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Abstract 
A new implicit method has been developed for 

solving the viscous full multi-fluid equations, which 
incorporate transport and generation of mass and 
momentum for each component present in a system. 
This work presents stability analysis and application of 
the important full multi-fluid system in a fully implicit 
algorithm. The stability analyses presented demonstrate 
the performance of several iterative schemes applied to 
the solution of the linearized systems which arise in the 
formulation. These include block Jacobi and symmetric 
block Gauss-Siedel schemes with various precondition- 
em applied. A hierarchy of increasing physical complex- 
ity is pursued, starring with one-dimensional, two-fluid 
systems with minimum inter-field dynamic coupling and 
no mass transfer. These analyses are extended to sys- 
tems employing physically important inter-field forces 
(drag, turbulence dispersion, virtual mass). The effects 
of m a s  transfer, multiple fields (i.e., n$ > 2) and multi- 
ple dimensions are also considered. A two-fluid Navier- 
Stokes code has been developed based on this new 
scheme. Results are presented which verify the validity 
of the stability analyses presented for the coupled 
scheme. 

Introduction 
Multi-phase flows which require full multi-fluid 

modelling arise in a wide class of engineering problems, 
where non-equilibrium dynamics and thermodynamics 
of the interfixes between constituents play important 
roles in the evolution of the ensemble averaged mean 
flow. Examples include cyclone separators, two-phase 
flow in jets and curved ducts and boiling flow in heat 
exchangers. Though much CFD research to date has 
been performed for reacting flows, the interfacial 
dynamics and thermodynamics in many of these "aero- 
dynamic" multi-constituent flows occur on such small 
spatial scales that mixture momentum and energy equa- 
tions can be employed. For the many cases that such 
homogeneous mixture approximations are not valid, full 
two-fluid modelling is appropriate. There, separate 
equations for the transport and generation of mass, 
momentum and energy for each component present in a 
system are solved. 

numerics of the problem. To date, the appearance of 
numerical stability analysis of multi-fluid models in the 
CFD literature has been limited to several semi-implicit 
methods 1 to the Implicit Courant Eulerian (ICE) 
algorithmTv ?'and analyses focused on maximizing 
inter-fie1 oupling in segregated pressure based 
methods$ '. This work represents stability analysis and 
application of the important multi-dimensional full 
multi-fluid system in a fully implicit algorithm. 

This level of modelling greatly complicates the 

-1 F o r m u m  

Governing Eau- 

equations are employed for the transprtlgeneration of 
mass, momentum and energy for each field present in a 
system. The ensemble averaged governing equations for 
steady state, one-dimensional two-fluid tow without 
heat and mass transfer can be written as : 

In full multi-fluid formulations, independent 

al+a, = 1 

where a conventional single pressure approximation has 
been invoked. In what follows, each field's density and 
viscosity are assumed constant. For brevity, a factor of 
4/3 is assumed embedded within the molecular viscosi- 
ties. 

As written, equation 1 employs no dynamic cou- 
pling (e.g., drag) between fields 1 and 2, other than a 
common pressure. Thii model system serves as a plat- 
form for developing the implicit method presented 
below. The influence of dynamic coupling terms due to . 
drag, virtual mass and dispersion will be introduced. 
Also, the effects of mass transfer, alternate liieariza- 
tions, multiple-dimensions, and multiple fields on stabil- 
ity are investigated. 
picretizatioq 

Equation 1 is written in vector form as: 

R(Q) = - + B @ + H  aE = o ax ax 
T 

Q= (ul, u2, a], a2, p) , H 8 (o,o, 0, 0, al + a2 - llT 

EE 

P l a l u l  

P2a2u2 
0 

BE 
0 0 0 0  0 
0 0 0 0  0 
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A host of finite volume spatial discretization strate- 
gies can be applied. For the present work, in the momen- 
tum equations, second order central differencing is 
selected for pressure gradient and viscous terms and f3st 
order upwinding is employed for convection. In the vol- 
ume fraction equations first order upwinding is used to 
evaluate cell face values of a, and central differencing 
with? conventional pressure weighted artificial dissipation 
term is employed for cell face values of u. The rationale 
for this choice stgms fiom analogy to pseudocompress- 
ibilty techniques , and is detailed below where compari- 
son to single phase analysis is provided. Without loss of 
content in the development which follows, Ax is taken as 
constant, and u is assumed positive. 

