were setat: py = 1000 kg/m
p2=1lkg/m’, ;= 1073 kg/ms, p,= 10 kg/ms,
Ax=0.05m,ni=20(@.e.,L= 190 m, 20 cells). A simple
bubble drag model due to Wallis® was employed:

1 60, _ 63 _ plluz— “1|2Db
D= §CDPIIU2—u1|D_b' CD_@E’ Reb_—p.;_—_
(35)

The flow solver’s response to a given set of initial
conditions, u; = 1.0 mfs, u = 1.1 m/s, 0; = 0.9, 0 = 0.1
was studied. A bubble radius of D, = 1.0 mm was set. A
frozen coefficient linearization was used in the momentum
equations and © was set to 0.8 (equation 17).




Figure 12a shows that if periodic boundary condi-
tions are applied, COMAC returns iteration matrix eigen-
values which are coincident with those returned by the
Fourier stability analysis. If conventional duct flow bound-
ary conditions are applied (inlet: u;, uy, 01, 0 fixed, dp/dx
=0; exit: p fixed, du;/dx = duy/dx = doy/dx = doy/dx = 0),
the eigenvalue spectrum is modified as shown.

Im

Re

o Vector Stability
. COMAC, periodic be
. COMAC, ductbc

Figure 12a. Comparison of vector and matrix analyses for
an air water bubbly flow.

Figure 12b shows corresponding linear solver con-
vergence rates for these two COMAC runs at the first non-
linear iteration (corresponding to Figure 12a). The appli-
cation of physical boundary conditions are observed to
improve damping of the scheme somewhat.

log, ERROR

on-periodic

07207740 60 T80 100
BP-BSGS iteration

Figure 12b. Comparison of BP-BSGS convergence histo-
ries for periodic and duct flow boundary conditions
The analyses presented above for two-fields extend

readily to an arbitrary number of fields. As each new field
is introduced to the basis scheme, two new eigenvalues

REPRODUCED AT GOV'T EXPENSE # 49

appear, corresponding to the additional momentum and
continuity equations. These eigenvalues are identical to
the two additional obtained in extending the single field to
a two-field system. Accordingly, the n-field system exhib-
its identical stability characteristics to the two-field sys-
tem.

The stability analyses presented above for one-
dimension can also be readily extended to multiple dimen-
sions. For two-fields, the resulting Fourier eigensystem is
of rank 7. Figure 13 shows examples of 2D stability results
obtained for the BP-BSGS scheme, with no interfacial
transfer terms. Taking u = v, R, = R, =108, cell aspect
ratio, AR = Ax/Ay = 1.0, and @ = 0.8, the results in Figure
13a are obtained. There it is observed that the 2D scheme
exhibits good damping characteristics at all wave numbers
away from the origin, consistent with the observations

made above for the 1D scheme.
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Figure 13. Two-dimensional stability resuits for BP-
BSGS scheme.a)u=v, AR=1,b) u=v, AR = 100,
¢) u= 100v, AR = 100.

On high aspect ratio grids, as are characteristic of
high L/Dy boiling heat exchanger geometries, long wave-
length axial modes become poorly damped. This is illus-
trated in Figure 13b where a grid aspect ratio of 100 was
used. In such geometries, the transverse velocity usually
scales with the axial velocity. Accordingly, if v is taken to
be equal to u/AR, the stability plot presented in Figure 13¢
is obtained. There it is observed that the “well guided”
nature of the flow can introduce some moderate additional
transverse mode stiffness.

The low axial wave number stiffness observed on
high aspect ratio grids for the BP-BSGS scheme can be
effecﬁvelg handled by deploying coupled block correction
strategies”, or a semi-coarsened algebraic multigrid proce-
dure.

Conclusion

A new implicit method, developed for the solution
of the viscous full multi-fluid equations has been pre-
sented. Stability analyses were performed for precondi-
tioned iterative schemes applied to the coupled discrete
system of equations which arise in the formulation.

Several conclusions are drawn in the work includ-
ing: (1) A block symmetric Gauss-Siedel scheme with
block Jacobi preconditioning (BP-BSGS) gives rise to
very good damping properties for the multi-fluid system.
Optimal convergence rates for this scheme can be obtained
with successive over-relaxation. (2) Conditional stability
requires that a minimum level of exactness be employed in
developing an approximate Newton linearization for the
continuity equations. An exact linearization in the momen-
tum equations affords no benefit to the linear stability of
the scheme compared to a “frozen” coefficient lineariza-
tion. (3) In the absence of inter-field transfer terms, the
basis multi-fluid scheme exhibits very similar stability

1
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characteristics to its single phase analog. Only at very low
cell Reynolds numbers does the multi-fluid system exhibit
deteriorated damping properties compared to single phase.
(4) Reynolds number effects are moderate; the limit of
infinite cell Reynolds numbers marginalizes the stability
of the scheme only slightly. (5) Implicit treatment of sev-
eral investigated interfacial transfer mechanisms (mass
transfer, drag, dispersion and virtual mass) can affect the
stability of the scheme, but the BP-BSGS scheme ana-
lyzed retains good damping characteristics for physically
realistic values of these modelled terms. (6) A multi-fluid
Navier-Stokes code which deploys the BP-BSGS scheme
was used. Comparison of vector and matrix stability veri-
fied the comrectmess of the vector analyses presented and
demonstrated that physical boundary conditions can bene-
fit the damping characteristics of the scheme. (7) The two-

_ dimensional stability characteristics of the scheme are

consistent with one-dimensional results, with high aspect
ratio grids introducing diminished low wave number axial
mode damping, as commonly observed in most CFD algo-
rithms.
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