Constitutive modeling of weak and strong shock-initiation of porous explosives

PDF Version Also Available for Download.

Description

A continuum based reactive burn model for shocked loaded high explosives has been developed that uses heterogeneous distribution of pore collapse energy to one or more of the constituents (a hot spot) as an ignition source, represents constituents with independent equations of state and has multiple competing and sequential chemical reactions. Reaction propagates from the hot spot to the remainder of the material through either a pressure or temperature dependence of heat transfer through a film layer. The reaction may be quenched by heat transfer or shock release if it is not rapid enough.

Physical Description

19 p.

Creation Information

Bennett, L.S. December 31, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A continuum based reactive burn model for shocked loaded high explosives has been developed that uses heterogeneous distribution of pore collapse energy to one or more of the constituents (a hot spot) as an ignition source, represents constituents with independent equations of state and has multiple competing and sequential chemical reactions. Reaction propagates from the hot spot to the remainder of the material through either a pressure or temperature dependence of heat transfer through a film layer. The reaction may be quenched by heat transfer or shock release if it is not rapid enough.

Physical Description

19 p.

Notes

OSTI as DE99002815

Source

  • 11. detonation symposium, Snowmass, CO (United States), 31 Aug - 4 Sep 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99002815
  • Report No.: LA-UR--98-3621
  • Report No.: CONF-980803--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 350875
  • Archival Resource Key: ark:/67531/metadc678009

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 25, 2016, 2:12 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bennett, L.S. Constitutive modeling of weak and strong shock-initiation of porous explosives, article, December 31, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc678009/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.