Kaw hat 5
\square 4

PUB-755
xvolumicenter

管 STH

This is the second of two volumes published in conjunction with the Halbach Symposium on Magnet Technology held at Lawrence Berkeley Laboratory on February 3, 1995, in honor of Klaus Halbach's 70th birthday.
Volume 1 (LBL PUB 754), A Festschrift in Honor of Klaus Halbach, contains technical papers and personal remembrances written by Dr. Halbach's colleagues expressly for the Halbach Symposium and dedicated to him.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer-

VOLUME 2

 ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
The Art and Science of Magnet Design Selected Notes of Klaus Halbach

February 1995
Lawrence Berkeley Laboratory University of California
Berkeley, CA 94720

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Preface

This volume contains a compilation of 57 notes written by Dr. Klaus Halbach selected from his collection of over 1650 such documents. It provides an historic snapshot of the evolution of magnet technology and related fields as the notes range from as early as 1965 to the present, and is intended to show the breadth of Dr. Halbach's interest and ability that have long been an inspiration to his many friends and colleagues.

As Halbach is an experimental physicist whose scientific interests span many areas, and who does his most innovative work with pencil and paper rather than at the workbench or with a computer, the vast majority of the notes in this volume were handwritten and their content varies greatly-some reflect original work or work for a specific project, while others are mere clarifications of mathematical calculations or design specifications. As we converted the notes to electronic form, some were superficially edited and corrected, while others were extensively re-written to reflect current knowledge and notation.

The notes are organized under five categories which reflect their primary content: Beam Position Monitors (bpm), Current Sheet Electron Magnets (csem), Magnet Theory (thry), Undulators and Wigglers (u-w), and Miscellaneous (misc). Within the category, they are presented chronologically starting from the most recent note and working backwards in time. The note number, listed in the Table of Contents and at the bottom of each note's first page, comes from a database we have created which includes the titles of the entire collection of notes, and a recently added sixth category, Conformal Transformations (ctr). The appendixes contain a table of all the notes in the database and a list of Dr. Halbach's publications.

The extensive use of hand-written notes by Dr. Halbach leads us to believe that there may be many that were sent to colleagues which were not retained in Dr. Halbach's files, and thus are missing from the database. If you happen to have a note of scientific interest from Dr. Halbach and believe it to be an original, we would appreciate receiving a copy.

Brian M. Kincaid

November 1994
Simonetta Turek

Table of Contents

Halbach Geometries ix
Beam Position Monitors
Exact, Complete Proofs of Reciprocity Theorems for Electrostatic and Magnetostatic Beam Monitors 0022bpm 1
Current Sheet Electron Magnets
Integral for Excess Flux Calculation 0336csem 5
H^{*} at End of CSEM Block 0335 csem 9
Summary of Excess Flux Formulae for $\mathrm{Gm} 3, \mathrm{Gm} 18$, and Gm 40 0332csem 11
Anti-Symmetric Undulator to Make Vertically Polarized or Circularly Polarized Light 0208csem 15
Hybrid Undulator with Superimposed Quadrupole Field 0187csem 19
Excess Flux into Gm13 0183csem 23
Flux Distribution Symmetry Theorem 0143 csem 27
Stored Energy in CSEM 0142 csem 29
Earnshaw's Theorem for Non-Permeable Material 0076csem 31
Harmonics Produced by Rectangular REC Block 0059 csem 33
A Possible REC Undulator for SSRL 0038csem 35
Miscellaneous
A Simple Derivation of the Lorentz Transformation Without Talking about Light 0287misc 39
Dimensional Analysis of Trajectory of Non-Relativistic Charged Particles in Stationary Electric and Magnetic Fields 0278misc 43
Analog Integrator Dynamics 0267misc 47
Local Interpolation with Continuous Function and its First N Derivatives 0177misc 49
Linear Least Squares with Erroneous Matrix 0038misc 53
Matrix Describing Second Order Effects to Second Order in One Dimension 0006 misc 55

Theory

Curvature of 2D Magnetic Field Lines and Scalar Potential Lines 0611thry 59
Fringe Field Model Function for Dipoles 0610thry 63
Comments about RAYTRACE 0609thry 65
Stored Energy in H-Magnet for $\mu=\infty$ 0607thry 69
H-Magnet with Minimal Yoke Flux Density 0606thry 73
Dipole with Small Gap Bypass 0591 thry 75
Boundary Condition at Iron-Air Interface for AC and Application to 2-Dimensional Cylinder 0492thry 77
Flux into a Rectangular Box 0491thry 81
Propagation of Fast Perturbation in Dipole 0489thry 83
Description of the Properties of an Ellipse 0476thry 87
Characterization of Dipole Fringe Fields with Field Integrals 0438thry 91
Penetration of Solenoidal Field through Conducting Shell 0437thry 95
Rogowski Dipole0397thry99
Rogowski Quadrupole: Formulation of Problem 0326thry 101
Eddy Currents for Fast Permanent Magnet Magnetization 0264thry 103
Change of Determinant for Small Changes of One Element of the Matrix that Describes a System that is Least Squares Optimized with Restraints and has Least Squares Limitations on Parameters 0072tbry 109
Sensitivity of Solution of Linear Equations to Change of an Individual Matrix Element 0071thry 111
Fourier Analysis of Numerical Data 0059thry 113
Curvature of Field Lines in a Quadrupole 0009thry 117
Skin Effect in Fe 0007thry 119
Magnetic Field Energy Calculations 0006 thry 125

Undulator-Wiggler

Scalar Potential for 3D Fields in "Business Region" of Insertion Device with Finite Width Poles 0144u-w 129
Magnetic Measurement and Data Reduction to Identify Some Specific Error Field Consequences 0142u-w 133
Least Square Fit of $f(z)$ with $a+b z$ in $0 \leq z \leq 1$ 0141u-w 141
Normalizations Factors ε_{1} and ε_{2} for Comparison of First and Second Order Phase Shifts, with Analytical Model of $b(z)$ $0140 u-w$ 143
Comparison of First and Second Order Contributions of Error Fields to Phase Shift 0139u-w 147
Connection Between Undulator Field Errors and Optical Phase 0138u-w 149
$\rho, A_{0} / B_{1}$ for Hybrid Insertion Device 0137u-w 151
Simple Analytical Model for Fields from One Pole of Hybrid Insertion Device 0136u-w 153
Wiggler Parameter K Definitions 0135u-w 157
NPOLE 0134u-w 159
Error of Flux Calculation for Finite Pole Width with Excess Flux Coefficient 0133u-w 169
Excess Flux into Pole and Flux into Side of Gm40 0131u-w 175
Flux Transport along Axial Direction of Electro-Magnetic Wiggler 0129u-w 179
3D Scalar Potential for Saturation-Caused Fields in the Insertion Device 0125u-w 187
Scalar Potential for 3D Insertion Device Fields 0124u-w 189
Gradient Measurement in Insertion Device 0120u-w 191
Undulator Trajectory and Radiation 0101u-w 193
Mathematical Representation of Undulator and Wiggler Fields 0055u-w 195
Appendix A - Publications of Klaus Halbach A-1
Appendix B - Notes of Klaus Halbach B-1

Halbach Geometries

The Halbach Geometries, referred to in the notes as Gm, are a collection of simple geometric shapes, simple function representations, and 2-dimensional electromagnetic geometries for which conformal mapping calculations have been done to compute basic features such as capacitance, excess flux, etc. For examples of calculations of excess flux, see documents 0336csem (p. 5), 0332csem (p. 11), 0183csem (p. 23), and 0131u-w (p. 175).

The following two pages summarize Dr. Halbach's representations and shorthand notations of his "Geometries." The reader is encouraged to refer back to them when encountering such abbreviations as Gm 3 or Gm 21 while reading the notes. (Note: Not all the Halbach Geometries are referenced in this collection.)

Exact, Complete Proofs of Reciprocity Theorems for Electrostatic and Magnetostatic Beam Monitors

The following is an excercise in Maxwell's equations in a region that is bounded by perfect metal walls and contains nothing but moving electric charges.

$$
\begin{equation*}
\nabla \times \dot{\mathbf{H}}=\mathbf{j}+\dot{\mathbf{D}} \quad \text { and } \quad \nabla \cdot \mathbf{H}=0 \tag{1.1}
\end{equation*}
$$

where j comes from the moving charges represented by charge density $\varrho(x, y, z, t)$ in the beam, and

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\dot{\mathbf{B}} \quad \text { and } \quad \nabla \cdot \mathbf{D}=\varrho \tag{2.1}
\end{equation*}
$$

We integrate all equations over time, starting before the front-end wake fields begin, and ending after the end wake fields and RF are gone.

$$
\begin{align*}
& \int \dot{\mathbf{D}} d t=0 \quad \text { and } \quad \int \dot{\mathbf{B}} d t=0 \\
& \nabla \times \mathcal{H}=\mathbf{J} \quad \text { and } \quad \nabla \cdot \mathcal{H}=0 \tag{3,1}\\
& \nabla \times \mathcal{V}=0 \quad \text { and } \quad \nabla \cdot \mathcal{V}=R \tag{4,1}
\end{align*}
$$

The new symbols stand for integrals over time at every x, y, z.

Electrostatic Pick-up.

The beam with R produces $V_{1}(x, y, z)$, with $V_{I}=0$ on wall everywhere, including on the electrode. An electrode on V_{20} produces $V_{2}(x, y, z)$, with $V_{2}=0$ on wall except on the electrode*.
Using (4.1) and (4.2) we notice that V_{2} is the actual potential and V_{1} is the integrated potential over time. With $\mathcal{H}=-\Delta V$,

$$
\begin{aligned}
U & =\int \nabla \cdot\left(V_{1} \nabla V_{2}-V_{2} \nabla V_{1}\right) d v \\
& =\int(V_{1} \underbrace{\nabla \cdot \nabla V_{2}}_{0}-V_{2} \underbrace{\nabla \cdot \nabla V_{1}}_{-R}) d v \\
& =\int V_{2} R d v .
\end{aligned}
$$

[^0]But it is also true that, for the charge q_{e},

$$
U=\int\left(V_{1} \nabla V_{2}-V_{2} \nabla V_{1}\right) \cdot d \mathbf{a}=V_{20} \cdot Q \quad \text { with } \quad Q=\int q_{e} d t
$$

induced by electrons on electrode.
The total charge in the bunch, Q_{B}, is related to $\varrho(x, y, z, t)$ through

$$
\begin{gathered}
\int \varrho d t d a=Q_{B} / v \\
\int R v d a=\int \varrho d t v d a=\int Q_{B}^{\prime} d a \\
Q \cdot V_{20}=\frac{1}{v} \int V_{2} Q_{B}^{\prime} d v=\frac{1}{v} \int Q_{B} V_{2} d z
\end{gathered}
$$

where Q_{B}^{\prime} is independent of z, and is the charge going through area da, divided by $d a$. The units for $\left[Q_{B}\right]=A \mathrm{sec}$, and $[Q]=A \mathrm{sec}^{2}$.

Magnetostatic Pick-up.