O L L  
W I P I E  

Figure 1. 1D control volumes on a Cartesian grid. 

Referring to Figure 1, the discretization of equation 
2 can be summarized as: 

Implicit Solut ion Procedu re 

tion 2 yields: 

where: 

Applying an exact Newton linearization to equa- 

R'(Q)AQ = -NQ) (5 )  

R'(Q) =?A* + Y B S )  aQ a x  + C  ax 
and Jacobians: 

are given in the Appendix. 
The spatial discretization, equations 3, is applied 

consistently on the RHS and LHS of equation 5. The fully 
implicit discrete linearized system to be solved becomes: 

where, for notational simplicity in what follows, a non-A 
formulation is adopted. In equation 6, the block banded 

PQn+' = S(Q") (6) 

matrix P (tridiagonal with 5 x 5 blocks for lD, two-field) 
corresponds to the discmkat.ion of R'(Qn) , and SbQ") 
corresponds to the discretizatioqof -R(Qn) + R(Q ) Q . 
For completeness, vectors PQ"' and S ( Qn) are given in 
the Appendix. This basis scheme serves as a useful plat- 
form for investigating the effectiveness of solution strate- 
gies for solving the discrete system. 
-1 Iterative Sol- 

equation 6 can be defined from: 

where 

represents the iterative splitting adopted 

iterative strategies developed below, P can be decom- 
posed as: 

A class of iterative schemes for the solution of 

+ S(Qn) (7) 

PEM-N (8) 

- NQn+" k 
MQn+i'k+' - 

To facilitate discussion of the preconditioning and 

P = D + ( L + U )  (9) 

D = D, + Do + D, (10) 
A decomposition of D is also introduced as: 

where, for the linearization and discretization invoked, 
block diagonal mairk D is given in the Appendix and has 
the structure: 

X D=diagl x x  

x x x  

D, and Do correspond to diagonal and off diagonal terns 
in rows 14 in each block of D . D, contains only the row 
5 entries corresponding to the compatibility condition, 

Tie-MarchinP anmelaxat ion Formulations 

Iterative procedures defined by equation 7 in gen- 
eral require some form of pseudo-time-stepping or under- 
relaxation, to obtain stability and/or optimum damping. A 
simple scalar relaxation procedure can be invoked: 

a1+az=1. 

(M + D~(?))Q"' = N Q ~  + s + (~-W)(D~)Q' w (12) 
Equation 12 can be written as the equivalent time-march- 
ing scheme: 

r% a Q + ~ ~ k + i  = N Q ~ + S  (13) 
by making the identification: 

Alternatively, a block-relaxation procedure can be defined: 

(M + D ( ~ ) ) Q ~ + '  = N Q ~  + s + ('(D)Q~ w (15) 

Equation 15 can be Written as an equivalent time-marching 
scheme with block Jacobi preconditioning: 
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9 + MQ~+'  = N Q ~  + s 
%t 

by making the identification: 

In practice, the algebraic compatibility condition 
Ea, = 1 is enforced exactly. Accordingly, D is replaced 
by D -D, in equations 15 and 17. 

