CONTRASTING RETROGRESSIVE REARRANGEMENT PATHWAYS DURING THERMOLYSIS OF SILICA-IMMOBILIZED BENZYL PHENYL ETHER

A. C. Buchanan, III, Phillip F. Britt, and J. Todd Skeen
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory
P. O. Box 2008, Oak Ridge, Tennessee 37831-6197

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

*Research sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC05-96OR22464 with Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp.

"The views and opinions expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

"Research sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC05-96OR22464 with Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp."
CONTRASTING RETROGRESSIVE REARRANGEMENT PATHWAYS DURING THERMOLYSIS OF SILICA-IMMobilIZED BENZYL PHENYL ETHER

A. C. Buchanan, III, Phillip F. Britt, and J. Todd Skeen

Chemical & Analytical Sciences Division
Oak Ridge National Laboratory
P.O. Box 2008, MS-6197
Oak Ridge, Tennessee 37831-6197

Keywords: Retrogressive reactions, rearrangements, restricted diffusion, ether linkages

INTRODUCTION

Many coal model compound studies have focused on the mechanisms of bond cleavage reactions, and the means to alter reaction conditions to promote such reactions. However, there has become increasing interest in elucidating mechanisms associated with retrogressive or retrograde reactions in coal processing, which involve the formation of refractory bonds. Retrograde reactions inhibit efficient thermochemical processing of coals into liquid fuels, which has been particularly well-documented for low rank coals where abundant oxygen-containing functional groups are thought to play a key role in the chemistry. For example, the decarboxylation mechanism of carboxylic acids is being investigated because of the correlation between CO₂ evolution and cross-linking in low rank coals. In addition, phenols have been investigated because of their ability to undergo condensation reactions.

Much less is known about retrogressive reactions for ether-containing model compounds. Radical recombination through ring coupling of phenoxy radicals in benzyl phenyl ether (BPE) is known to lead to more refractory diphenylmethane linkages to a limited extent. Since this chemistry may be attributed at least in part to cage recombination, it could be promoted in a diffusionally constrained environment such as in the coal macromolecule. Using silica-immobilization to simulate restricted diffusion in coal, we have found that retrogressive reactions can be promoted for certain hydrocarbon model compounds. We have now begun an examination of the thermolysis behavior of silica-immobilized benzyl phenyl ether (=BPE, where = represents the Si-O-C linkage to the surface as shown in Table 1) at 275-325 °C. Our initial results indicate that two retrogressive reaction pathways, radical recombination as shown above and molecular rearrangement through =PhOCH₂Ph, are promoted by restricted diffusion. Remarkably, the retrograde products typically account for 50 mol % of the thermolysis products.

EXPERIMENTAL

The precursor phenol, m-HOC₆H₄OCH₂C₆H₅ (HOBPE), was synthesized by the reaction of benzyl bromide with the sodium salt of resorcinol (NaH in DMF). Following addition of water and acidification, the organics were extracted into toluene. Ether was added to the toluene solution, and the desired phenol was separated from the dibenzylated byproduct by extraction with 2 M NaOH. The basic layer was acidified and extracted with diethyl ether, which was then washed with brine, dried over Na₂SO₄, filtered, and the solvent removed under reduced pressure to produce a brown oil. The product was eluted twice from silica gel columns, once with toluene and then with toluene:hexane (75:25). Multiple recrystallizations from hot toluene:hexane (1:1) gave the desired phenol in 99.9 % purity by GC.