We use (3.1) and (3.2). The beam with \mathbf{J} produces $\mathrm{A}_{1}(x, y, z)$, and $\mathcal{H}_{1}(x, y, z)$. In the coil, the flux from \mathbf{J} integrated over t is

$$
\Phi_{2}=\int \mu_{0} \mathcal{H}_{1} \cdot d \mathbf{a}=\int \nabla \times \mathbf{A}_{1} \cdot d \mathbf{a}=\mu_{0} \oint \mathbf{A}_{1} \cdot d \mathbf{s}
$$

In addition, we use a coil with a current, I_{2}, that produces $\mathbf{A}_{2}(x, y, z), \mathcal{H}_{2}(x, y, z)$. We now use, equivalently to the electrostatic case,

$$
U=\int \nabla \cdot\left(\mathbf{A}_{1} \times \mathcal{H}_{2}-\mathbf{A}_{2} \times \mathcal{H}_{1}\right) d v
$$

where \mathbf{A}_{1} is the integrated vector potential, and \mathbf{A}_{2} is the actual potential associated with I_{2}.

$$
\nabla \cdot \mathbf{A}_{1} \times \mathcal{H}_{2}=\mathcal{H}_{2} \cdot \nabla \times \mathbf{A}_{1}-\mathbf{A}_{1} \cdot \nabla \times \mathcal{H}_{2}=\mathcal{H}_{2} \cdot \mathcal{H}_{1}-\mathbf{A}_{1} \cdot \mathbf{J}_{2}
$$

thus,

$$
U=\int\left(\mathbf{A}_{2} \cdot \mathbf{J}_{1}-\mathbf{A}_{1} \cdot \mathbf{J}_{2}\right) d v
$$

With

$$
\mathrm{J}_{1}=J_{1} \mathrm{e}_{\mathrm{z}} \quad \text { and } \quad \int J_{1} d a=\int j_{1} d a d t=Q_{B}
$$

we get

$$
\begin{gathered}
\int \mathbf{A}_{2} \cdot \mathbf{J}_{1} d v=Q_{B} \cdot \int A_{2 z} d z \\
\int \mathbf{A}_{1} \cdot \mathbf{J}_{2} d v=I_{2} \int \mathbf{A}_{1} \cdot d \mathbf{s}=I_{2} \Phi_{2} / \mu_{0}
\end{gathered}
$$

and get

$$
U=Q_{B} \cdot \int A_{2 z} d z-I_{2} \Phi_{2} / \mu_{0}=\int\left(\mathbf{A}_{1} \times \mathcal{H}_{2}-\mathbf{A}_{2} \times \mathcal{H}_{1}\right) \cdot d \mathbf{a}
$$

with the last integral taken over the "superconducting" wall.
In the vicinity of the wall we use $\mathcal{H}=-\nabla V$. Thus,

$$
U=\int\left(\mathbf{A}_{2} \times \nabla V_{1}-\mathbf{A}_{1} \times \nabla V_{2}\right) \cdot d \mathrm{a}
$$

In general, $\nabla \times\left(V_{1} \mathbf{A}_{2}\right)=V_{1} \nabla \times \mathbf{A}_{2}-\mathbf{A}_{2} \times \nabla V_{1}$, thus

$$
U=\int\left(V_{1} \nabla \times \mathbf{A}_{2}-V_{2} \nabla \times \mathbf{A}_{1}\right) \cdot d \mathbf{a}=\int\left(V_{1} \mathcal{H}_{2}-V_{2} \mathcal{H}_{1}\right) \cdot d \mathbf{a}=0
$$

The last integral vanishes because on the superconducting wall the component of \mathcal{H} perpendicular to the wall (i.e. parallel to $d \mathrm{a}$) is zero. We therefore get

$$
\Phi_{2}=\mu_{0} Q_{B} \int A_{2 z} d z / I_{2}
$$

The units are $\left[\Phi_{2}\right]=\mu_{0} A \mathrm{~m} \mathrm{sec},\left[\mathbf{A}_{2}\right]=A,\left[\mu_{0} Q_{B} \int A_{2 z} d z / I_{2}\right]=\mu_{0} A \mathrm{~m}$ sec. It is important to notice that Φ_{2} is the integrated flux, and the flux is the integrated induced voltage.

Integral for Excess Flux Calculation

$$
J=\int_{i_{1}}^{t_{2}} \underbrace{\frac{f(t)}{\left(t-t_{1}\right)^{n_{1}}\left(t_{3}-t\right)^{n_{3}}}}_{G} d t
$$

We have shown in an earlier note that for $n_{1}=n_{3}=1 / 2$,

$$
J=3 \int_{-1}^{1} \frac{f(t)}{\sqrt{4-x^{2}}} d x, \quad t=\frac{1}{4}\left(2\left(t_{2}+t_{1}\right)+\left(t_{2}-t_{1}\right) x\left(3-x^{2}\right)\right)
$$

For $n_{1}, n_{3} \neq 1 / 2$, the approach that gave the above equation becomes very complicated, especially if one wants to have generally valid and simple integration. For the general case, we use (arbitrarily, for simplicity)

$$
t_{2}=1 / 2\left(t_{3}+t_{1}\right) \quad \text { and } \quad J=J_{1}+J_{3}
$$

where

$$
J_{1}=\int_{i_{1}}^{t_{2}} G(t) d t \quad \text { and } \quad J_{3}=\int_{t_{2}}^{t_{3}} G(t) d t
$$

We solve for J_{1} :

$$
A d x=\left(t-t_{1}\right)^{-n_{1}}, \quad A x=\frac{\left(t-t_{1}\right)^{m_{1}}}{m_{1}} \text { and } \quad A=\frac{\left(t_{2}-t_{1}\right)^{m_{1}}}{m_{1}} \text { when } x\left(t_{2}\right)=1
$$

with

$$
\begin{gathered}
m_{1}=1-n_{1} \quad p_{1}=\frac{1}{m_{1}} \\
t=t_{1}+\left(t_{2}-t_{1}\right) x^{p_{1}}, \quad t_{3}-t=\left(t_{2}-t_{1}\right)\left(2-x^{p_{1}}\right)
\end{gathered}
$$

Thus,

$$
\begin{aligned}
J_{1} & =\frac{\left(t_{2}-t_{1}\right)^{m_{1}}}{m 1\left(t_{2}-t_{1}\right)^{n_{3}}} \int_{0}^{1} \frac{f(t)}{\left(2-x^{p_{1}}\right)^{n_{3}}} d x \\
& =\frac{\left(t_{2}-t_{1}\right)^{1-n_{1}-n_{3}}}{1-n_{1}} \int_{0}^{1} \frac{f(t)}{\left(2-x^{p_{1}}\right)^{n_{3}}} d x .
\end{aligned}
$$

June, 1993. Note 0336csem.

Equivalently, solving for J_{3} :

$$
\begin{gathered}
-B d x=\left(t_{3}-t\right)^{n_{3}} d t, \quad B x=\frac{\left(t_{3}-t\right)^{m_{3}}}{m_{3}} \quad \text { and } \quad B=\frac{\left(t_{2}-t_{1}\right)^{m_{3}}}{m_{3}} \\
t=t_{3}-\left(t_{2}-t_{1}\right) x^{p_{3}} \quad t-t_{1}=\left(t_{2}-t_{1}\right)\left(2-x^{p_{3}}\right)
\end{gathered}
$$

Thus,

$$
J_{3}=\frac{\left(t_{2}-t_{1}\right)^{1-n_{1}-n_{3}}}{1-n_{3}} \int_{0}^{1} \frac{f(t) d x}{\left(2-x^{p_{3}}\right)^{n_{1}}} .
$$

We may now now conclude that

$$
\begin{aligned}
J & =\int_{t_{1}}^{t_{3}} \frac{f(t)}{\left(t-t_{1}\right)^{n_{1}}\left(t_{3}-t\right)^{n_{3}}} d t \\
& =\left(t_{2}-t_{1}\right)^{1-n_{1}-n_{3}}\left\{\int_{0}^{1} \frac{f\left(t_{1}+\Delta t x^{\frac{1}{1-n_{1}}}\right) d x}{\left(2-x^{\frac{1}{1-n_{1}}}\right)^{n_{3}}\left(1-n_{1}\right)}+\int_{0}^{1} \frac{f\left(t_{3}-\Delta t x^{\frac{1}{1-n_{3}}}\right) d x}{\left(2-x^{\frac{1}{1-n_{3}}}\right)^{n_{1}}\left(1-n_{3}\right)}\right\} .
\end{aligned}
$$

We examine a specific case of excess flux in the pole in the geometry of Figure 1,

Figure 1.
where,

$$
\begin{aligned}
& \pi E_{12}=\frac{1}{n_{1}} \ln \left(\left(n_{1}+n_{2}\right) I_{1}\right) \\
& n_{1}=\frac{\alpha}{\pi} \quad \text { and } \quad n_{2}=\frac{\beta}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
I_{1} & =\int_{0}^{1} \frac{d t}{t^{n_{1}}(1-t)^{1-\left(n_{1}+n_{2}\right)}} \\
& =\left(\frac{1}{2}\right)^{n_{2}}\left\{\frac{1}{1-n_{1}} \int_{0}^{1} \frac{d x}{\left(2-x^{\frac{1}{1-n_{1}}}\right)^{1-\left(n_{1}+n_{2}\right)}}+\frac{1}{n_{1}+n_{2}} \int_{0}^{1} \frac{d x}{\left(2-x^{\frac{1}{n_{1}+n_{2}}}\right)^{n_{1}}}\right\}
\end{aligned}
$$

We may conclude that $I_{2}=\left(I_{1}\right)_{n_{1} \Leftrightarrow n_{2}}$. Further, the expression $I_{1} \frac{\sin \alpha}{\alpha}=I_{2} \frac{\sin \beta}{\beta}$ should be true. This is a non-trivial assertion and comes from a derivation of the expression for E_{12} in an earlier note.

H^{*} at End of CSEM Block

Figure 1.

$$
H^{*}(z)=\frac{I}{2 \pi i} \cdot \frac{1}{z-z_{0}} \longrightarrow-\frac{I^{\prime}}{2 \pi i} \ln \frac{z}{z+x_{3}} \cdot \frac{z-z_{2}}{z-z_{1}} .
$$

In the vicinity of $z=0$,

$$
H^{*}=-\frac{H_{c}}{2 \pi i} \ln \frac{z z_{2}}{z_{1} x_{3}}
$$

where

$$
\begin{aligned}
\frac{z_{1} x_{3}}{z_{2}} & =\frac{i y_{1} x_{3}}{i y_{1}-x_{3}}=\frac{y_{1} x_{3}}{y_{1}+i x_{3}}=\frac{x_{3}}{1+i x_{3} / y_{1}}=x_{4} e^{-i \alpha} \\
x_{4} & =\frac{x_{3}}{\sqrt{1+x_{3}^{2} / y_{1}^{2}}}=x_{3} \cos \alpha \text { and } z=r e^{i \varphi}
\end{aligned}
$$

Thus,

$$
H^{*}=-\frac{H_{c}}{2 \pi i} \ln \frac{r e^{i(\varphi+\alpha)}}{x_{4}}=-\frac{H_{c}}{2 \pi i}\left(\varphi+\alpha+i \ln \frac{x_{4}}{r}\right)
$$

Field "blows up" at $r=0$. Thus, for scaling purposes, at location where $\ln \frac{x_{4}}{r}=2 \pi$, $r=x_{4} e^{-2 \pi}=x_{4} \cdot 1.9 \times 10^{-3}$.
There is a strong local field perpendicular to the "current sheet side", which is not problematic when easy axis is parallel to the "current sheet side". It is easier to see with charge sheet, and it leads to the same answer.
Interesting damage results for block not magnetized in either a perpendicular or parallel direction to the sides.

[^1]

Figure 2.
No damage will result in corner A, but there is a potential of demagnetization at corner B, and at symmetrically located corners.

Summary of Excess Flux Formulae for Gm3, Gm18 and Gm40

Unless otherwise noted, the following definitions hold for all geometries in this Note

$$
F=\pi \frac{\Delta A}{V_{0}}, \quad n=\frac{\alpha}{\pi}, \quad \text { and } \quad a=\frac{h_{2}}{h_{1}}
$$

Figure 1.

$$
\begin{align*}
F_{01} & =(1+b) \int_{0}^{1} \frac{1-x^{n}}{(1-x)(b+x)} d x \tag{1}\\
F_{23} & =F_{01}+\ln b, \quad \text { with } \quad b=a^{1 / n} \tag{2}
\end{align*}
$$

Figure 2.
For Figures 2, 3, and $4(\mathrm{Gm} 18$ and Gm 40$) \alpha=\pi / 2$.

$$
\begin{gather*}
F_{01}=\ln \frac{1+1 / a^{2}}{4}+2 a \arctan \frac{1}{a} \tag{3}\\
F_{23}=\ln \frac{1+a^{2}}{4}+2 a \arctan \frac{1}{a} \tag{4}
\end{gather*}
$$

April, 1989. Note 0332csem.

We summarize here the the sum of excess fluxes for (1) and (3). For (1), we get

$$
\begin{equation*}
\left(F_{01}(a)+F_{01}(1 / a)\right)=(1+b)^{2} \int_{0}^{1} \frac{\left(1-x^{n}\right)(1+x)}{(1-x)(b+x)(1+x b)} d x . \tag{1D}
\end{equation*}
$$

And for (3), we have

$$
\begin{align*}
\left(F_{01}(a)+F_{01}(1 / a)\right)= & 2 \ln \frac{a+1 / a}{4} \\
& +2 a \arctan (1 / a)+2(1 / a) \arctan a . \tag{3D}
\end{align*}
$$

Figure 3.

$$
\begin{gather*}
F_{34}=\ln \left(1+a^{2}\right)+2 a \arctan (1 / a), \tag{5}\\
F_{12}=2 \ln \left(a+\sqrt{1+a^{2}}\right), \tag{6}\\
F_{01}=F_{34}-F_{12} . \tag{7}
\end{gather*}
$$

Continued on following page.