A relaxation convention is utilized in the authors' 
flow solver, and much of the discussion which follows 
below. This is because over-relaxation (Le., o > 1 --> 
At < 0) provides optimum preconditioning for two of the 
schemes investigated, so the "unattfilctiveness" of utilizing 
a negative time-step is precluded. Also such an approach is 
consistent with the segregated pressure based forerunner 
to the present code. Equations 13 and 16 illustrate, how- 
ever, that relaxation and time-marching approaches are 
identical. 
Block Jacob i Schemes 

For a block Jacobi iteration: 

When used with block Jacobi preconditioning, this 
MBj D, NBj I - (L + U) (18) 

scheme (hereafter designated BP-BJ) is written: 

% 'Q + DQ~+'  = - (L + U ) Q ~  + s 

A block Jacobi iteration with scalar relaxation 
(hereafter designated SP-BJ scheme) is written: 

'Q + D Q ~ + '  = - (L + u ) a k  + s % 
Block Gauss -Siedel Sc hemes 

For a forward sweep block Gauss-Siedel scheme: 

Analogous to equations 19 and 20, BP-BFGS and 
M,,,, D + L, N,,,, = - U (21) 

SP-BFGS schemes are defined: 

'Q + ( D  + L)Q~+'  = - U Q ~  + s 

In practice the forward sweep block Gauss-Siedel 
schemes are used in conjunction with symmetric backward 
sweeps, defined analogously to equations 22,23. These 
symmeuic schemes are designated BP-BSGS and SP- 
BSGS, below. 

Stability Analvsb 

Equation 6 represents the fully implicit discrete 
system to be solved. Newton linearization and consistent 
LHS and RHS discretizations were employed in its deriva- 
tion. Accordingly, in the stability analysis of the proposed 
iterative schemes, no contribution to the amplification 
matrices arises from inexact linearization or discretization 
inconsistencies. 

Vector VonNeumann analysis is employed to inves- 
tigate the stability characteristics of the four precondi- 
tioned systems defined by equations 19-20 and 22-23. 

These can be written in the common form: 

G,Q'+' = G , Q ~  + s 

G=G; 1 G2 

(24) 
The iteration matrix associated with the general 

scheme defined by equation 24 is: 

(25) 
The stability of the iterative schemes are assessed 

beloy by ?Tin ins  the eigenvalues of the Fourier sym- 
bol, G = G1 G2, of their iteration matrix, G . 

For a no;-preconditioned, fully implicit scheme, 

schemes considered, G1 and 6 2  can be easily constructed 
by splitting P appropriately, and applying the precondi- 
tioning operators used. 

There ate eight physical parameters which appear 
in the system: cell Reynolds numbers associated with each 
phase (Rel, R a ,  density ratio (pl/pz), velocity ratio (u1/ 
u2), field 1 volume fraction (al) and pressure and velocity 
gradient terms arising from the Newton linearization 
(Sp,, 6 p). In what follows, stabiiity characteristics are 
studled %r the proposed iterative procedures applied to 
equation 6, for a range of physical parameters of interest. 

A threedimensional, four-field Navier-Stokes 
code, designated COMAC, which is based on the class of 
preconditioned iterative schemes introduced above, is 
under development by the authors. The vector Fourier 
analysis presented has been used to guide selection of iter- 
ative and preconditioning scheme, discretization and lin- 
earization. To understand the effects of physical boundary 
conditions, and to verify the results of the vector analysis, 
matrix stability results for COMAC are also included. 
Block Jacob i Schemes 

The Fourier iteration matrix assoc$ted with the 
13PiBJ 5cheme defined in equation 19 is GBP-BJ = 
MBP-BJNBP-BJ. For this scheme, the stability characteris- 
tics given in Figure 2 are obtained. There, the spectral 
radius of the amplification matrix for the BP-BJ scheme is 
plotted vs. non-dimensional wave number. 

= f , where P is given in $e Appendix. For the 

w = 0.25 
w = 0.45 

/'- 

/I . ... 

