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OPTIMIZING LINER IMPLOSIONS FOR HIGH ENERGY DENSITY PHYSICS 
EXPERIMENTS 

Carl Ekdahl, and Stanley Humphries, Jr.’ 

Los Alamos National Laboratory, Los Alamos, USA ’ University of New Mexico, Albuquerque, USA 
- 

Introduction 

Cylindrical metal shells imploded by magnetic fields - liners - are used as kinetic energy 
drivers for high energy density physics experiments in hydrodynamics and dynamic 
material property measurements. There are at least three ways in which liners have 
been, or are expected to be, used to produce high energy density, Le., high pressure, in 
target materials. A common approach uses the liner as a convergent flyer plate, which 
impacts a material target cylinder after having been shocklessly accelerated across an 
intervening gap. The resultant shock and piston hydrodynamic flow in the target are 
used in exploration of a wide variety of phenomena and material properties. Another 
common method is to slowly compress a liner containing a material sample in a such 
fashion that little heating occurs. This technique is most useful for investigated physical 
properties at low temperature and extreme density. Finally, one can use a hybrid 
approach to shock heat with an impacting liner followed by slower adiabatic, if not 
isentropic, compression to explore material properties in extrema. The magnetic fields 
for driving these liners may be produced by either high explosive pulsed power 
generators or by capacitor banks. Here we will consider only capacitor banks. 

The common objective of these approaches is the generation of high pressure in the 
target, although each method has different criteria to consider in optimizing experimental 
design for the highest possible pressure. In this paper we will focus on optimizing the 
technique of using a liner as a convergent flyer plate to produce a high shock pressure. 
Other considerations are the experimental target size, and the available duration of 
unperturbed material flow. These are coupled, of course, and are motivated by 
considerations of experiment scale and diagnostics. Much of the work presented here 
was motivated by considerations in the design of the Atlas 36-MJ hydrodynamic 
experimentation facility. < 

The highest impact velocity of the inner surface of the liner with the target will produce 
the highest shock pressure in the experiment. This can be seen from the shock 
Hugoniot equation of state formulated in terms of the shock and particle velocities ‘. For 
almost all materials of interest this can be written as v5 = c +sup. The shock pressure is 
given by p = pupv5. For the case of a liner impacting a target with velocity v one 
equates pressure in the flyer and target pT(cT + sTup)up = pL[cL + sL(v - up)](v - up) ,  
and solves for up(v) ,  and then p ( v )  . Clearly, the pressure is only a function of liner 
velocity at impact and material parameters. Thus, optimizing for highest velocity at 
impact will ensure highest pressure for a given selection of materials. To simplify the 
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problem, we focus on the case of liner and target made from the same  material, in which 

case the pressure is p = p-(c+s-). V V 

2 2 

Liner and Capacitor Bank Models 

We began our study using a simple, analytic model, in which the liner is driven by 
currents flowing on its surface, and diffusion of the magnetic field into thernetal is 
ignored. This model was first developed by J. Parker to design liners for the Pegasus 
capacitor bank a t  Los Alamos2. After this model was  used to initially narrow down the 
range of design parameters, we used I-D Lagrangian, fully MHD calculations to refine 
the final results. 

We first consider a n  incompressible liner with outer radius r2, inner radius 5 ,  mass  m , 
and height h , imploded by a current I on its surface. Incompressibility and mass  
conservation demand that the cross-sectional area, A = n (r: - r:) , remains constant. 
Differentiation of the area shows that the inner surface always implodes with a higher 
velocity than the outer, vl = r2vz / 5 ,  suggesting thick, high convergence liners that take 
advantage of this mechanical amplification to achieve the high velocities needed to 
generate high pressure in the target. 

The equation of motion of the inner surface for the liner is 
dv, v: 
dt 
-=---- 

In the limit of thin liners and low convergence implosions this reduces to the familiar thin 
liner or "slug" model equation of motion, 

d'r p h I' -=-Lo 
dt' 4.n mr 

where r is the mean radius. The condition for validity of Eq. 2 is that x26 << 1, where 
x = R / r is the convergence, and 6 = A / R is the thickness ratio. Here R is the mean 
initial radius, and A is the initial thickness. The importance of high current drive is clear 
from Eq. 2, especially given constraints placed on the minimum mass allowable. 
Because thick liners and high convergence a re  a means to the highest possible 
pressures, the condition for validity of Eq. 2 is violated, and we used Eq. 1 instead. The 
system of equations formed from Eq. 1 and the circuit model of the capacitor bank were 
integrated with a fourth order Runge-Kutta algorithm. 