Figure 4.

$$
\begin{gather*}
F_{-11}=\ln \left(1+a^{2}\right)+2 a \arctan (1 / a) \tag{8}\\
F_{67}=\ln \frac{1+a^{2}}{2 a\left(a+\sqrt{1+a^{2}}\right)}+2 a \arctan \frac{1}{a} \tag{9}\\
F_{56}=\ln \frac{\sqrt{1+a^{2}}\left(a+\sqrt{1+a^{2}}\right)}{2}+\frac{1}{a} \arctan a \tag{10}\\
F_{567}=\ln \frac{\left(\sqrt{1+a^{2}}\right)^{3}}{4 a}+2 a \arctan \frac{1}{a}+\frac{1}{a} \arctan a \tag{11}\\
F_{234}=\ln \frac{\sqrt{1+1 / a^{2}}}{4}+\frac{1}{a} \arctan a \tag{12}
\end{gather*}
$$

Anti-Symmetric Undulator to Make Vertically Polarized or Circularly Polarized Light

Figure 1.

We have

$$
\begin{equation*}
-V=\frac{B_{0}}{k_{0}} \sin k_{0} z \cosh k_{0} y \tag{1}
\end{equation*}
$$

with fields anti-symmetric to the midplane $y=0$.

$$
\begin{equation*}
B_{z}=B_{0} \cosh k_{0} y \cos k_{0} z \quad \text { and } \quad B_{y}=B_{0} \sinh k_{0} y \sin k_{0} z \tag{2}
\end{equation*}
$$

in direction δ relative to the z-axis.

$$
\begin{gather*}
\lambda_{z}=\lambda_{0} / \cos \delta \tag{3.1}\\
B_{\perp}=\underbrace{B_{0} \cosh k_{0} y \sin \delta}_{B_{2}} \cos k_{0} z \tag{3.2}\\
B_{y}=\underbrace{B_{0} \sinh k_{0} y}_{B_{1}} \sin k_{0} z \tag{3.3}
\end{gather*}
$$

Linearly Polarized Light.

Let $y=0, B_{y}=0$,

$$
\begin{equation*}
B_{2}=\sin \delta B_{0}=\sin \delta B_{0}\left(\frac{g}{\lambda_{u}} \cdot \frac{1}{\cos \delta}\right) \tag{4}
\end{equation*}
$$

By the above B_{0} is indicated the achievable B_{0} as a function of g / λ_{0}, where λ_{0} is the period in the z-direction, and g is the magnet gap.

October, 1984. Note 0208csem.

To have a better understanding, we look at the pure CSEM undulator:

$$
B_{0}=B_{3} e^{-\pi g / \lambda_{0}}
$$

with B_{3} equal to the product of $2 B_{\tau}$, the segmentation factor and the finite height factor.

$$
\begin{equation*}
B_{2}=B_{3} \sin \delta e^{-a / \cos \delta}, \quad \text { with } \quad a=\pi g / \lambda_{u} \tag{5.1}
\end{equation*}
$$

We optimize with δ for given g / λ_{u}. With $B_{2}^{\prime}=0$,

$$
\cos \delta-a \tan ^{2} \delta=0
$$

Instead of solving for given a, we make a table of $a v s . \delta$.

$$
\begin{gather*}
a=\frac{\cos ^{3} \delta}{\sin ^{2} \delta} \tag{5.2}\\
B_{2}=B_{3} \sin \delta e^{-\cot ^{2} \delta}=B_{3} y
\end{gather*}
$$

Compared to a "normal" undulator:

$$
\begin{gather*}
B_{2 n}=B_{3} e^{-a}=B_{3} e^{-\cos \delta / \tan ^{2} \delta}=B_{3} y \tag{5.4}\\
\frac{B_{2}}{B_{2 n}}=\sin \delta e^{-\cot ^{2} \delta} e^{\cos \delta \cot ^{2} \delta}=\frac{y}{y_{o}} \tag{5.5}
\end{gather*}
$$

δ	g / λ_{u}	y	y / y_{0}
30.00	0.83	0.02	0.33
35.00	0.53	0.07	0.40
40.00	0.35	0.16	0.46
45.00	0.23	0.26	0.53
50.00	0.14	0.38	0.60
55.00	0.09	0.50	0.66
60.00	0.05	0.62	0.73

Table 1.

Circularly Polarized Light.

We set $y=y_{1}$, and $k_{0} y_{1}=\beta$. From (3.2) and (3.3), we see we need to satisfy $\cosh \beta \sin \delta=\sinh \beta$ for the helical undulator action, thus

$$
\begin{equation*}
\sin \delta=\tanh \beta, \tag{6.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\cos \delta=\sqrt{1-\tanh ^{2} \beta}=1 / \cosh \beta \tag{6.2}
\end{equation*}
$$

or

$$
\begin{gather*}
\tan \delta=\sinh \beta \tag{6.3}\\
B_{u}=B_{0} \sinh \beta=B_{0} \tan \delta=B_{0}\left(\frac{g / \lambda_{u}}{\cos \delta}\right) \tan \delta \tag{7}
\end{gather*}
$$

We assess the reasonableness and feasability of the above analysis.
Clearly,

$$
\begin{equation*}
\varepsilon=\frac{2 y_{1}}{g} \tag{8.1}
\end{equation*}
$$

is an important parameter.

$$
\beta=\frac{2 \pi y_{1}}{\lambda_{0}}=\frac{2 y_{1}}{g} \cdot \pi \cdot \frac{g}{\lambda_{u} \cos \delta},
$$

and for $p=g / \lambda_{u}$,

$$
\begin{gather*}
\beta=\varepsilon p \frac{\pi}{\cos \delta}=\varepsilon \frac{a}{\cos \delta} \tag{8.2}\\
\varepsilon=\frac{\beta \cos \delta}{a} . \tag{8.3}
\end{gather*}
$$

The indicated procedure is as follows. Given $p=g / \lambda_{u}$ and $B_{0}\left(g / \lambda_{0}\right)=B_{0}(p / \cos \delta)$, we optimize B_{u} with δ and get ε from (8.3).
For a pure REC undulator,

$$
\begin{gathered}
B_{0}=B_{3} e^{-a / \cos \delta} \text { with } a=\pi g / \lambda_{u}=\pi p \\
B_{u}=B_{3} \tan \delta \cdot e^{-a / \cos \delta}
\end{gathered}
$$

With $B_{u}^{\prime}=0$,

$$
\frac{1}{\cos ^{2} \delta}-a \tan \delta \cdot \frac{\sin \delta}{\cos ^{2} \delta}=0
$$

$$
\begin{align*}
& a \frac{\sin ^{2} \delta}{\cos \delta}=a \frac{1-\cos ^{2} \delta}{\cos \delta}=1 \\
& \cos \delta=-\frac{1}{2 a}+\sqrt{\frac{1}{4 a^{2}}+1} \tag{9.1}
\end{align*}
$$

For $\cosh \beta=1 / \cos \delta$,

$$
\begin{gather*}
\beta=\ln \left(\sqrt{\cosh ^{2} \beta-1}+\cosh \beta\right) . \tag{9.2}\\
\varepsilon=\beta \cos \frac{\delta}{a} \cdot \tag{9.3}\\
\frac{B_{u}}{B_{3}}=\tan \delta \cdot e^{-a / \cos \delta} . \tag{9.4}
\end{gather*}
$$

For extreme "legal" $\varepsilon=1$:

$$
\begin{gathered}
\beta \cos \frac{\delta}{a}=\sin ^{2} \delta \cdot \beta=\sin ^{2} \delta \cdot \ln \left(\sqrt{1+\tan ^{2} \delta}+\tan \delta\right)=\sin ^{2} \delta \cdot \ln \frac{1+\sin \delta}{\cos \delta} \\
\beta=60.27^{\circ}, \quad g / \lambda_{u}=.21, \quad \text { and } \quad B_{u} / B_{3}=.46
\end{gathered}
$$

Hybrid Undulator with Superimposed Quadrupole Field

With the electron beam in the z-direction, and the midplane the $x z$-plane, the normal undulator fields can be described by

$$
B_{z}=i B_{y}=B_{1}^{*}=i F_{1}^{\prime}=i B_{1} \cos k(z+i y)
$$

For the complex potential $F_{1}=A_{1}+V_{1}$, with A_{1} and V_{1} the vector and scalar potentials respectively, it follows that

$$
F_{1}=\frac{B_{1}}{k} \sin k(z+i y) \quad \text { and } \quad V_{1}=\frac{B_{1}}{k} \cos k z \sinh k y
$$

The desired normal quadrupole fields are given by

$$
B_{0}^{*}=i F_{0}^{\prime}=i B_{0}^{\prime} z \quad F_{0}=\frac{1}{2} B_{0}^{\prime} z^{2}, \quad \text { and } \quad V_{0}=B_{0}^{\prime} x y
$$

For the scalar potential and the combined undulator and quadrupole fields, we therefore have

$$
V=V_{1}+V_{0}=\frac{B_{1}}{k} \cos k z \sinh k y+B_{0}^{\prime} x y
$$

Setting this equal to a constant gives the associated surface of a pole made with infinitely permeable material. With y_{0} the half-gap of the pole at $z=x=0$,

$$
0=\cos k z \sinh k y-\sinh k y_{0}+\frac{B_{0}^{\prime}}{k B_{1}} k x k y
$$

With the following substitutions:

$$
a=\cos k z, \quad \mathcal{E}=\frac{B_{0}^{\prime}}{k B_{1}}, \quad u=k x, \quad \text { and } \quad v=k y
$$

we arrive at the following equation for the ideal 3D pole:

$$
a \sinh v-\sinh v_{0}+\mathcal{E} u v=G=0
$$

To understand what this means, we look at some derived quantities:

$$
y^{\prime}=\frac{d y}{d x}=-\frac{G_{x}^{\prime}}{G_{y}^{\prime}}=-\frac{G_{u}^{\prime}}{G_{v}^{\prime}}=-\frac{\mathcal{E} v}{a \cosh v+\mathcal{E} u}
$$

January, 1984. Note 0187csem.
is the slope of the pole in the $x y$-plane. For $x=z=0$ it is reduced to

$$
y_{0}^{\prime}=-\frac{B_{0}^{\prime} y_{0} / B_{1}}{\cosh v_{0}}=-\frac{\mathcal{E} v_{0}}{\cosh v_{0}}
$$

Looking at the slope just above the axis of the system, i.e. for $x=0$,

$$
a \sinh v_{1}=\sinh v_{0}
$$

and

$$
y^{\prime}=-\frac{\mathcal{E} v_{1}}{a \cosh v_{1}}
$$

where the subscript 1 refers to the case of $x=0$ and z equal to anything. For $z=0$ this reduces to

$$
y^{\prime}=-\frac{B_{0}^{\prime} y_{0} / B_{1}}{\cosh v_{0}}=-\frac{\mathcal{E} v_{0}}{\cosh v_{0}} .
$$

Eliminating $a=\cos k z$ gives

$$
y^{\prime}=-\mathcal{E} v_{1} \frac{\tanh v_{1}}{\sinh v_{0}}
$$

For the curvature of the pole in the $x y$-plane we need

$$
\begin{aligned}
y^{\prime \prime} & =\frac{\partial y^{\prime}}{\partial x}+\frac{d y}{d x} \cdot \frac{\partial y^{\prime}}{\partial y} \\
& =k\left(\frac{\partial y^{\prime}}{\partial u}+y^{\prime} \frac{\partial y^{\prime}}{\partial v}\right) \\
& =k\left(\frac{\mathcal{E}^{2} v}{(a \cosh v+\mathcal{E} u)^{2}}+\frac{\mathcal{E}^{2} v}{(a \cosh v+\mathcal{E} u)} \cdot \frac{a \cosh v+\mathcal{E} u-a v \sinh v}{(a \cosh v+\mathcal{E} u)^{2}}\right) .
\end{aligned}
$$

For $u=0$, this reduces to

$$
\begin{aligned}
y^{\prime \prime} & =\frac{k \mathcal{E}^{2} v_{1} a}{a^{3} \cosh ^{3} v_{1}}\left(2 \cosh v_{1}-v_{1} \sinh v_{1}\right) \\
& =\mathcal{E}^{2} k \frac{v_{1} \tanh ^{2} v_{1}}{\sinh ^{2} v_{0}}\left(2-v_{1} \tanh v_{1}\right)
\end{aligned}
$$

We let $\left|y^{\prime}\right| \ll 1$, and therefore $\sqrt{1+\left(y^{\prime}\right)^{2}}{ }^{3} \approx 1$. With radius of curvature R, we get

$$
\frac{1}{k \mathcal{E}^{2}} \cdot \frac{\sinh ^{2} v_{0}}{v_{1} \tanh ^{2} v_{1}\left(2-v_{1} \tanh v_{1}\right)}=R=\frac{y_{0}}{\mathcal{E}^{2}} \cdot \frac{\sinh ^{2} v_{0}}{v_{0} v_{1} \tanh ^{2} v_{1}\left(2-v_{1} \tanh v_{1}\right)},
$$

For $v_{1}=v_{0}$, and $y_{0}^{\prime}=-\mathcal{E} v_{0} / \cosh v_{0}$:

$$
R_{0}=\frac{y_{0}}{\mathcal{E}^{2}} \cdot \frac{\cosh ^{2} v_{0}}{v_{0}^{2}\left(2-v_{0} \tanh v_{0}\right)}=\frac{y_{0}}{\left(y_{0}^{\prime}\right)^{2}} \cdot \frac{1}{v_{0}^{2}\left(2-v_{0} \tanh v_{0}\right)}
$$

We make the following assignments:

$$
\frac{1}{k \mathcal{E}^{2}}=\frac{k B_{1}^{2}}{\left(B_{0}^{\prime}\right)^{2}}=y_{0} \frac{B_{1}^{2}}{y_{0}^{2}\left(B_{0}^{\prime}\right)^{2}} v_{0} \quad \text { and } \quad b=\frac{B_{1}^{2}}{y_{0}^{2}\left(B_{0}^{\prime}\right)^{2}}
$$

and re-write

$$
R=y_{0} b \cdot \frac{v_{0}}{v_{1}} \cdot \frac{\sinh ^{2} v_{0}}{\tanh ^{2} v_{1}\left(2-v_{1} \tanh v_{1}\right)}
$$

where for $2-v \tanh v=0, v=\frac{2 \pi y}{\lambda}=2.0653$.