Chemical attachment of the precursor phenol to the surface of a nonporous silica (Cabosil M-5, Cabot Corp.; 200 m²/g; ca. 1.5 mmol SiOH per g) was accomplished as described below. HOBPE (2.715g; 13.6 mmol) was dissolved in dry benzene (distilled from LiAlH₄) and added to a benzene slurry of silica (9.00g; 13.5 mmol SiOH) that had been dried at 225 °C for 4 h under vacuum. Following stirring and benzene removal on a rotovap, the solid was added to a Pyrex tube which was evacuated to 2 x 10⁻⁴ torr and flame sealed. The attachment reaction was performed at 200 °C for 1 h. Unattached HOBPE was removed by Soxhlet extraction (6h) with dry benzene under argon. The silica-attached BPE (=BPE) was then dried under vacuum.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
bibenzyl \{\text{PhCH}_2\text{CH}_2\text{Ph} - \text{PhCH(Ph)CH}_2\text{Ph}\\}. \text{(1)} For =BPE, the benzophenone and benzyhydrol products also contain reactive functional groups that can also become involved in additional retrograde reactions (reduction to diphenylmethyl linkages, adduction to aromatics, formation of complex cyclic ethers, etc.) under coal processing conditions. \text{(6,7,13)} Finally, the hydrogen required for formation of the unexpected hydrocracked products (Eq. 6) likely arises from the formation of the aldehyde and ketone products (principally the benzophenone (Eq. 5a)) and the benzylolation of aromatics such as =BPE (Eq. 7).

CONCLUSIONS

Thermolysis of benzyl phenyl ether under conditions of restricted mass transport has been found to produce a dramatically different product distribution compared with fluid phases. Two significant retrograde, free-radical reaction pathways are found to be promoted for =BPE under these conditions. Radical coupling at phenolic ring positions is observed to be substantially enhanced as a consequence of restricted diffusion for =PhO radicals compared with fluid phases. A second, kinetically competitive retrograde reaction not observed in fluid phases involves rearrangement via =PhOCH=Ph intermediates to form benzophenone and benzyhydrol products in significant yields. The sum of these two retrograde processes accounts for a remarkable 50-54 mol % of the products at 275 °C. In addition to forming more stable diphenylmethyl-type bridges, these two processes also generate reactive hydroxyl and keto functionalities that can be involved in secondary retrograde reactions. Current research is exploring the effect of surface coverage and reaction temperature on the rate of =BPE thermolysis and on the selectivity for these two retrograde pathways.

ACKNOWLEDGEMENTS

Research sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC05-96OR22464 with Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp.

REFERENCES

Products From Pyrolysis of Silica-Immobilized Benzyl Phenyl Ether

![Diagram of Pyrolysis Product]

(0.25 mmol/g)

<table>
<thead>
<tr>
<th>PRODUCT (mol %)</th>
<th>275 °C, 90 min</th>
<th>275 °C, 360 min</th>
<th>300 °C, 30 min</th>
<th>325 °C, 10 min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>99.4 % mass bal.</td>
<td>97.8 % mass bal.</td>
<td>101.1 % mass bal.</td>
<td>92.6 % mass bal.</td>
</tr>
<tr>
<td>~CH₂OH</td>
<td>21.6</td>
<td>24.3</td>
<td>24.0</td>
<td>25.6</td>
</tr>
<tr>
<td>C₂H₅</td>
<td>11.0</td>
<td>11.1</td>
<td>11.0</td>
<td>11.9</td>
</tr>
<tr>
<td>~C₅H₃OH</td>
<td>29.0</td>
<td>26.7</td>
<td>28.5</td>
<td>27.7</td>
</tr>
<tr>
<td>~C₅H₃OH</td>
<td>12.5</td>
<td>12.2</td>
<td>10.0</td>
<td>10.4</td>
</tr>
<tr>
<td>~C₅H₃OH</td>
<td>11.6</td>
<td>12.4</td>
<td>10.2</td>
<td>9.6</td>
</tr>
<tr>
<td>~C₅H₃OH</td>
<td>2.6</td>
<td>2.4</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>~C₅H₇OH</td>
<td>3.6</td>
<td>3.4</td>
<td>3.1</td>
<td>2.5</td>
</tr>
<tr>
<td>~C₅H₇OH</td>
<td>1.9</td>
<td>1.5</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>~C₅H₇OH</td>
<td>1.8</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>~C₅H₇OH</td>
<td>1.5</td>
<td>1.3</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>~C₅H₇OH</td>
<td>1.6</td>
<td>0.9</td>
<td>1.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Figure 1. Proposed Reaction Mechanism For Principal Product Formation