- - - - - - - - - 

w = 0.65 / p(G) 
I w = 0.85 I 

w =  1.00 ___ ___ __ 

I '. 
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Tc 
@ 0 m 

Figure 2. Stability of BP-BJ scheme. 
The BP-BJ scheme is clearly conditionally stable 

for this case, where unity Reynolds numbers and zero 



pressure and velocity gradients were assumed. An opti- 
mum relaxation factor of approximately o = .45 is 
observed, though this scheme exhibits significant stiffness 
at low wave numbers. The scheme is unstable for w > .57. 

iteration (SP-BJ scheme defined by equation ZO), the sta- 
bility characteristics shown in Figure 3 are obtained. 

If scalar relaxation is used with the block Jacobi 

w = 0.20 
0=0.40 - - - - - - - - - . 

........................ 
p(G) w = 0.60 --.-.-.-.-.--- 

w = 0.80 
w=1.00 

0.0 
0 

Figure 3. Stability of SP-BJ scheme 

The SP-BJ scheme is observed to be uncondition- 
ally unstable. 
Block Gauss-&$el Schema 

Forward and backward block Gauss-Siedel 
schemes exhibit stability characteristics similar to block 
Jacobi. Specifically, both BP-BFGS and BP-BBGS 
schemes are conditionally stable, with o, s 0.5, and 
exhibit considerable low wave number s&ness. Also, 
boll1 scalar preconditioned systems, SP-BFGS and SP- 
BBGS, are unconditionally unstable. For brevity, the sta- 
bility plots for these four directionally biased schemes are 
not presented. 

However, the construction of symmetric schemes 
from forward and bachward block Gauss-Siedel compo- 
nett steps yields good_ damping pmperties. ljn Figure 4, 
~(GBP-BSGS), where GBP-BSGS = GBP-BBGSGBP-BFGS , is 
plotted vs. error phase. The BP-BSGS scheme allevlates 
much of the low wave number stiffness associated with the 
BP-BJ scheme. Optimum damping is achieved through 
over-relaxation, mop z 1.3. The BP-BSGS scheme 
remains stable to w = 2.00. 

In Figure 5, the stability for the SP-BSGS scheme 
is plotted. Unlike the Jacobi and forward and backward 
sweep Gauss-Siedel schemes, scalar preconditioning does 
not yield an unconditionally unstable scheme when used 
for the symmetric Gauss-Siedel. Indeed, the damping 
characteristics of the SP-BSGS scheme are quite good. 
Optiinum damping is achieved near oopt G 1.3. However, 
the scheme becomes rapidly unstable at low wave numbers 
just above this optimum value 

Of the four schemes investigated, BP-BSGS was 
chosen for further investigation, since it exhibits excellent 
damping properties and does not exhibit the potentially 
dangerous low wave number instability of SP-BSGS near 
its optimum damping rate. 

z 1.37). 

w = 0.90 
w = 1.10 

P(G) w = 1.30 
w = 1.50 
w = 2.00 

--.--- 
........................ 

5 

0.0 1 I I I I 1 I 1 

n 
cp 

0 n/2 

Figure 4. Stability of BP-BSGS scheme 

w = 0.90 
w = 1.10 
w = 1.30 
w = 1.40 
w = 1.50 
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0 n 

Figure 5. Stability of SP-BSGS scheme . .  Conmarison wtth Slnple P h a  

The lack of dynamic coupling in the basis scheme 
defined by equation 1, renders the two fields dynamically 
uncoupled. Indeed, the analyzed model equation repre 
sents the independent response of the uncoupled phases to 
the same pressure distribution. Accordingly, the stability 
results presented above are independent of density ratio 
(pl/p2), velocity ratio (q/ud, and field 1 volume fraction 
(al). Consistent with this observation, the multi-field sta- 
bhty results correspond closely to those obtained for the 
discrete single phase analog to Equations 1. In particular, 
the eigenvalues of the basis two-field system contain as a 
subset, the eigenvalues arising in the single field system. 