Excess Flux into Gm13

Figure 1.

For the above graph,

$$
\frac{\alpha}{\pi}=n_{1}, \quad \frac{\beta}{\pi}=n_{2}, \quad \text { and } \quad n_{1}+n_{2}=n_{3}
$$

The conformal map is described by

$$
\dot{z}=a \frac{t^{n_{3}}}{(t-1)^{1+n_{2}}}, \quad a \in \Re
$$

From

$$
\pi \dot{F}=\frac{1}{t-1} \quad \text { follows } \quad \pi F=\ln (t-1)
$$

We describe the flux into surface 2 of Figure 1 as

$$
\Phi_{2}=-\frac{1}{\pi} \ln \left(1-t_{1}\right)=\int_{s_{0}}^{s_{1}} \frac{d s}{\beta s}+\Delta A_{2}
$$

Thus

$$
\begin{aligned}
\beta \Delta A_{2} & =-n_{2} \ln \left(1-t_{1}\right)-\ln \left(1+\frac{s_{1}-s_{0}}{s_{0}}\right) \\
& =\ln \frac{\left(1-t_{1}\right)^{-n_{2}}}{\left(1+\frac{a}{s_{0}} \int_{0}^{t_{1}} \frac{t^{n_{3}} d t}{(1-t)^{1+n_{2}}}\right)}
\end{aligned}
$$

and by l'Hôpital's Rule,

$$
\begin{aligned}
& =\ln \frac{n_{2}\left(1-t_{1}\right)^{-n_{2}-1}}{\left(\frac{a}{s_{0}} t_{1}^{n_{3}}\left(1-t_{1}\right)^{-n_{2}-1}\right)} \\
& =\ln \frac{n_{2} s_{0}}{a},
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\Delta A_{2}=\frac{1}{\beta} \ln \left(\frac{h}{\pi} \frac{\beta}{a \sin \beta}\right) . \tag{1}
\end{equation*}
$$

We need to calculate h / a, and we begin with

$$
\begin{equation*}
y_{1}=h+a \sin \beta \int_{0}^{t_{1}} \frac{t^{n_{3}} d t}{(1-t)^{n_{2}+1}} \tag{2}
\end{equation*}
$$

We now calculate y_{1} by going around the singularity at $t=1$ on circle with $\varrho=\varrho_{1}=$ $1-t_{1}$, that is

$$
t=1+\varrho_{1} e^{i \varphi} \quad \text { and } \quad d t=i \varrho_{1} e^{i \varphi} d \varphi
$$

and thus

$$
\begin{aligned}
y_{1} & =\Im i \varrho_{1} a \int_{0}^{\pi} \frac{\left(1+\varrho_{1} e^{i \varphi}\right)^{n_{3}}}{\varrho_{1}^{1+n_{2}} e^{i \varphi\left(1+n_{2}\right)}} e^{i \varphi} d \varphi \\
& =\Im \frac{i a}{\varrho_{1}^{n_{2}}} \int_{0}^{\pi}\left(1+\varrho_{1} e^{i \varphi}\right)^{n_{3}} e^{-i n_{2} \varphi} d \varphi
\end{aligned}
$$

For ϱ_{1} sufficiently small,

$$
y_{1}=\Im \frac{i a}{\varrho_{1}^{n_{2}}} \frac{e^{-i n_{2} \pi}-1}{-i n_{2}}=\frac{a \sin \beta}{n_{2} \varrho_{1}^{n_{2}}}
$$

Re-writing (2) with $t=1-\varrho$

$$
y_{1}=h+a \sin \beta \int_{\varrho_{1}}^{1} \frac{(1-\varrho)^{n_{3}}}{\varrho^{n_{2}+1}} d \varrho=\frac{a \sin \beta}{n_{2} \varrho_{1}^{n_{2}}} .
$$

Thus

$$
\begin{aligned}
\frac{h}{a \sin \beta} & =\frac{1}{n_{2} \varrho_{1}^{n_{2}}}-\int_{\varrho_{1}}^{1} \frac{(1-\varrho)^{n_{3}}}{\varrho^{n_{2}+1}} d \varrho \\
& =\frac{1}{n_{2} \varrho_{1}^{n_{2}}}+\left.\frac{(1-\varrho)^{n_{3}}}{n_{2} \varrho^{n_{2}}}\right|_{\varrho_{1}} ^{1}+\frac{n_{3}}{n_{2}} \int_{\varrho_{1}}^{1} \frac{(1-\varrho)^{n_{3}-1}}{\varrho^{n_{2}}} d \varrho
\end{aligned}
$$

and

$$
\frac{h n_{2}}{a \sin \beta}=\frac{h \beta}{\pi a \sin \beta}=n_{3} I_{2}
$$

where

$$
I_{2}=\int_{0}^{1} \frac{d t}{t^{n_{2}}(1-t)^{1-n_{3}}} \quad \text { and } \quad I_{1}=\int_{0}^{1} \frac{d t}{t^{n_{1}}(1-t)^{1-n_{3}}}
$$

Therefore we may now summarize from (1) that

$$
\Delta A_{2}=\frac{1}{\beta} \ln \left(n_{3} I_{2}\right)
$$

and equivalently

$$
\Delta A_{1}=\frac{1}{\alpha} \ln \left(n_{3} I_{1}\right) .
$$

Further, since

$$
\begin{gathered}
\frac{h}{\pi a}=n_{3} I_{2} \frac{\sin \beta}{\beta}=n_{3} I_{1} \frac{\sin \alpha}{\alpha} \\
n_{3} I_{1}=n_{3} I_{2} \frac{\sin \beta / \beta}{\sin \alpha / \alpha} .
\end{gathered}
$$

A different way to look at what was done earlier:

Figure 2.

Since, clearly, $h=\Im \int_{1+}^{0} \dot{z} d t$, one may take a path from any point on the real t-axis to the right of $t=1$ to $t=0$.
In this note the path followed a $\varrho_{1} \Rightarrow 0$ half-circle around $t=1$, and then on axis to $t=0$.

Flux Distribution Symmetry Theorem

Even though this case is the same as the electrostatic case, it is formulated for magnetic fields because of the application to CSEM in hybrid systems.

Theorem.

There are N bodies with $\mu=\infty$. The matrix M, which describes the relationship between potentials V_{n} on fluxes F_{n} leaving body n, is symmetrical, i.e.: $F=M V$, $M^{t}=M$. In this notation, the subscript 0 indicates the reference body on potential $V=0$. Thus, the theorem states

$$
M_{n m}=M_{m n}
$$

Analysis.

Stored energy in the field is unique: it depends only on the initial state (we assume $V_{n}=0$) and the end state. By going from the initial to the end state by bringing bodies in any sequence from $V_{n}=0$ to the final V_{n}, and doing so by moving magnetic charges from infinity, we get

$$
\mathcal{E}=\int V^{t} d F=\int V^{t} M d V
$$

' \mathcal{E} must be independent of sequence in which this is done: the right hand side must be a complete differential leading to $M_{n m}=M_{m n}$. We show this explicitly for V_{1}, V_{2} and all other $V_{n}=0$:

$$
\begin{aligned}
\mathcal{E} & =\int\left(\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right)\binom{M_{11} d V_{1}-M_{12} d V_{2}}{-M_{21} d V_{1}+M_{22} d V_{2}} \\
& =\int M_{11} V_{1} d V_{1}+\int M_{22} V_{2} d V_{2}-\underbrace{\int\left(M_{12} V_{1} d V_{2}+M_{21} V_{2} d V_{1}\right)}_{G}
\end{aligned}
$$

We simplify G by making the following substitutions:

$$
\begin{gather*}
M_{12}=S+D, \quad M_{21}=S-D, \quad \text { and } \quad S=\frac{1}{2}\left(M_{12}+M_{21}\right), \quad D=\frac{1}{2}\left(M_{12}-M_{21}\right) \\
G=S \int \underbrace{\left(V_{1} d V_{2}+V_{2} d V_{1}\right)}_{(a)}+D \underbrace{\int\left(V_{1} d V_{2}-V_{2} d V_{1}\right)}_{(b)} \tag{b}
\end{gather*}
$$

where (a) is $d\left(\begin{array}{ll}V_{1} & V_{2}\end{array}\right)$ and is therefore independent of the sequence, and (b) would
November, 1986. Note 0143csem.
be dependent on our sequence. Since G must be independent of the sequence, it follows that $D=0$.
In a CSEM circuit, \mathbf{F} equals the vector of charges deposited by the CSEM on the surfaces (with all $V=0$). Therefore, a hybrid system can be represented by magnetic capacitors and sources that deposit DC charges. If one finds this more convenient, one may also do this analysis with capacitors and AC current sources, or with resistors and DC currents.
The theorems known for these circuits apply, such as Kirchhoff's reciprocity theorem, i.e. the nodal equations, etc. One can also use 2×2 matrix methods for systems like ladder networks, and apply them directly to hybrid wigglers. One can use concepts like characteristic impedance of networks and quadrupole thecry, i.e. all the tools that have been developed for analog network analysis.

Stored Energy in CSEM

We define the energy density as

$$
\mathcal{E}=\int \mathbf{H} \cdot d \mathbf{B}
$$

We can look at the easy-axis direction and the direction perpendicular to the easy-axis separately. The lower integral limit is arbitrary, but must be fixed.
With $B_{\|}=B_{r}+\mu_{0} \mu_{\|} H_{\|}$and $B_{\perp}=\mu_{0} \mu_{\perp} H_{\perp}$:

$$
\mathcal{E}_{\|}=\int_{H_{\|}=0}^{H_{\|}} H_{\|} d B_{\|}=\int_{H_{\|}=0}^{H_{\|}} H_{\|} \frac{d B_{\|}}{d H_{\|}} d H_{\|}=\mu_{0} \mu_{\|} \int_{H_{\|}=0}^{H_{\|}} H_{\|} d H_{\| \mid}
$$

Thus,

$$
\mathcal{E}_{\|}=\frac{1}{2} \mu_{0} \mu_{\|} H_{\|}^{2}
$$

and similarly,

$$
\varepsilon_{\perp}=\frac{1}{2} \mu_{0} \mu_{\perp} H_{\perp}^{2}
$$

with

$$
\mathcal{E}_{\text {tot }}=\varepsilon_{\|}+\mathcal{E}_{\perp \cdot}
$$

This obviously gives $H_{\|}$a unique role.

