Design Study of a Visible/Infrared Periscope for Intense Radiation Applications using Reflective Optics

PDF Version Also Available for Download.

Description

In magnetically confined fusion devices employing deuterium-tritium (D-T) operation, refractive optical components exposed to neutron and gamma radiation can be subject to degradation of the transmission characteristics, induced luminescence, and altered mechanical properties including dimensional changes. Although radiation resistant refractive optics functioned well for the Tokamak Fusion Test Reactor (TFTR) periscope system during D-T operation, this design approach is unpromising in the much more hostile radiation environment of future D-T devices such as the International Thermonumclear Experimental Reactor (ITER). Under contract to the Princeton Plasma Physics Laboratory, Ball Aerospace of Colorado carried out a periscope design study based on the ... continued below

Physical Description

15p p.; Other: FDE: PDF; PL:

Creation Information

Medley, S.S. May 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In magnetically confined fusion devices employing deuterium-tritium (D-T) operation, refractive optical components exposed to neutron and gamma radiation can be subject to degradation of the transmission characteristics, induced luminescence, and altered mechanical properties including dimensional changes. Although radiation resistant refractive optics functioned well for the Tokamak Fusion Test Reactor (TFTR) periscope system during D-T operation, this design approach is unpromising in the much more hostile radiation environment of future D-T devices such as the International Thermonumclear Experimental Reactor (ITER). Under contract to the Princeton Plasma Physics Laboratory, Ball Aerospace of Colorado carried out a periscope design study based on the use of reflective optics. In this design, beryllium reflective input optics supported by a fused silica optical bench were interfaced to a Cassegrain relay system to transfer plasma images to remotely located cameras. This system is also capable of measuring first-wall surface temperatures in the range of 300 - 2,000 degrees C even under projected heating of the reflective optics themselves to several hundred degrees Celsius. Tests of beryllium mirror samples, however, revealed that operation at temperatures above 700 degrees C leads to a loss of specular reflectivity, thus placing an upper limit on the acceptable thermal environment. The main results of this periscope study are presented in this paper.

Physical Description

15p p.; Other: FDE: PDF; PL:

Notes

OSTI as DE98057839

Source

  • 12. topical conference on high-temperature plasma diagnostics, Princeton, NJ (United States), 7-11 Jun 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98057839
  • Report No.: PPPL--3301
  • Report No.: CONF-980605--
  • Grant Number: AC02-76CH03073
  • Office of Scientific & Technical Information Report Number: 289930
  • Archival Resource Key: ark:/67531/metadc678107

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 15, 2016, 7:05 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Medley, S.S. Design Study of a Visible/Infrared Periscope for Intense Radiation Applications using Reflective Optics, article, May 1, 1998; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc678107/: accessed May 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.