MBE growth of GaInAsSb p/n junction diodes for thermophotovoltaic applications

PDF Version Also Available for Download.

Description

This paper reports recent progress in the development of quaternary III-V thermophotovoltaic (TPV) devices based on MBE grown Ga{sub x}In{sub 1{minus}x}As{sub y}Sb{sub 1{minus}y}. TPV is of great interest for a variety of applications. The objective of this work is to develop a TPV cell which is tunable to the emission spectrum of a heated blackbody, at temperatures in the range of 1200--1473 K. One aspect of this tuning is to match the band gap, E{sub gap}, of the photovoltaic device to the peak output of the heat source., An advantage of the quarternary III-V semiconductor systems is that devices can ... continued below

Physical Description

14 p.

Creation Information

Uppal, P.N.; Charache, G.; Baldasaro, P.; Campbell, B.; Loughin, S.; Svensson, S. et al. August 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Knolls Atomic Power Laboratory
    Publisher Info: Knolls Atomic Power Lab., Schenectady, NY (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper reports recent progress in the development of quaternary III-V thermophotovoltaic (TPV) devices based on MBE grown Ga{sub x}In{sub 1{minus}x}As{sub y}Sb{sub 1{minus}y}. TPV is of great interest for a variety of applications. The objective of this work is to develop a TPV cell which is tunable to the emission spectrum of a heated blackbody, at temperatures in the range of 1200--1473 K. One aspect of this tuning is to match the band gap, E{sub gap}, of the photovoltaic device to the peak output of the heat source., An advantage of the quarternary III-V semiconductor systems is that devices can be fabricated by molecular beam epitaxy on a suitable binary substrate, such as GaSb or InAs, and the band gap and lattice constant can be adjusted more or less independently, to match requirements. Quarternary cells, with band-gaps in the 0.5 to 0.72 eV range, have been fabricated and tested. For 0.54 eV devices the authors obtained V{sub oc} = 0.3 V and I{sub sc} = 1.5 amperes/cm{sup 2} under infrared illumination of a 1200 K blackbody. Under high illumination levels the V{sub oc} and I{sub sc} ranged from 0.5 V at 3 amperes/cm{sup 2} for 0.72 eV devices to 0.31 V at 1.2 amperes/cm{sup 2} for 0.5 eV devices, indicating good photovoltaic device characteristics over the range of bandgaps. The diode ideality factor for 0.54 eV devices ranged from 2.45 at low illumination indicating tunneling-dominated dark current, to 1.7 at high illumination intensity indicating recombination-generation dominated dark currents.

Physical Description

14 p.

Notes

OSTI as DE99002667

Source

  • 9. international conference on molecular beam epitaxy, Malibu, CA (United States), 5-9 Aug 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99002667
  • Report No.: KAPL-P--000228
  • Report No.: K--96108;CONF-960834--
  • Grant Number: AC12-76SN00052
  • Office of Scientific & Technical Information Report Number: 350923
  • Archival Resource Key: ark:/67531/metadc678051

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 16, 2016, 4:56 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Uppal, P.N.; Charache, G.; Baldasaro, P.; Campbell, B.; Loughin, S.; Svensson, S. et al. MBE growth of GaInAsSb p/n junction diodes for thermophotovoltaic applications, article, August 1, 1996; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc678051/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.