Earnshaw's Theorem for Non-Permeable Material

Problem: There is an assembly of "frozen" magnetic charges $\varrho\left(r^{\prime}\right)^{\dagger}$ in an external magnetic field (produced by solenoid or other REC assembly) without any permeable material in the system.
Question: What is the restoring force for small displacements?
Analysis: The force components in the (x_{1}, x_{2}, x_{3}) coordinate system are

$$
F_{1}=-\int \varrho V_{1}^{\prime} d v, \quad F_{2}=-\int \varrho V_{2}^{\prime} d v, \quad \text { and } \quad F_{3}=-\int \varrho V_{3}^{\prime} d v .
$$

We displace the system by $\Delta x_{1}, \Delta x_{2}, \Delta x_{3}$, which is the same as displacing the external fields by $-\Delta x_{1},-\Delta x_{2},-\Delta x_{3}$ without changing ϱ, and get

$$
\begin{aligned}
\Delta F_{n} & =\int \sum \Delta x_{m} \frac{\partial}{\partial x_{m}} \varrho \frac{\partial V}{\partial x_{n}} d v \\
& =\sum M_{n m} \Delta x_{m} \quad \text { with } \quad M_{n m}=\int \varrho \frac{\partial}{\partial x_{n}} \frac{\partial}{\partial x_{m}} V d v,
\end{aligned}
$$

$$
\Delta \mathbf{F}=M \cdot \Delta \mathrm{x} .
$$

In general, M will not be a diagonal matrix. We assume that it can be made diagonal (by going to a new coordinate system) with matrix C, where

$$
\begin{gathered}
C \Delta \mathbf{F}=\Delta \mathrm{F}_{d}=C M C^{-1} \cdot C \Delta \mathrm{x}=C M C^{-1} \cdot \Delta \mathrm{x}_{d}, \\
C M C^{-1}=M_{d}=\int \varrho\left(\begin{array}{ccc}
V_{x x}^{\prime \prime} & 0 & 0 \\
0 & V_{y y}^{\prime \prime} & 0 \\
0 & 0 & V_{z z}^{\prime \prime}
\end{array}\right) d v,
\end{gathered}
$$

where x, y, z are the new coordinates. From this, it follows that

$$
\frac{\Delta F_{x}}{\Delta x}+\frac{\Delta F_{y}}{\Delta y}+\frac{\Delta F_{z}}{\Delta z}=\int \varrho \underbrace{\left(V_{x x}^{\prime \prime}+V_{y y}^{\prime \prime}+V_{z z}^{\prime \prime}\right)}_{=\nabla^{2} V=0} d v=0 .
$$

Since a stable system requires a negative restoring force in each of the three coordinate directions, any such system will be unstable.

[^2]In applications, it will often be clear a priori in which coordinate system the matrix M will be diagonal, and the above equation can then be used directly in its final form. This means that for systems with cylindrical symmetry about the z-axis, that because

$$
\frac{\Delta F_{y}}{\Delta y}=\frac{\Delta F_{x}}{\Delta x} \Rightarrow \frac{\Delta F_{r}}{\Delta r} \quad \text { and } \quad 2 \frac{\Delta F_{r}}{\Delta r}+\frac{\Delta F_{z}}{\Delta z}=0
$$

only one of the stiffnesses needs to be calculated from basics.
It is interesting to note that Earnshaw's Theorem is often stated in an overly broad fashion. For instance, stable support is possible if one allows forces not derived from a potential satisfying $\nabla^{2} V=0$. The forces between contacting solid materials, for example, such as mechanical bearings, are due to the quantum nature of solids, and hence do not obey Earnshaw's Theorem. It is also clear without any mathematics that a permanent magnet is stably supported in a superconducting bowl. This is similarly true for an extreme diamagnetic bowl.

Harmonics Produced by Rectangular REC Block .

Figure 1.

In this document we refer to the above diagram and (4b) and (16b) of the Nuclear Instruments and Methods article ${ }^{\dagger}$

$$
\begin{gathered}
\underline{B}^{*}\left(z_{0}\right)=\sum_{n=1} b_{n} z_{0}^{n-1} \\
b_{n}=\frac{\underline{B}_{r}}{2 \pi i} \oint \frac{d x}{z^{n}}
\end{gathered}
$$

For $n=1$,

$$
\begin{aligned}
b_{1} & =\frac{\underline{B}_{r}}{2 \pi i} \ln \frac{z_{2}}{z_{1}} \cdot \frac{z_{4}}{z_{3}}=\frac{\underline{B}_{r}}{2 \pi i} \ln \frac{z_{2} / z_{1}}{z_{3} / z_{4}} \\
& =\frac{\underline{B}_{r}}{\pi} \Im \ln \frac{z_{2}}{z_{1}} .
\end{aligned}
$$

For $n \geq 2$,

$$
\begin{aligned}
b_{n} & =-\frac{\underline{B}_{r}}{2 \pi i} \cdot \frac{1}{n-1}\left(\frac{1}{z_{2}^{n-1}}-\frac{1}{z_{1}^{n-1}}+\frac{1}{z_{4}^{n-1}}-\frac{1}{z_{3}^{n-1}}\right) \\
& =-\frac{\underline{B}_{r}}{\pi} \cdot \frac{1}{n-1} \Im\left(\frac{1}{z_{2}^{n-1}}-\frac{1}{z_{1}^{n-1}}\right) \cdot
\end{aligned}
$$

\dagger Halbach, H., Nuclear Instruments and Methods 169, 1 (1980).

A Possible REC Undulator for SSRL

I. Reason for REC.

It may be possibe to use some very specific ferrite. All other materials, like the Alnicos, are not only significantly inferior in performance, but would probably also have to be magnetized in final assembly which may be difficult to do.

A potential future advantage is that the permanent magnet undulator can be scaled down in physical size without difficulty. One can therefore envision the following scheme: design a REC undulator for very small gap and λ and have it inside vacuum. Move the two arrays apart to have the large gap necessary during beam formation. When beam is established, move the 2 arrays together to form the design gap that the beam allows. Clearly, this would be nearly impossible with either a conventional, or even a superconducting, undulator.

II. Use of Nomogram and Notation.

Figure 1.

$$
\begin{gathered}
B_{y}+i B_{z}=B_{0} \cos \frac{2 \pi(z+i y)}{\lambda}, \\
K=B_{0} \lambda \\
k=\frac{B_{r}}{K} \underbrace{\frac{\sin \pi / M^{\prime}}{\pi / M^{\prime}}}_{E_{1}} \underbrace{\left(1-e^{-2 \pi L / \lambda}\right)}_{E_{2}}
\end{gathered}
$$

where B_{r} is the remanent field of REC, M^{\prime} is the number of pieces with fixed easy-axis

April, 1979. Note 0038 csem .
per period.

$$
2 k \lambda e^{-\pi g / \lambda}=1 .
$$

Figure 2.

Because E_{1}, E_{2} are close to 1 , and one usually chooses $K \approx 1 \mathrm{~T}(\mathrm{~cm}), k\left(\mathrm{~cm}^{-1}\right)$ is numerically close to B_{r}.
In this document, all lengths will be in cm , and B 's in Tesla.

III. Desigñ Considerations.

- End Section. Normalize center to $z=0$ and that piece has easy-axis parallel to the y axis. The last pieces at both ends must have the same easy-axis as piece at $z=0$, but should have only half of normal length in the z-direction. One may want to use coils to fine-tune the end sections, but it would not be surprising if this were unnecessary.

In order to reduce the effects from finite length in x-direction (or to get away with shorter length in that direction) and to avoid 3D fringe effects at the ends in z direction by cutting end fields off rapidly, one should back-up REC with a soft steel plate with reasonable overhang in z and x directions. This will not affect the amplitude of the $\cos (2 \pi(z+i y) / \lambda)$ term, but will introduce a very weak, unnoticeable in the midplane, third harmonic (for $M^{\prime}=4$).

- Length of $R E C$ in x-direction. The present estimate is that it should be approximately the sum of the width of the beam and $2 g$. The 3D effects discussed in the previous section are easily analyzed computationally and should be done before ordering materials!
- Choice of M^{\prime} and L. It is recommended, at least for the first undulator, to use $M^{\prime}=4\left(\right.$ giving $\left.E_{1}=.9\right)$ and $L=\lambda / 2$ (giving $E_{2}=.96$) or $L=\lambda / 4$ (giving $E_{2}=.79$). With these choices, the undulator can be assembled from identical REC pieces with square cross-section and the easy-axis parallel to a side. The exception would be with the end pieces which could be obtained by cutting or grinding the normal pieces.

IV. Specific Calculations.

For a realistic undulator with $g=2.8 \mathrm{~cm}, B_{r}=.95 \mathrm{~T}, K=1 \mathrm{Tcm}$ and $M^{\prime}=4$:

$L(\mathrm{~cm})$	$k\left(\mathrm{~cm}^{-1}\right)$	$\lambda(\mathrm{cm})$
$\lambda / 4=1.18$.68	4.73
$\lambda / 2=2.22$.82	4.44

Table 1.

Since $\lambda / 4$ uses only half the REC of the $\lambda / 2$ case and λ is only less than 10% larger, this is the preferable design. The volume for $\lambda / 4$ is $V=3540 \mathrm{~cm}^{3}$, and for $\lambda / 2$ is $V=6660 \mathrm{~cm}^{3}$.
The REC price would probably be approximately $\$ 1-2 / \mathrm{cm}^{-3}$.

A Simple Derivation of the Lorentz Transformation Without Talking About Light

Postulate: Physics is independent of location, time and uniform motion of the system in which the experiment is performed.

We look at two systems that move with velocity, v, relative to each other. We establish clocks and space (x) markers in each system.

\qquad

Figure 1.

We locate the origins and synchronize the clocks so that $x_{1}=0, t_{1}=0, x_{1.5}=0$, and $t_{1.5}=0$. Also notice that the " 1.5 " system has x increasing in the opposite direction from the " 1 " system.

We want to know ($x_{1.5}, t_{1.5}$) as a function of $\left(x_{1}, t_{1}\right)$.
We know that $\Delta x_{1.5} / \Delta x_{1}, \Delta x_{1.5} / \Delta t_{1}, \Delta t_{1.5} / \Delta x_{1}$, and $\Delta t_{1.5} / \Delta t_{1}$ can not depend on x_{1}, t_{1} because of our postulate. This means that the relationship between the two systems is linear, and can be expressed as a 2 by 2 matrix.

$$
\left.\begin{array}{l}
x_{1.5}=a_{11} x_{1}+a_{12} t_{1} \\
t_{1.5}=a_{21} x_{1}+a_{22} t_{1}
\end{array}\right\} \Rightarrow r_{1.5}=\binom{x_{1.5}}{t_{1.5}}=A \cdot r_{1}
$$

The velocity of a particle in system "1.5" (e.g. at $x_{1.5}=0$) as seen from system " 1 " is $v=-a_{12} / a_{11}$. Thus

$$
a_{12}=-a_{11} v
$$

with $a_{11} \neq 0$ always true.
The choice of the relative sign of x in the two systems means that the observer in each system sees the other system move in the positive x-direction with velocity v.

July 30, 1992. Note 0287misc.

Therefore,

$$
r_{1}=A \cdot r_{1.5}=A \cdot A \cdot r_{1},
$$

and also,

$$
A^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

must be satisfied. By multiplication and substitution,

$$
A^{2}=\left(\begin{array}{cc}
a_{11}\left(a_{11}-a_{21}\right) v & -a_{11} v\left(a_{11}+a_{22}\right) \\
a_{21}\left(a_{11}+a_{22}\right) & a_{22}^{2}-a_{21} a_{11} v
\end{array}\right) .
$$

Therefore,

$$
a_{11}=-a_{22}
$$

and

$$
a_{21}=\left(1-a_{22}^{2}\right) /\left(a_{22} v\right) .
$$

By further substitution,

$$
A=\left(\begin{array}{cc}
-a_{22} & a_{22} v \\
\left(1 / a_{22}-a_{22}\right) / v & a_{22}
\end{array}\right) .
$$

We introduce $x_{2}=-x_{1.5}, t_{2}=t_{1.5}$ and

$$
r_{2}=B \cdot r_{1}, \quad B=\left(\begin{array}{cc}
a_{22} & -a_{22} v \\
\left(1 / a_{22}-a_{22}\right) / v & a_{22}
\end{array}\right) .
$$

We further define

$$
\begin{gathered}
\gamma=a_{22} . \\
g=1 / a_{22}^{2}-1=1 / \gamma^{2}-1,
\end{gathered}
$$

and therefore

$$
B=\gamma\left(\begin{array}{cc}
1 & -v \\
g / v & 1
\end{array}\right) .
$$

It is important to notice that the diagonal elements are identical.

Figure 2.

