DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
PITA-31
FRINGE-BLANKET IRRADIATION OF THORIUM OXIDE
SUPPLEMENT VI

By:

P. D. Gross
K. L. Hladek

July 1, 1965

HANFORD ATOMIC PRODUCTS OPERATION
RICHLAND, WASHINGTON

NOTICE

This report was prepared for use within General Electric Company in the course of work under Atomic Energy Commission Contract AT(45-1) - 1350, and any views or opinions expressed in the report are those of the author only. This report is subject to revision upon collection of additional data.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
DISTRIBUTION

1. AEC-RLOO Attn: P. G. Holsted
2. AEC-RLOO Attn: P. M. Midkiff
3. AEC-RLOO Attn: R. L. Plum
4. AEC-RLOO Attn: C. N. Zangar
5. TW Ambrose
6. GF Bailey
7. JT Baker
8. GD Baston
9. RS Bell
10. HE Berg
11. WA Blanton
12. CE Bowers
13. RW Bown
14. HM Burton
15. MA Clinton
16. RG Clough
17. RA Dieterich
18. RE Dunn
19. JH Ferguson
20. WJ Ferguson
21. EJ Filip
22. G Fiorelli
23. GC Fullmer
24. DK George
25. SM Graves
26. CN Gross
27. PD Gross
28. AK Hardin
29. JR Heald
30. KL Hladek
31. RD Hickman
32. GA Huff
33. RD Jensen
34. RT Jessen
35. LE Kusler
36. JR Langton
37. CG Lewis
38. AR Maguire
39. WW McIntosh
40. RD Miller
41. RL Miller
42. HC Money
43. R Nilson
44. GF Owsley
45. EV Padgett
46. HG Powers
47. T Prudich
48. RW Reid
49. LH Rice
50. OC Schroeder
51. JT Stringer
52. AD Vaughn
53. AP Vinther
54. RW Wood
55. SA Wood
56. WK Woods
57. WK Wright
58. Records Center
59. 700 File

DECLASSIFIED

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
FRINGE-BLANKET IRRADIATION OF THORIUM OXIDE
SUPPLEMENT VI

I. OBJECTIVE

The objective of this supplement is to authorize recharging of the thoria in the fringe zones of the B, C, D, KE, and KW Reactors. Initial charging is described in the parent document.1 This authorization will serve as an interim measure until Reactor Process Standards have been approved to authorize fringe blanket thoria irradiations.

II. BASIS AND JUSTIFICATION

Orders for an additional 50 kg of U-233 with less than 5 PPM of U-232 contaminant have been received from the AEC.2 This commitment requires a second fringe blanket thoria cycle at each of the B, C, D, KE, and KW Reactors for about six months. The general physics and engineering behavior of the initial E-Q blanket loading was about as predicted; no insurmountable problems or large deviations from planned operation were encountered.

III. HAZARDS

Hazards associated with the recharging will remain the same as those described for the initial loading1 with the exception that most, or all, of the enriched uranium support shall be present in the reactor during the recharging operation. This requires special procedures to assure that total control is not jeopardized during the recharging operation.

IV. PROCEDURES

All target elements authorized for this irradiation are solid cylinder, 8.865 inches, or 6.540 inches, in length. The elements will contain thorium oxide with a bulk density of 7.0 ± 0.2 g/cc. The elements will be made according to the existing fabrication specifications.

Thorium element models 011T and 012T are authorized for use in the B, C, and D Reactor fringe tubes; target element model C2T is authorized for the K Reactor fringe tubes.

Nuclear safety requirements for pre-irradiation storage of thorium elements may conservatively be assumed to be the same as for natural uranium.

1HW-84021, PITA-31, Fringe-Blanket Irradiation of Thorium Oxide, PD Gross and KL Hladek, 9-11-64
2Letter, AT Gifford to AB Greninger, Continued Thoria Irradiation, 4-13-65

DECLASSIFIED
Recharging may take place at any convenient time during the outage.