To illustrate this, Figure 6 shows an eigenvalue 
constellation for the BP-BSGS scheme (a = 1.3) applied 
to equation 6 with hl = &z = 1.0. Eleven modes (-n 4 9 4 
n) were examined. At each wave number the two-field 
scheme returns four complex eigenvalues & = 0, since 
compatibility is enforced without relaxation). The rank 2 
single phase system returns two complex eigenvalues. As 
seen in Figure 6, these are equal to two of the four eigen- 
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1 

values returned by the two-field system at the same wave 
number. 

I 8 

-Oa4 t cb 

Figure 6. Comparison of two-field eigenvalues to one- 
field analog for BP-BSGS scheme. 

Alternate L inear h t ions  

the field continuity equations: 

"Frozen coefficient" linearization, i.e., (au)"" = (u a ) , 
is singular in the coupled scleme ion ipspection of D ). 
The other alternative, (au)"+ = (a un+ 1, is singular 
unless a full Newton linearization is also employed for the 
momentum equations. In that case all four linear schemes 
are conditionally stable, but this non-standard linearization 
choice is catastrophic to the non-linear convergence proce- 
dure. 

Despite this restriction on the continuity equations, 
a frozen coefficient linearization can be employed for the 
convection terms & h e  momentum equations, i.e., 
(auu)"+ = (anunu , with little effect on the linear per- 
formance of the scheme. 

This is illustrated in Figure 7 which shows a com- 
parison of full Newton and frozen coefficient lineariza- 
tions on the stability of the 1D system for the BP-BSGS 
scheme (a = 1.3). Clearly the choice of momentum equa- 
tion convection term linearization has little impact on the 
linear stability of the multi-fluid scheme. 

A full Newton linearization must be maintained in 

(au)n+l = (anun+l) + (unan+') (26) 
n n+l 

Exact linearization in momentum 
Frozen linearization in momentum 

0.0 
I C  

cp 
0 X I 2  

Figure 7. BP-BSGS stability for Newton and frozen 
coefficient linearization in die momentum equations. 

ghysical Parametea 

Revno Ids Numbe r 
The effect of cell Reynolds number on stability can 

be assessed by parameterizing the Reynolds numbers for 
the constituent fields. Figure 8a shows the stability plots 
for the BP-BSGS scheme (0 = 1.3) for a T g e  of Rey- 
nolds numbers = &d from 10- - 10' . Clearly the 
effect of Reynolds number is a weak one, with only 
slightly deteriorated damping observed at infinite cell Rey- 
nolds numbers. 

tional eigenvalues per wave number which appear in the 
two-field system can be larger in magnitude than the two 
arising in the single field system. Thii feature of the two- 
field scheme is suggested in Figure 6. The damping deteri- 
oration associated with this phenomena is illustrated quan- 
titatively in Figure 8b, which shows 1-41 stability plots for 
k1 = .l, 1 and 10. Comparison with Figm 8a shows that 
the influence of the additional eigenvalues in the two-fluid 
system can significantly reduce the low wave number 
damping characteristics of the scheme at very low cell 
Reynolds numbers, but the effect is a weak one at R, = 1 
and is undetectable at & I =  10. 

For small cell Reynolds numbers, the two addi- 

29, Re13 = 10.' 
---------. 

---- 2 9 ,  Rclz = 10'' 
1 .o 

0.0 ' I I I I 1 I I I 

0 
I I I I I I I I 

Figure 8. BP-BSGS stability for a range of cell Rey- 
nolds numbers. a) two-field, b) one-Eeld. 
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hter-field Transfer 
The introduction of interfacial dynamics and mass 

transfer couples the constituent fields. The impact of such 
terms on the physics of the flow and stability of the algo- 
rithm becomes dependent on the density ratio (pl/pz), 
velocity ratio (uJu~), and field 1 volume fraction (al). 
Therefore, in order to meaningfully parameterize the sta- 
bility of inter-field transfer terms, relevant engineering 
scales are adopted for these three flow parameters, and the 
field Reynolds numbers. In particular, for high pressure 
steam-water boiling heat exchanger systems, the choices 
p1/p2 = 10, u1/u2 = S and 011 = .5 are relevant (hereafter 
designated HPW). For "bubbly" air-water flows, the 
choices = 1O00, u /u2 = 0.8 and a1 = .95 are relevant 
(hereafter designated BAW). ?Lpically, cell Reynolds 
numbers of > 10' are deployed in practical engineering 
computations. The values Rel = %2 = 10 are used below. 