We define

$$
\begin{aligned}
r_{2} & =B_{1 \rightarrow 2} \cdot r_{1} \\
r_{3} & =B_{2 \rightarrow 3} \cdot r_{2} \\
& =B_{2 \rightarrow 3} \cdot B_{1 \rightarrow 2} \cdot r_{1}
\end{aligned}
$$

and thus

$$
B_{1 \rightarrow 3}=\gamma_{1 \rightarrow 2} \gamma_{2 \rightarrow 3}\left(\begin{array}{cc}
1 & -v_{2 \rightarrow 3} \\
g_{2 \rightarrow 3} / v_{2 \rightarrow 3} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -v_{1 \rightarrow 2} \\
g_{1 \rightarrow 2} / v_{1 \rightarrow 2} & 1
\end{array}\right)
$$

and further,

$$
B_{1 \rightarrow 3}=\gamma_{1 \rightarrow 2} \gamma_{2 \rightarrow 3}\left(\begin{array}{cc}
1-v_{2 \rightarrow 3} g_{1 \rightarrow 2} / v_{1 \rightarrow 2} & -\left(v_{1 \rightarrow 2}+v_{2 \rightarrow 3}\right) \\
g_{2 \rightarrow 3} / v_{2 \rightarrow 3}+g_{1 \rightarrow 2} / v_{1 \rightarrow 2} & 1-v_{1 \rightarrow 2} g_{2 \rightarrow 3} / v_{2 \rightarrow 3}
\end{array}\right)
$$

By the identical diagonal elements we have:

$$
\frac{v_{2 \rightarrow 3} g_{1 \rightarrow 2}}{v_{1 \rightarrow 2}}=\frac{v_{1 \rightarrow 2} g_{2 \rightarrow 3}}{v_{2 \rightarrow 3}} \Longrightarrow \frac{g_{1 \rightarrow 2}}{v_{1 \rightarrow 2}^{2}}=\frac{g_{2 \rightarrow 3}}{v_{2 \rightarrow 3}^{2}}
$$

Thus, we may generalize our equation and we have

$$
g / v^{2}=\frac{\left(1 / \gamma^{2}-1\right)}{v^{2}}=k=\text { constant of nature }
$$

Here

$$
\gamma=\frac{1}{\sqrt{1+k v^{2}}}
$$

We have to verify that other relationships are also satisfied (e.g. relation between elements [11] and [12], etc.). We have shown that if the postulate is true, the relationship between x and t of the systems moving with velocity v relative to each other must be

$$
\binom{x_{2}}{t_{2}}=\gamma\left(\begin{array}{cc}
1 & -v \\
k v & 1
\end{array}\right)\binom{x_{1}}{t_{1}}, \quad \gamma=\frac{1}{\sqrt{1+k v^{2}}}
$$

We have not shown that $k \neq 0$, but the value of k can be obtained from "any" experiment, e.g. lifetime of meson, etc., and experiments do not have to use light.

Figure 3.

$$
\begin{gathered}
\binom{x_{2}}{t_{2}}=\gamma\left(\begin{array}{cc}
1 & -v \\
-v / c^{2} & 1
\end{array}\right)\binom{x_{1}}{t_{1}},\binom{x_{1}}{t_{1}}=\gamma\left(\begin{array}{cc}
1 & -v \\
-v / c^{2} & 1
\end{array}\right)\binom{x_{2}}{t_{2}} \\
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
\end{gathered}
$$

1) The lifetime of particle at rest at $x_{1}=0$ in system "1" is τ_{1}. What is it in system " 2 "?

$$
x_{1}=0, \quad t_{1}=\tau_{1} \Longrightarrow t_{2}=\tau_{2}=\gamma \tau_{1}
$$

2) The distance x_{1} covered by observer at rest at $x_{2}=0$ in time t_{2} :

$$
x_{2}=0, \quad x_{1}=\gamma v t_{2}, \quad x_{1} / t_{2}=\gamma v
$$

Note that

$$
v \gamma=c \text { for } \mathrm{v} / \mathrm{c}=1 / \sqrt{2}
$$

Dimensional Analysis of the Trajectory of Non-Relativistic

 Charged Particles in Stationary Electric and Magnetic Fields (MKS units, with and without space charge)
Motivation.

To explain the structure of trajectory equations to engineers working on cyclotronmass spectrometer.
We use linear scaling length D_{0}, and represent \mathbf{B} and \mathbf{E} fields by the scaling quantities B_{0} and $E_{0}=V_{0} D_{0}$ times the appropriate dimensionless functions of $x / D_{0}, y / D_{0}$, and z / D_{0}. We must be able to represent the trajectory $x(t)(t=0$ at start of trajectory) as the product of D_{0} and a function of dimensionless products P_{n}. The list of parameters to form P 's has, in addition to $D_{0}, B_{0}, V_{0}\left(E_{0}\right), t$, the quantity m / e due to the equation of motion. Thus, the complete list consists of $m / e, D_{0}, B_{0}, V_{0}\left(E_{0}\right), t$.
We construct P 's by first finding the appropriate physics relationship, then re-writing them in product form with parameters from the above list, and finally by solving for P, i.e.:

$$
m \ddot{\mathbf{x}}=e \mathbf{E} \quad \rightarrow \quad m \frac{D_{0}}{t^{2}}=e \frac{V_{0}}{D_{0}} \quad \rightarrow \quad P_{1}=t^{2} \frac{e}{m} \frac{V_{0}}{D_{0}^{2}} .
$$

For construction of next P , consider the parameter list without e / m :

$$
\mathbf{E}=\mathrm{v} \times \mathbf{B} \quad \rightarrow \quad E_{0}=B_{0} \frac{D_{0}}{t} \quad \rightarrow \quad P_{2}=\frac{B_{0}}{E_{0}} \frac{D_{0}}{t}=\frac{B_{0} D_{0}^{2}}{V_{0} t} .
$$

We use P_{1} to form P_{3} without t, and use P_{3} instead of P_{2} :

$$
P_{3}=P_{2}^{2} P_{1}=\frac{B_{0}^{2}}{E_{0}^{2}} \frac{e}{m} V_{0} \quad \rightarrow \quad P_{3}=\frac{e}{m} \frac{B_{0}^{2} D_{0}^{2}}{V_{0}}
$$

We now remove B_{0} from the parameter list, leaving only $D_{0}, V_{0}\left(E_{0}\right), t$, and we see that no additional P 's are possible. Thus, we have

$$
x(t)=D_{0} F_{x}\left(P_{1}, P_{3}\right)=D_{0} F_{x}\left(t^{2} \frac{e}{m} \frac{V_{0}}{D_{0}^{2}}, \frac{e}{m} \frac{B_{0}^{2} D_{0}^{2}}{V_{0}}\right),
$$

and this is equivalently true for $y(t)$ and $z(t)$.

April, 1992. Note 0278 misc.

These expressions show the available options for changing the values of parameters if one of these has to be changed in a particular way and if one does not want to change the trajectory. If one does not care how long it takes for the particle to traverse its trajectory, then P_{3} is the only P that is to be kept constant. P_{1} can be considered to be an expression for the time to traverse the system.

If one wants to include space charge effects, one must include I, e, and ε_{0} to the remaining list of parameters D_{0}, V_{0}, t. If the magnetic fields produced by the moving charges are important, one must add μ_{0} as well.
When writing the P 's, we shall use the fact that space charge and magnetic fields for charged particles go to 0 as $1 / \varepsilon_{0}$ and μ_{0} go to 0 . The space charge effects come from

$$
\nabla \cdot \varepsilon_{0} \mathbf{E}=\varrho \quad \rightarrow \quad \varepsilon_{0} \frac{E_{0}}{D_{0}}=I \frac{t}{D_{0}^{3}} \quad \rightarrow \quad P_{4}=\frac{I}{\varepsilon_{0}} \frac{t}{V_{0} D_{0}}
$$

We remove t with P_{2} to get

$$
P_{5}=P_{4} P_{2}=\frac{I}{\varepsilon_{0}} \frac{1}{V_{0}} \frac{B_{0}}{E_{0}} \quad \rightarrow \quad P_{5}=\frac{I}{\varepsilon_{0}} \frac{B_{0} D_{0}}{V_{0}^{2}}
$$

We remove B_{0} with P_{3} to get

$$
P_{6}=\frac{P_{5}^{2}}{P_{3}}=\left(\frac{I}{\varepsilon_{0}}\right)^{2} \frac{D_{0}^{2}}{V_{0}^{4}} \frac{m}{e} \frac{V_{0}}{D_{0}^{2}} \rightarrow P_{6}=\left(\frac{I}{\varepsilon_{0}}\right)^{2} \frac{m / e}{V_{0}^{3}}
$$

with P_{4}, P_{5} discarded.
We remove I from our parameter list and are left with $e, \varepsilon_{0}, D_{0}, t, V_{0}$ for

$$
\nabla \cdot \varepsilon_{0} \mathbf{E}=\varrho, \quad \varepsilon_{0} E_{0}=\frac{e}{D_{0}^{2}} \quad \rightarrow \quad P_{7}=\frac{e}{\varepsilon_{0} D_{0} V_{0}}
$$

By removing ε_{0} we see that no more P 's are possible with just e, D_{0}, t, V_{0}. Thus, we have

$$
\begin{aligned}
x(t) & =D_{0} F_{x}\left(P_{1}, P_{3}, P_{6}, P_{7}\right) \\
& =D_{0} F_{x}\left(\frac{e}{m} \frac{V_{0} t^{2}}{D_{0}}, \frac{e}{m} \frac{B_{0}^{2} D_{0}^{2}}{V_{0}}, \frac{I^{2}}{\varepsilon_{0}^{2}} \frac{m / e}{V_{0}^{3}}, \frac{e}{\varepsilon_{0} D_{0} V_{0}}\right)
\end{aligned}
$$

and this is equivalently true for $y(t)$ and $z(t)$.
We expect that some P 's are not significant if ε_{0} is large enough so that P_{6} and/or P_{7} are small enough. For instance, for $D_{0}=10^{-2} \mathrm{~m}, V_{0}=10^{3} \mathrm{~V}$, and $e=$ charge of electron, we have $P_{7}=1.8 \times 10^{-9} \ll 1$, thus P_{7} is probably not important.

We now add μ_{0} to the parameter list, and for $e, D_{0}, t, V_{0}, \mu_{0}$, we have

$$
\begin{gathered}
\nabla \times \mathbf{E}=-\dot{\mathbf{B}} \rightarrow \frac{E_{0}}{D_{0}}=\frac{V_{0}}{D_{0}^{2}}=\frac{\mu_{0}(e / t) / D_{0}}{t}=\frac{\mu_{0} e}{t^{2} D_{0}}, \\
P_{8}=\frac{\mu_{0} e D_{0}}{t^{2} V_{0}} .
\end{gathered}
$$

Using other P 's, we get

$$
P_{9}=\frac{\mu_{0} I}{D_{0} B_{0}} .
$$

We remove μ_{0} from the parameter list, and see that no more P 's are possible, and we have

$$
x(t)=D_{0} F_{x}\left(P_{1}, P_{3}, P_{6}, P_{7}, P_{9}\right),
$$

and this is equivalently true for $y(t)$ and $z(t)$.

Application to System with Fixed D_{0}, B_{0} (Cyclotrino).

We ignore P_{1} since it determines traversal time. Without space charge and currentfield effects, we must keep $V_{0} m / e$ constant to get same behavior when the particle is changed, i.e. $V_{0} \sim e / m$ is necessary. To see how space charge limitation affects "permissible" current, one must look at P_{6} :

$$
\frac{I^{2} m / e}{V_{0}^{3}}=\frac{I^{2}(m / e)^{4}}{\left(V_{0} m / e\right)^{3}}=\text { constant }
$$

and this implies that $(m / e)^{2} \cdot I$ should be a constant or small enough. As stated earlier, P_{7} will be small enough to cause no problems, and the same will be true for P_{9}.

Further Comments.

While this theory was formulated with scale factors in mind, the P 's also have local meaning. That is, if the "local" V^{\dagger} is interpreted as potential energy (divided by e), it becomes clear that P_{6} and P_{7} (with the local V and D) cannot be sufficiently small to be ignored everywhere since the particles start somewhere with $e V=0$. But if the ion source is considered as a separate entity the ignorability argument will hold. It is also clear that looking at the P 's with subscripted V, V_{0} applies not only to applied potentials within the structure, but also to the energy of the incoming beam. ${ }^{\frac{+}{F}}$
\dagger Without the subscript 0 that identifies the "global" scale.
\ddagger This study was motivated by Tony Young's question about how V_{0} has to be changed when B_{0} differs from its original design value. Using P_{3} we must have $B_{0}^{2} / V_{0}=$ constant.

Some Practical Numbers.

Use γ sufficiently smaller than 1 to make a P ignorable. Then $P_{7}, \sqrt{P_{6}}$ can be ignored if

$$
\begin{gathered}
P_{7}=\frac{e}{\varepsilon_{0} D_{0} V_{0}}<\gamma \rightarrow \quad D_{0} V_{0}=\frac{e}{\varepsilon_{0}} \frac{1}{\gamma}>\frac{1.8 \times 10^{-8}}{\gamma}, \\
\sqrt{P_{6}}=\frac{I}{\varepsilon_{0}} \frac{\sqrt{m / e}}{V_{0}^{3 / 2}}<\gamma \rightarrow I<V_{0}^{3 / 2} \gamma \varepsilon_{0} \sqrt{e / m} .
\end{gathered}
$$

With $e_{c}=$ electron charge, and $m_{p}=$ proton mass,

$$
\begin{gathered}
I<V_{0}^{3 / 2} \gamma \sqrt{\frac{e / e_{c}}{m / m_{p}}} \varepsilon_{0} \sqrt{\frac{e_{c}}{m_{p}}}=V_{0}^{3 / 2} \gamma \sqrt{\frac{e / e_{c}}{m / m_{p}}} 8.7 \times 10^{-8} \\
I<V_{0}^{3 / 2} \gamma \sqrt{\frac{e / e_{c}}{m / m_{p}}} 8.7 \times 10^{-8} .
\end{gathered}
$$

Analog Integrator Dynamics

Contrary to conventional analysis, which expresses the output signal in terms of the input signal, the quantity one wants (time integral over input integral) is expressed in terms of output signal (in digital form or as a scope trace), with all dynamic effects taken into account. In addition to dynamic terms being caused by the frequency response of the operational amplifier, the first order sensitivity is also affected by its dynamic behavior.