Subcritical monitoring requirements shall be as specified in the parent document\(^1\) and its supplements (1-5).

Rods withdrawn for recharging may be as specified in Reactor Process Standards C-020.

All thoria charges are to have the standard downstream dummy length.

Solid aluminum pieces must be off of the front work platform and out of the charge makeup area during charge makeup and charging of the thoria.

Thoria elements may be used to charge-discharge other thoria elements, lithium-aluminum elements, and aluminum spacers. Thoria elements shall not be used to displace uranium elements.

Hand seating of the thoria is not necessary. Ram seating of the thoria is not permitted. Charging machine forces are to be limited to 1500 pounds during the thoria recharging operation.

Probing of thoria tubes is not required.

The charging and discharging of thoria shall be audited by a qualified representative of Research and Engineering.

The criteria for inventory control and element handling established by the parent document is still applicable.

The loading patterns described in the parent document\(^1\) and its subsequent supplements (1-5) shall be adhered to for the recharging operation.

Provisions for flux traversing as specified in the parent document\(^1\) need not be continued.

Up to 90 sets of front and rear caps may be removed from fringe tubes containing thoria at any one time at the smaller reactors. This number may be increased to 100 for the K reactors.

The special nozzle caps authorized in Design Change 951 shall continue to be used for all thoria charges.

To assure that total control is not jeopardized, all supporting enrichment must be compensated at all times during the recharging. In the event that certain thoria tubes are to be left empty during the recharging, the supporting enrichment must be compensated by 1) assuming the uncompensated enrichment is a part of the adjacent enrichment ring in calculating total control, 2) inserting a spline in the empty thoria channel until it is charged with thoria or an equivalent poison (e.g., Li-Al), or 3) using an adjacent uncompensated thoria column for direct compensation.
When using methods 2 and/or 3, all supporting enriched uranium in any and every 3 by 5 fringe array must be directly compensated by equivalent strength poison material in the same 3 by 5 array.

Startup procedures as specified in Reactor Process Standards shall be followed for all startups subsequent to the recharging.

No special data is required during operation with the fresh thoria blanket. All data normally supplied to production computing operation shall continue to be supplied.

The thoria elements authorized shall be irradiated to produce U-233 with less than 5 PPM U-232 contaminant. An irradiation of approximately six months, at 80 per cent TOE, is planned. Any modifications to this goal exposure plan may be specified with the concurrence of the Manager, Production, and the individual Processing Managers concerned.

V. RESPONSIBILITIES

Responsibilities shall remain as specified in the parent document and its supplements (1-5).

P. D. Gross
P. D. Gross, Engineer
Process Physics Studies
Operational Physics Subsection
Research and Engineering Section

K. L. Hladek
K. L. Hladek, Engineer
Reactor Engineering
Process and Reactor Development
Research and Engineering Section

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
APPROVALS

R. Nilsen, Manager
Process and Reactor Development
Research and Engineering Section

G. C. Fullmer, Manager
Operational Physics
Research and Engineering Section

R. W. Reid, Manager
Process Technology
Research and Engineering Section

E. J. Filip, Manager
B-C Reactor Subsection
Manufacturing Section

G. Fiorelli, Manager
B-C Reactor Subsection
Manufacturing Section

A. R. Maguire, Manager
B-C Reactor
Manufacturing Section

DECLASSIFIED
J. J. Baker, Manager D Processing
D Reactor Subsection
Manufacturing Section

C. N. Gross, Manager
D Reactor
Manufacturing Section

R. G. Clough, Manager KE Processing
105 KE-KW Reactor
Manufacturing Section

A. P. Vinther, Manager KW Processing
105 KE-KW Reactor
Manufacturing Section

R. S. Bell, Manager
KE-KW Reactor
Manufacturing Section

R. L. Dunn, Manager
Production
Manufacturing Section

O. C. Schroeder, Manager
Manufacturing