The most commonly employed models for interfa- 
cial momentum transfer are drag, virtual mass and disper- 
sion. The stability characteristics of these forces, and m a s  
transfer, are each treated below. The augmentation of the 
Fourier symbol, fi , arising from im$lic$ q t m e n t  of 
these interfacial coupling terms is P j P + PIC, where 
PIC is given in the Appendix. 

m 
lions as: 

Drag is incorporated within the momentum equa- 

M l j M 1  +D(u2-ul) 
(27) M2 M2 + D(ui - uZ) 

where M1 and M 2  denote the momentum equations in the 
baseline formulation (equations 1). Drag is incorporated 
within the momentum equation in J""" t ' "n  procedure 
used for facial flux reconstruction and, therefore, appears 
in the operator R (equations 4, AS). D is generally mod- 
elled for all intedxes as: 

D = CDpclul-uk.$" (28) 

D'= 0.0, BAW 
Do= 0.1, BAW 

D' = 1.0, BAW 

- - - - - - - - - 
p(G) 

0.0 
0 n 

Figure 9. BP-BSGS stability for a range of 
nondimensional drag. 

where CD is the drag coefficient, p i  is the "carrier" field 
density, and 4"' the interfacial area density. A practical 
range for drag parameterization is defined from: 

Figure 9 shows a comparison of the effect of drag 
on the damping properties of the BP-BSGS scheme (a = 
1.3). In this plot, the two sets of physical scales introduced 
above (WW, BAW) are used, and R, = = 1O.The 
scheme remains stable in the physic& relevant range 
D* < 1. Indeed, the influence of drag is small, though 
extremely large values of drag (viz., unrealistic values as 
may occur in early iteration) have been observed to desta- 
bilize the scheme. - 

Mass transfer is incorporated within the momen- 
tum and continuity equations as: 

MI - M I  +r2iu2-r12u1 

c i * c i + P - r ' '  

c2 +c2 + r12-?i 
where C1 and C2 denote the continuity equations in the 
baseline formulation (equations 1). Here r"" are mass 
transfer rates from field m to field n in kg/m3s, defined 
such that r"" 2 0. These terms are similar to drag, but are 
non-qmmetric, and, appear in the continuity equations. 
h r  r " = r"" , the impact of mass transfer is similar to 
drag, so the non-sKmmemc cases are considered here. For 
the case where r" = 0, the maximum physically plausi- 
ble value of r"" to be consideref can be estimated from 
realizability constraints (Le., a"" 2 0)  to be: 

(30) 
M 2  +M2 +r'*ul -9'3 

P(G) 

1.0 

0.c 

r"' = 0, 0, an = 0.5, HPW 
r"' = I, 0, an = 0.1, HPW 

r* = 0, 1, a, = 0.9, HPW 
r"' = 1, 0, an =0.1, BAW 

. - - - - - - - - . 

. . .. . . . . . . . .. .. .. .. ... . 

I I I I I I I I 

X 
4 

0 X D  

Figure 10. BP-BSGS stability for a range of 
nondimensional mass transfer. 
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Figure 10 illustrates that values of r""' at the real- 
izability limit do not significantly affect the linear stability 
of the scheme, even at high density ratio. For these results, 
small values of donor field volume fraction are taken, 
(CL, = .OS), consistent with the realizability limit. Other 
scales*are taken as above (Le., HPW, BAW, = k2 = 
10,D =O). 
mersioR 

equations as: 
Dispersion is incorporated within the momentum 

Physically reasonable values of dispersion coeffi- 
cient are C 5 1.0- As with drag and mass transfer, the 
influence of these terms on the stability of the linear 
scheme was found to be small (plot not included for brev- 
ity). 
Virtual M a  

equations as: 
V i a l  mass is incorporated within the momentum 

Considering the case of no mass transfer, equation 
33 can be manipulated to yield modified effective convec- 
tion terms in the two momentum equations: 