Figure 1.

For p the Laplace transform variable, and $R C=\tau_{1}$,

$$
\frac{V_{0}+\varepsilon V_{2}}{R}=-V_{2}(1+\varepsilon) p C
$$

where $\mu=1 / \varepsilon \gg 1$ is the open loop gain of the operational amplifier, and

$$
V_{0}=-V_{2}\left(p \tau_{1}(1+\varepsilon)+\varepsilon\right)=-V_{2} \cdot F .
$$

We use the following rough numbers:

$$
\varepsilon=0, \quad \int V_{0} d t=10^{-6} \mathrm{Vsec}, \quad \tau_{1}=10^{-3} \mathrm{sec}, \quad \text { and } \quad-V_{2}=\frac{\int V_{0} d t}{\tau_{1}}=10^{-3} \mathrm{~V}
$$

The frequency response of the operational amplifier is

$$
\mu_{1}(p)=\frac{\mu_{0}}{1+p \tau_{0}}
$$

It actually behaves in this fashion until the open loop gain is much less than 1 . If the operational amplifier were not to behave this way, it would be useless for many

January, 1989. Note 0267misc.
applications. We characterize the frequency response either by the time constant τ_{0}, or the frequency (times 2π) where the amplitude gain is reduced to 1 :

$$
1=\frac{\mu_{0}}{\omega_{2} \tau_{0}}=\frac{1}{\omega_{2} \varepsilon_{0} \tau_{0}}=\frac{1}{\omega_{2} \tau_{2}}
$$

with

$$
\tau_{2}=\frac{1}{\omega_{2}} \approx 10^{-7} \sec , \quad \mu_{0}=1 / \varepsilon_{0} \approx 10^{6}, \quad \text { and } \quad \varepsilon=\varepsilon_{0}\left(1+p \tau_{0}\right)=\varepsilon_{0}+p \tau_{2}
$$

and for $\tau_{1}^{*}=\left(\tau_{1}+\tau_{2}\right)$:

$$
\begin{aligned}
F & =p \tau_{1}\left(1+p \tau_{2}\right)+\varepsilon_{0}+p \tau_{2} \\
& =p \tau_{1}^{*}+\varepsilon_{0}+p^{2} \tau_{1} \tau_{2} \\
& =p \tau_{1}^{*}+\varepsilon_{0}+p^{2} \tau_{2}\left(\tau_{1}^{*}-\tau_{2}\right) \\
-\frac{V_{0}}{p \tau_{1}^{*}} & =V_{2}\left(1+\frac{1}{p \mu_{0} \tau_{1}^{*}}+\frac{p \tau_{2} \tau_{1}}{\tau_{1}^{*}}\right) .
\end{aligned}
$$

In the time domain, the quantity of interest, $\int V_{0}(\tau) d \tau$, is expressed in terms of the measured quantity $V_{2}(t)$ by

$$
\int V_{0}(\tau) d \tau=V_{2}(t) \cdot \tau_{1}^{*}+\frac{\int V_{2}(\tau) d \tau}{\mu_{0}}+\dot{V}_{2}(t) \tau_{2} \tau_{1}
$$

One has to choose the time constants and open loop gain such that the second and third terms are small compared to the first term so that they can effectively be ignored or corrections can easily be made. It should be noted that the frequency response of the operational amplifier can make a small, but noticeable, correction to the effective time constant τ_{1}^{*} through τ_{2}.

Local Interpolation with Continuous Function and its First N Derivatives

Figure 1.

1. Real function $y_{0}(x)$ must have known values at $x=x_{0}, x_{1}, \ldots, x_{n}$.
2. Establish interpolation functions $P_{1, \ldots, n-1}(x)$, that have properties appropriate to model $y_{0}(x)$ in small regions. This necessitates continuous functions, and continuous and meaningful first N derivatives. $P_{j}(x)$ must reproduce $y_{0}(x)$ exactly for $x=x_{j-1}$, $x=x_{j}$ and $x=x_{j+1}$, for $1 \leq j \leq n-1$.
3. Calculate the approximate function $y(x)$ from $y(x)=P_{1}(x) W_{1}(x)+P_{2}(x) W_{2}(x)$ in interval $x_{1} \leq x \leq x_{2}$, and similarly in other intervals. Make the choices, to some degree arbitrary, for the weight functions $W_{1, \ldots, n-1}(x)$ so that the desired goal is obtained in a reasonable fashion.
4. If, P_{1} and P_{2} are the same as $y_{0}(x)$, we do not want the interpolation scheme to destroy the relationship $y(x)=y_{0}(x)$. Therefore, we must have that

$$
\text { Condition 1: } \quad W_{1}(x)+W_{2}(x)=1
$$

And if the above is satisfied, it is also true that

$$
\text { Condition 2: } \quad W_{1}^{(n)}(x)+W_{2}^{(n)}(x)=0
$$

5. We examine $y^{(n)}(x)$:

$$
\begin{aligned}
y^{(n)}(x) & =P_{1}^{(n)} W_{1}+n P_{1}^{(n-1)} W_{1}^{(1)}+\ldots+n P_{1}^{(1)} W_{1}^{(n-1)}+P_{1} W_{1}^{(n)} \\
& +P_{2}^{(n)} W_{2}+n P_{2}^{(n-1)} W_{2}^{(1)}+\ldots+n P_{2}^{(1)} W_{2}^{(n-1)}+P_{2} W_{2}^{(n)}
\end{aligned}
$$

May, 1981. Note 0177misc.
for $n=1,2, \ldots, N$. We choose $W^{(1)}$ so that all needed derivatives exist. At $x=x_{1}$ or $x=x_{2}$,

$$
P_{1} W_{1}^{(n)}+P_{2} W_{2}^{(n)}=P_{1}\left(W_{1}^{(n)}+W_{2}^{(n)}\right)=0
$$

because P_{1}, P_{2} fit $y_{0}(x)$ exactly at $x=x_{1}, x=x_{2}$, and due to Condition 2 . We now choose the weight functions such that at $x=x_{1}, y^{(n)}=P_{1}^{(n)}$, and at $x=x_{2}$, $y^{(n)}=P_{2}^{(n)}$. We do this by requiring that weight functions fulfill

Condition 3: $\quad W_{1}\left(x_{1}\right)=1, \quad W_{1}\left(x_{2}\right)=0, \quad$ and

$$
W_{2}\left(x_{1}\right)=0, \quad W_{2}\left(x_{2}\right)=1
$$

and fulfill
Condition 4: $\quad W_{1}^{n}\left(x_{1}\right)=W_{1}^{n}\left(x_{2}\right)=0 \quad$ and

$$
W_{2}^{n}\left(x_{1}\right)=W_{2}^{n}\left(x_{2}\right)=0 \quad \text { for } \quad n=1,2, \ldots, N-1
$$

With the above choices, y and its first N derivatives at $x=x_{n}$ depend only on P_{n}, independently of whether we get to x_{n} from an upper or lower interval, i.e., y and its derivatives are continuous everywhere.
6. The construction of the weight functions that satisfy Conditions 1 (and therefore Condition 2), 3, and 4, is not unique. We introduce

$$
u(x)=\frac{x-\left(x_{1}+x_{2}\right) / 2}{\left(x_{2}-x_{1}\right) / 2}=\frac{2 x-\left(x_{1}+x_{2}\right)}{\left(x_{2}-x_{1}\right)}
$$

This gives us

$$
\begin{gathered}
u\left(x_{1}\right)=-1 \\
u\left(\left(x_{1}+x_{2}\right) / 2\right)=0 \\
u\left(x_{2}\right)=1
\end{gathered}
$$

We now have that

$$
W_{2}(x)=\frac{1}{2}\left(1+g_{N}(x)\right),
$$

$$
W_{1}(x)=\frac{1}{2}\left(1-g_{N}(x)\right)
$$

$$
\begin{aligned}
y(x) & =\frac{1}{2}\left(P_{2}(x)+P_{1}(x)+\left(P_{2}(x)-P_{1}(x)\right) \cdot g_{N}(x)\right) \\
& =P_{1}(x) W_{1}(x)+P_{2}(x) W_{2}(x)
\end{aligned}
$$

where,

$$
g_{N}(x)=a_{N} \int_{0}^{u(x)}\left(1-v^{2}\right)^{N-1} d v \text { and } \frac{1}{a_{N}}=\int_{0}^{1}\left(1-v^{2}\right)^{N-1} d v
$$

We may now conclude that, clearly, Conditions 1 and 3 are satisfied, and from

$$
\begin{aligned}
W_{2}^{(1)}(x) & =\frac{g_{N}(x)}{x_{2}-x_{1}} \\
& =\frac{a_{N}}{x_{2}-x_{1}}\left(1-u^{2}\right)^{N-1} \\
& =\frac{a_{N}}{x_{2}-x_{1}}(1-u)^{N-1}(1+u)^{N-1}
\end{aligned}
$$

it follows that Condition 4 is satisfied as well.

We introduce here some further details. Given

$$
\frac{1}{a_{N}}=\int_{0}^{1}\left(1-v^{2}\right)^{N-1} d v=b_{N}
$$

we have that

$$
\begin{aligned}
b_{N} & =\int_{0}^{1}\left(1-v^{2}\right)^{N-2}\left(1-v^{2}\right) d v \\
& =b_{N-1}-\int_{0}^{1}\left(1-v^{2}\right)^{N-2} v^{2} d v
\end{aligned}
$$

For

$$
\begin{gathered}
d u=-1\left(1-v^{2}\right)^{N-2} v d v \quad \text { and } \quad u=\frac{\left(1-v^{2}\right)^{N-1}}{2(N-1)}, \\
r=v \text { and } d r=d v
\end{gathered}
$$

we have that

$$
\begin{gathered}
b_{N}=\frac{b_{N-1}}{1+\frac{1}{2(N-1)}} \\
a_{N}=a_{N-1}\left(1+\frac{1}{2(N-1)}\right)
\end{gathered}
$$

Thus, for $a_{1}=1$

$$
\dot{a}_{N}=a_{N-1}\left(1+\frac{1}{2(N-1)}\right)=\prod_{n=1}^{N-1}\left(1+\frac{1}{2(N-1)}\right) .
$$

And further,

$$
a_{N}=\prod_{1}^{N-1} \frac{2 n+1}{2 n}=\frac{3 \cdot 5 \cdots(2 N-1)}{2^{N-1}(N-1)!}=\frac{(2 N-1)!}{2^{N-1} 2^{N-1}(N-1)!^{2}}=\frac{(2 N-1)!}{4^{N-1}(N-1)!^{2}}
$$

Summary.