After a survey using the analytic model, the optimum liner parameters were refined 
using the Crunch I-D Lagrangian MHD code3. Crunch uses the Los Alamos Sesame  
tables4 for equation of state data. The material conductivity model for Crunch uses  
experimental data5 below 2x1 O4 K interpolated to theoretical values6 above 1x1 O5 K. A 
two loop circuit model that includes the possibility of time varying elements is coupled to 
the 1 -D hydrodynamics of the liner implosion in Crunch calculations. 
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For analytic scaling, the bank was modeled as a simple LRC circuit: 

(3) 

where Q is the charge on the capacitors, and the time varying inductance of the liner is 

- 
In this model the total fixed inductance L includes bank, transmission line, and header 
inductances up to the initial position of the liner. The resistance R includes the small, 
but time varying, liner resistance. The Atlas design incorporates a small shunt 
resistance for damping high-frequency ringing, which was ignored in the analytic model, 
but was included in the l-D Crunch calculations. To illustrate the effect of capacitor bank 
design on liner performance we will use the 36-MJ Atlas capacitor bank under 
construction at Los Alamos as an example. Atlas will have 600 capacitors, and it was 
initially conceived that they would be arranged in a 600-kV Maw configuration. There is 
a detailed conceptual electrical design for this configuration. However, with fixed energy, 
rearranging the capacitors in a lower impedance, lower voltage configuration would 
increase the drive current and implosion force on the liner as clearly seen from Eq. 2. 

To explore the effect of lower voltage configurations we considered variations of the 
600-kV concept design. In all cases the series resistance, R , was adjusted to limit 
voltage reversal on the capacitors to 15% when discharged into a dead short. We varied 
the bank inductance and capacitance by recalling that the frequency o = 1 / 
remains constant for any configuration provided the number of capacitors is unchanged. 
The transmission line inductance was varied by reducing its thickness, hence 
inductance, in direct proportion to charge voltage. Scaling of the 36-MJ Atlas design 
parameters is shown in table 1. 

Shunt 
Damping Header 

( m a  (nH) 
80 10 

Total 
Ind. 
L 

25 
(nH) - 

X-Line 
Ind. 
Lx 

(nH) 
6 

0.8 I 480 I 312.5 5.76 I 8 4.8 64 I 8 18.56 
0.6 I 360 I 555.6 3.24 I 5 3.6 48 1 6 12.84 

2.4 32 I 4 7.84 

1.2 16 I 2 3.56 

Scaling: I K V ~  I CJK~ 

Table 1. Atlas bank design parameter variations for analytic and l-D liner calculations 

To complete the model one assumes that the Joule heating of the liner material is 
distributed uniformly throughout its volume. Admittedly this is inconsistent with the initial 

_ _ _  - ___I _____--_ ___- ~ - -.-.- ,.-. I ,  I .  ' -_.I- 
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assumption of surface current, but has little effect on results. We follow Tucker and 
Toth in postulating that the resistivity of the liner material is approximately only a 
function of the specific electrical action7 

I 

~ ( t )  = J j2 (2  )LIZ , (5) 
0 

where j is the current density. Using this model Parker found that aluminum was the 
material that resulted in highest liner velocitiesMithout completely melting. So we use 
aluminum in all of the calculations presented here. This to retain maximum solid material 
strength at high velocities in order to suppress the growth of MHD instability. 

1 

Figures I and 2 show the radii and velocities of the inner and outer surface of an 
aluminum liner imploded by the 240-kV Atlas model to impact a target with a radius of 
0.5 cm as calculated using this simple model. The action calculated from Eq. 4 is just 
sufficient to begin melting at impact with the target with a final velocity of 2.6 cm/ps. 
(Note that much of the final velocity in this incompressible model results from simple 
mechanical multiplication.) This liner would produce an 8-Mbar shock pressure in the 
aluminum target. 

Stability Considerations 

Liner performance can be seriously limited by MHD instability. The outer boundary of 
the liner is always MHD unstable. The dangerous modes are short-wavelength axial 
(azimuthal modes are stabilized by magnetic field line tension'). In analogy to the 
Rayleigh-Taylor instability, the magnetic field plays the role of a light fluid pushing on the 
metal, which eventually losses strength through Joule heating. Indeed, there may even 
be experimental evidence for an MHD analogue to the Richtmeyer-Meshkov instability 
when the shock generated on target impact reaches the outer surface of the liner, which 
is a diffuse boundary between metal and the light magnetic "fluid". 