(34) 

Physically reasonable values of virtual mass coeffi- 
cient are Cv 5 0.5 . For low density ratio scales (HPW), a 
fully implicit treatment of virtual mass (Qe., all four terms 
on the RHS of equation 34 appearing in PIC), has only 
minor impact on the linear stability of the BP-BSGS 
scheme. This is illustrated in Figure 1 la. H%e, the stan- 
dard HPW scales are taken as above with D = 0.1 and CT 
= 0.1. 

treatment can be destabilizing to the linear scheme, though 
mtaining only th_e virtual mass terms which contribute to 
the diagonal of PIC stabilizes it. These observations are 
illustrated in Figure 1 lb. The impact of this semi-implicit 
treatment on the non-linear performance of the code is not 
ye1 known. 

At high density ratios (BAW) the fully implicit 

C, = 0.0, HPW, fully implidt 

C, = 0.1, HPW, fully implicit 

----" C, = 0.5, HPW, fully implicit 

a) 

p(G) 
- - - - - - - - - . 

-.. 

0.0 
0 nt2 n 

C, = 0.0, HPW b) 
. .  . .  . .  - - - -, - - -. I . .  1 C, = 0.5, HPW, fully implicit 

C, = 0.5, HPW, semi-implicit 
. .  . .  

A ---- ;--- I C, =O,@';pAW 
P(G) 

: ................ ':. > ...... C, = $5, BAW, fuuy implicit 

........................ 

0.0 I I I I 1 I I I 

Figure 11. BP-BSGS stability for arange of virtual mass 
coefficients and linearization strategies. 

m a r i s o n  of Vector a nd Matrix Stab ility 

To illustrate the validity of the foregoing vector sta- 
bility analyses, and to investigate the effect of physical 
boundary conditions on the scheme, a matrix stability 
analysis was performed. The platform for the matrix anal- 
ysis is the authors' multi-fluid Navier-Stokes code, 
COMAC, which utilizes the BP-BSGS scheme introduced 
above. 

Here, probley parameters were set at: p = lo00 kg/m3, 
p2 = 1 kg/m , .pl = 
Ax = 0.05 m, IU = 20 (i.e., L = 1 0 m, 20 cells). A simple 
bubble drag model due to Wallis' was employed: 

A vertical &-water bubbly flow is investigated. 

kg/ms, p2 = ioJ kg/ms, 

The flow solver's response to a given set of initial 
conditions, u1 = 1.0 m/s, u2 = 1.1 m/s, al = 0.9, cr, = 0.1 
was studied. A bubble md~us of Db = 1.0 mm was set. A 
frozen coefficient lineaimtion was used in the momentum 
equations and o was set to 0.8 (equation 17). 
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Figure 1% shows that if periodic boundary condi- 
tions are applied, COMAC returns iteration matrix eigen- 
values which are coincident with those returned by the 
Fourier stability analysis. If conventional duct flow bound- 
ary conditions are applied (inlet: ul, u2, al, a2 fixed, dp/dx 
=O; exit: p fixed, dul/dx = duddx = dcq/dx = daddx = 0), 
the eigenvalue spectrum is modified as shown. 

Re 

0 Vector Stability 
0 COMAC, periodic bc 

4 COMAC, duct bc 

Figure 12a. Comparison of vector and matrix analyses for 
an air water bubbly flow. 