During acceleration the growth of the MHD instability may limit the distance through 
which the liner implodes before it is disrupted. The instability grows rapidly in the outer 
part of the liner, where the metal has lost strength through melting by Joule heating. 
Only instability growth slower than mechanical thickening of the liner will prevent break 
through, Moreover, breakthrough may be inhibited if a large part of the inner region of 
the liner remains unmelted, retaining some strength. 

The initial exponential growth of the instability can be estimated from the theory of 
stability of a plasma columng, which reduces to the familiar Rayleigh-Taylor growth rate 
driven by a massless magnetic fluid for axial modes with wavelength much shorter than 
the radius of the liner. The extensive historical work on plasma pinches also shows a 
possible path to stabilization of this dangerous MHD mode by imbedding an axial, 
stabilizing magnetic field. 

Following initial exponential growth the instability saturates through coalescence to a 
slower, nonlinear growth to give an agitated region width" 

(6) 
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where g( t )  is the interface acceleration. From Eq. 6 it can be easily shown that the 
nonlinear amplitudeq(t) is proportional to the distance the liner moves if the 
acceleration is a power law; g(t)  cc tk , where k 2 0. The growth factor, a , is about 0.05 
for pure h dro with fluid interfaces", but can be ten times that for MHD in fully ionized 
plasmas'! The amplitude at which the instability transitions from exponential growth is 
wavelength de~endent'~, qo s h  / 10, making long wavelength initial perturbations quite 
risky. This imposes serious demands on liner fabrication. - 

To illustrate the danger of the MHD instability the nonlinear amplitude is compared with 
the liner thickness for the example in Fig. 1 and 2. For this comparison, shown in Fig. 3, 
the instability was assumed to transition to nonlinear growth at 1 .O ps, and then grow 
with a modest a=0.1. From Fig. 3 it is seen that the instability would have broken 
through a fluid liner at about 4.5 ms; long before impact with the target. Therefore, we 
strive to reduce through material strength by keeping the liner solid, insofar as possible. 
Thus, we placed strict limits on liner heating in our study. That is, we limited liner heating 
to ensure that a significant fraction of the liner would be solid. For example, in the simple 
analytic model calculations we restricted solutions to those with a final electrical action 
that would only begin to melt the liner. And, in the I-D modeling we restricted solutions 
to those retaining a solid thickness equal to the target radius at time of impact. 

Optimization 

The procedure used to find the optimum liner parameters for maximum target pressure 
was straightforward. For each 36-MJ bank configuration, the liner initial parameters that 
would produce the maximum velocity (hence, pressure) was found by surveying the 
initial mass and radius using the analytic model. For example, Fig. 4 shows the impact 
velocity achieved on the 600 kV variation by a 40-gm liner as a function of the initial 
radius. From this one reads that the highest velocity achievable with a 40-gm liner is 15 
mm/ps using a 2.4 cm initial radius. A family of such curves was generated for different 
mass liners, shown in Fig. 5. This clearly shows that the maximum velocity continues to 
increase without bound as the mass is reduced. But, when one restricts the solutions to 
those in which the liner remains unmelted, there appears a unique solution in mass and 
initial radius that gives the absolute maximum impact velocity for the 600-kV bank 
configuration. This is the optimum liner design for 600 kV. As seen from Fig. 6, this 
design is a 30-gm liner with an initial radius of 2.1 cm, which impacts the target with a 
velocity of 18 mm/p. 

This procedure was repeated for each of the bank options in listed in Table 1 , and the 
results are shown in Fig.7. So, for each bank voltage a unique optimum liner design was 
found. The final velocities calculated for each optimum design are presented in Fig. 8. 

The next step in our study was to use these optima as initial starting points for 
refinement using the I-D Lagrangian code. Having these preliminary results as initial 
parameters greatly reduced the amount of time required to complete the I-D 
calculations and optimization, which proceeded roughly along the same path outlined 
above. One difference was that the I-D calculations gave a detailed picture of the 
variation of Joule heating through the liner resulting from current diffusion from the 
outside, so solutions could be restricted to those that retained 0.5 cm of solid metal at 
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impact to suppress instability growth and provide an  adequate duration of high pressure 
in the target. 

The results of the l -D optimization are  shown in Fig. 9. The lower impact velocities 
calculated in l -D are  attributed to use  of real EOS data leading to compressibility of the 
material, because a significant fraction of the final velocity in the analytic model results 
from mechanical multiplication; a feature of incompressibility. Finally, we  show the 
calculated shock pressure in the target and its duration, which represents the window for 
hydrodynamic experiments. Clearly, the lower voltage bank options present a n  
advantage for hydrodynamic experiments. These, and similar, calculations were the 
basis of the decision to configure Atlas in a 36-MJ, 240-kV design. 
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