Figure 12b shows corresponding linear solver con- 
vergence rates for these two COMAC runs at the first non- 
linear iteration (corresponding to Figure 1%). The appli- 
cation of physical boundary conditions are observed to 
improve damping of the scheme somewhat. 

appear, corresponding to the additional momentum and 
continuity equations. These eigenvalues are identical to 
the two additional obtained in extending the single field to 
a two-field system. Accordingly, the n-field system exhib- 
its identical stability characteristics to the two-field sys- 
tem. 
Extension to Multiple Dimensions 

dimension can also be readily extended to multiple dimen- 
sions. For two-fields, the resulting Fourier eigensystem is 
Of rank 7. Figure 13 shows examples of 2D stability results 
obtained for the BP-BSGS scheme, with no interfacial 
transfer terms. Taking u = v, 
ratio, AR = M A Y  = 1.0, and o = 0.8, the results in Figure 
13a are obtained. There it is observed that the 2D scheme 
exhibits good damping characteristics at all wave numbers 
away from the origin, consistent with the observations 
made above for the 1D scheme. 

The stability analyses presented above for one- 

= Re2 =lo6, cell aspect 

" y  

@Y 

0 
0 

n i 

0.3 
0.4 

@Y 

Figure 12b. Comparison of BP-BSGS convergence histo- 
ries for periodic and duct flow boundary conditions 

Extension to Mu ltide Fields 

The analyses presented above for two-fields extend 
readily to an arbitrary number of fields. As each new field 
is introduced to the basis scheme, two new eigenvalues 

0.7 
0.8 

0.95 
0 '  I 

0 
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characteristics to its single phase analog. Only at very low 

deteriomted damping properties compared to single phase. 
(4) Reynolds number effects are moderate; the limit of 
infinite cell Reynolds numbers margjnaliies the stability 
of the scheme only slightly. (5 )  Implicit treatment of sev- 
eral investigated interfacial transfer mechanisms (mass 
transfer, drag, dispersion and virtual mass) can affect the 
stability of the scheme, but the BP-BSGS scheme ana- 
lyzed mains good damping characteristics for physically 
realistic values of these modelled terms. (9 A multi-fluid 
Navier-Stokes code which deploys the BP-BSGS scheme 
was used. Comparison of vector and matrix stability veri- 
fied the correctness of the vector analyses presented and 
demonstrated that physical boundary conditions can bene- 
fit the damping characteristics of the scheme. (7) The two- 
dimensional stability characteristics of the scheme are 
consistent with one-dimensional results, with high aspect 
ratio grids introducing diminished low wave number axial 
mode damping, as commonly observed in most CFD algo- 
rithms. 
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On high aspect ratio grids, are characteristic of 

trated in Figure 13b where a grid aspect ratio of 100 was 
used. In such geometries, the transverse velocity usually 
scales with the axial velocity. Accordingly, if v is taken to 
be equal to u/AR, the stability plot presented in Figure 13c 
is obtained. There it is observed that the “well guided” 
nature of the flow can introduce some moderate additional 
transverse mode stiffness. 

high aspect ratio grids for the BP-BSGS scheme can be 
effectively handled by deploying coupled block correction 
strategies , or a semicoarsened algebraic multigrid proce- 
dure. 
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The low axial wave number stiffness observed on 

A new implicit method, developed for the solution 
of the viscous full multi-fluid equations has been pre- 
sented. Stability analyses were performed for precondi- 
tioned iterative schemes applied to the coupled discrete 
system of equations which arise in the formulation. 

ing: (1) A block symmetric Gauss-Siedel scheme with 

very good damping properties for the multi-fluid system. 
block Jacobi preconditioning (BP-BSGS) gives rise to 

Optimal convergence rates for this scheme can be obtained 
with successive over-relaxation. (2) Conditional stability 
requires that a minimum level of exactness be employed in 
developing an approximate Newton linearization for the 
continuity equations. An exact linearization in the momen- 
tum equations affords no benefit to the linear stability of 
the scheme compared to a “frozen” coefficient lineariza- 
tion. (3) In the absence of inter-field transfer terms, the 
basis multi-fluid scheme exhibits very similar stability 

several conclusions drawn in the work 
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