P_{1} fits y_{0} exactly at $x=x_{0}, x_{1}, x_{2}$.
P_{2} fits y_{0} exactly at $x=x_{1}, x_{2}, x_{3}$.

$$
\begin{gathered}
y(x)=P_{1}(x) W_{1}(x)+P_{2}(x) W_{2}(x), \\
W_{2}(x)=\frac{1}{2}\left(1+g_{N}(x)\right), \\
W_{1}(x)=\frac{1}{2}\left(1-g_{N}(x)\right), \\
u(x)=\frac{2 x-\left(x_{1}+x_{2}\right)}{\left(x_{2}-x_{1}\right)}, \\
\frac{1}{a_{N}}=\int_{0}^{1}\left(1-v^{2}\right)^{N-1} d v, \\
g_{N}(x)=a_{N} \int_{0}^{u(x)}\left(1-v^{2}\right)^{N-1} d v .
\end{gathered}
$$

Special Cases.

$$
\begin{array}{ll}
N=1: & g_{1}=u . \\
N=2: & g_{2}=a_{2} \int_{0}^{u}\left(1-v^{2}\right) d v=a_{2} u\left(1-u^{2} / 3\right), \quad 1 / a_{2}=2 / 3 \\
& g_{2}=\frac{1}{2} u\left(3-u^{2}\right) . \\
N=3: & g_{3}=a_{3} \int_{0}^{u}\left(1-2 v^{2}+v^{4}\right)=a_{3} u\left(1-\frac{2}{3} u^{2}+\frac{u^{4}}{5}\right), \quad \frac{1}{a^{3}}=\frac{1}{3}+\frac{1}{5}=\frac{8}{15}, \\
& g_{3}=\frac{1}{8} u\left(15-10 u^{2}+3 u^{4}\right) .
\end{array}
$$

Linear Least Squares with Erroneous Matrix

When one is dealing with a system in which the relationships between parameter changes, Δp, and the system performance changes, Δs, are in good approximation represented by the linear relationship

$$
\Delta s=M \Delta p
$$

achieving a desired performance change is simply accomplished by parameter changes

$$
\Delta p=M^{-1} \Delta s
$$

as long as one has as many parameters as system performance characteristics.
When the desired change, Δs, has more components than Δp, it is often adequate to minimize the weighted sum of the deviations from the desired performance, i.e. one minimizes

$$
S=\Delta s^{t} W \Delta s
$$

where W is a diagonal square matrix with appropriate weights on the diagonal. S is minimized in the first iteration if the parameter vector is changed by

$$
\Delta p_{1}=A \Delta s_{1} \quad \text { where } \quad A=\left(M^{t} W M\right)^{-1} M^{t} W
$$

If the matrix M used for this operation deviates by $\Delta M=M_{\Re}-M$ from the real matrix M_{\Re}, the desired change Δs_{2} with the new parameters is given by

$$
\Delta s_{2}=\Delta s_{1}-(M+\Delta M) \Delta p_{1}=(I-M A-\Delta M A) \Delta s_{1}
$$

If the effort to determine M_{\Re} (often by elaborate measurements) is too large one can iterate the procedure, and it would be of interest to estimate the asymptotic Δs_{∞}. To obtain this, we introduce

$$
I-M A=B \text { and }-\triangle M A=D
$$

Thus,

$$
\Delta s_{n}=(B+D)^{n-1} \Delta s_{1} \text { and } \Delta p_{n}=A(B+D)^{n-1} \Delta s_{1}
$$

Notice that $A M=I, A B=0, D B=0$ and $B^{2}=I-2 M A+M A M A=B$.

November, 1971. Note 0038 misc.

Further,

$$
\begin{gathered}
(B+D)^{2}=B(I+D)+D^{2} \\
(B+D)^{3}=B\left(I+D+D^{2}\right)+D^{3}
\end{gathered}
$$

and so forth such that

$$
(B+D)^{n}=B(I-D)^{-1}\left(1-D^{n}\right)+D^{n}
$$

Therefore,

$$
\frac{\Delta s_{n}=\left(B(I-D)^{-1}\left(1-D^{n-1}\right)+D^{n-1}\right) \Delta s_{1}}{\Delta p_{n}=A D^{n-1} \Delta s_{1}}
$$

as it must be, because for $\Delta M=0$ and $n \geq 2, \Delta p_{n}=0$ and $\Delta s_{n}=\Delta s_{2}$.
If ΔM is small enough, the absolute values of the eigenvalues of D will be less than 1 , resulting in the following for large enough n :

$$
\Delta s_{\infty}=B(I-D)^{-1} \Delta s_{1}=(I-M A)(1+\Delta M A)^{-1} \Delta s_{1}
$$

Judging whether one is close to this value is possible by observing the decrease in Δp_{n} with increasing n.

Matrix Describing Second Order Effects to Second Order in One Dimension

No Momentum Errors.

The normalized equation of motion is

$$
y^{\prime \prime}=y+b y^{2}
$$

Expand y in terms of initial conditions y_{0}, y_{0}^{\prime} up to $2^{\text {nd }}$ order:

$$
y=a_{11} y_{0}+a_{12} y_{0}^{\prime}+a_{13} y_{0}^{2}+a_{14} y_{0} y_{0}^{\prime}+a_{15} y_{0}^{\prime 2}
$$

Initial conditions for $a(x)$

$$
a_{11}(0)=a_{12}^{\prime}(0)=1
$$

all others are 0 . The equation for $a(x)$ is:

$$
\begin{gathered}
a_{11}^{\prime \prime}=a_{11}, \quad \text { and } \quad a_{12}^{\prime \prime}=a_{12} \Longrightarrow \begin{cases}a_{11}=\cosh x, & a_{12}=\sinh x \\
a_{21}=\sinh x, & a_{22}=\cosh x\end{cases} \\
a_{13}^{\prime \prime}=a_{13}+b a_{11}^{2}, \quad a_{14}^{\prime \prime}=a_{14}+2 b a_{11} a_{12}, \quad \text { and } \quad a_{15}^{\prime \prime}=a_{15}+b a_{12}^{2}
\end{gathered}
$$

Because in all three cases $a(0)=a^{\prime}(0)=0: \mathcal{L}\left(a^{\prime \prime}\right)=p^{2} \mathcal{L}(a)$.
For a_{13},

$$
a_{11}^{2}=\frac{1}{4}\left(e^{2 x}+e^{-2 x}+2\right) \rightleftharpoons \frac{1}{4}\left(\frac{1}{p-2}+\frac{1}{p+2}+\frac{2}{p}\right) .
$$

In general,

$$
\frac{1}{(\dot{p}-1)(p+1)(p+c)} \rightleftharpoons \frac{e^{x}}{2(1+c)}+\frac{e^{-x}}{2(1-c)}+\frac{e^{-c x}}{c^{2}-1}
$$

thus,

$$
\begin{aligned}
\frac{4 a_{11}^{2}}{p^{2}-1} & \rightleftharpoons \frac{4}{3} \cdot \frac{e^{x}}{2}+\frac{4}{3} \cdot \frac{e^{-x}}{2}+\frac{e^{2 x}+e^{-2 x}}{3}-2 \\
& =\frac{4}{3} \cosh x+\frac{2}{3} \cosh 2 x-2
\end{aligned}
$$

Therefore,

$$
a_{13}=\frac{b}{6}(2 \cosh x+\cosh 2 x-3) \text { and } a_{13}^{\prime}=a_{23}=\frac{b}{3}(\sinh x+\sinh 2 x) .
$$

February, 1966. Note 0006misc.

For a_{14},

$$
a_{11} a_{12}=\frac{1}{4}\left(e^{2 x}-e^{-2 x}\right) \rightleftharpoons \frac{1}{4}\left(\frac{1}{p-2}-\frac{1}{p+2}\right),
$$

and thus,

$$
\begin{aligned}
\frac{4 a_{11} a_{12}}{p^{2}-1} & \rightleftharpoons \frac{-4}{3} \cdot \frac{e^{x}}{2}+\frac{4}{3} \cdot \frac{e^{-x}}{2}+\frac{e^{2 x}-e^{-2 x}}{3} \\
& =-\frac{4}{3} \sinh x+\frac{2}{3} \sinh 2 x
\end{aligned}
$$

Therefore,

$$
a_{14}=\frac{b}{3}(\sinh 2 x-2 \sinh x) \text { and } a_{14}^{\prime}=a_{24}=\frac{2 b}{3}(\cosh 2 x-\cosh x) .
$$

Similarly, for a_{15},

$$
a_{12}^{2}=\frac{1}{4}\left(e^{2 x}+e^{-2 x}-2\right) \rightleftharpoons \frac{1}{4}\left(\frac{1}{p-2}+\frac{1}{p+2}-\frac{2}{p}\right)
$$

thus,

$$
\begin{aligned}
\frac{4 a_{12}^{2}}{p^{2}-1} & \rightleftharpoons \frac{-8}{3} \cdot \frac{e^{x}}{2}+\frac{-8}{3} \cdot \frac{e^{-x}}{2}+\frac{e^{2 x}+e^{-2 x}}{3}+2 \\
& =-\frac{8}{3} \cosh x+\frac{2}{3} \cosh 2 x+2
\end{aligned}
$$

Therefore,

$$
a_{15}=\frac{b}{6}(\cosh 2 x-4 \cosh x+3) \quad \text { and } \quad a_{15}^{\prime}=a_{25}=\frac{b}{3}(\sinh 2 x-2 \sinh x) .
$$

Inclusion of Momentum Error α.

The normalized equation of motion is

$$
y^{\prime \prime}=y+\alpha+b y^{2}
$$

First, add the term linear in α to the expansion in y_{0}, y_{0}^{\prime} : add $a_{16} \alpha$. The initial conditions are

$$
a_{16}(0)=a_{16}^{\prime}(0)=0, \quad a_{16}^{\prime \prime}=a_{16}+1 \quad \Longrightarrow \quad a_{16}=\cosh x-1
$$

Second, take the terms $\alpha^{2}, \alpha y_{0}, \alpha y_{0}^{\prime}$ into account, where the procedure is the same as in the calculation of a_{13}, a_{14}, and a_{15}.
Third, do not add any terms, but introduce $z=y+\beta$ (β is a constant) in the differential equation. Thus,

$$
\begin{gathered}
z^{\prime \prime}=z-\beta+\alpha+b\left(z^{2}-2 z \beta+\beta^{2}\right) \\
\beta^{2}-\frac{\beta}{b}+\frac{\alpha}{b}=0 \Longrightarrow \beta=\frac{1}{2 b}(1-\sqrt{1-4 \alpha \beta}) \\
z(1-2 b \beta)+b z^{2}=z^{\prime \prime}=z \sqrt{1-4 \alpha \beta}+b z^{2}
\end{gathered}
$$

This procedure requires the calculation of a new" matrix for every α of interest, but this will give more insight in return.

General Procedure.

Description of higher order effects with power expansion and the consequences for stability.
We describe deviations from the closed orbit by the column vector

$$
\mathrm{v}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{k}
\end{array}\right)
$$

where the components of y_{1} are y and y^{\prime}, and components of $y_{2}, y_{3}, \ldots, y_{k}$ are, respectively, the second, third, $\ldots, k^{\text {th }}$ order contributions of y and y^{\prime}. Then,

$$
\mathbf{v}_{2}=M \mathrm{v}_{1}, \quad \text { with } \quad M=\left(\begin{array}{ccccc}
A_{11} & A_{12} & A_{13} & \ldots & A_{1 k} \\
0 & A_{22} & A_{23} & \ldots & A_{2 k} \\
0 & 0 & A_{33} & \ldots & A_{3 k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & A_{k k}
\end{array}\right) .
$$

In M, A_{11} describes the first order effects, A_{12} the second order effects, etc. The
other matrices reproduce the higher than first order components of v. The diagonal elements $A_{22}, A_{33}, \ldots, A_{k k}$ depend only on the matrix element of A_{11}. The eigenvalues of M do not depend on $A_{12}, \ldots, A_{1 k}$. Thus, the stability of the system does not depend, in this approximation, on the non-linear effects described by these elements. Since stability obviously can depend on non-linear effects, this implies that the power expansion for many passes through the system has a progressively shrinking radius of convergence. One can thus conclude that although this method is worthless to evaluate the effect of non-linearities on stability, it might still yield valuable information provided the system does not become unstable because of the non-linearities.
We show rough numbers for

$$
\begin{gathered}
F_{3}=a_{13} / b, \quad F_{4}=a_{14} / b, \quad F_{5}=a_{15} / b \\
F_{3}^{\prime}=a_{13}^{\prime} / b=a_{23} / b, \quad F_{4}^{\prime}=a_{14}^{\prime} / b=a_{24} / b, \quad F_{5}^{\prime}=a_{15}^{\prime} / b=a_{25} / b
\end{gathered}
$$

x	$\pi / 4$	$\pi / 2$	π
e^{x}	2.2	4.8	23
e^{-x}	0.46	0.21	0
$\cosh x$	1.33	2.5	11.5
$\sinh x$	0.87	2.3	11.5

x	$\pi / 4$	$\pi / 2$
$F_{3}(x)$	0.77	2.25
$F_{4}(x)$	0.18	2.3
$F_{5}(x)$	0.03	0.75

x	$\pi / 4$	$\pi / 2$
$F_{3}^{\prime}(x)$	1.06	4.6
$F_{4}^{\prime}(x)$	0.78	6
$F_{5}^{\prime}(x)$	0.18	2.3

Curvature of 2D Magnetic Field Lines and Scalar Potential Lines

I. Preparation and Background.

Magnetic fields. 2D magnetic fields can be derived from a scalar potential V or a vector potential A, or the complex potential $F(z)=A+i V$, an analytic function of the complex variable $z=x+i y$, according to

$$
\begin{equation*}
B_{x}-i B_{y}=B^{*}=i \frac{d F}{d z}=i F^{\prime} \tag{1}
\end{equation*}
$$

Field lines and scalar potential lines in the z-plane are the $z(F)$ maps of straight lines parallel to either the imaginary or real axis of the F-plane.
Modification of the curvature by a conformal map. If a curve in the z-plane has a local tangent in the direction $e^{i \alpha_{z}}$, the conformal map $w(z)$ of that region has a local tangent in the direction

$$
\begin{equation*}
e^{i \alpha_{z}}=e^{i \alpha_{z}} \frac{w^{\prime}}{\left|w^{\prime}\right|} \tag{2}
\end{equation*}
$$

This equation shows that the angle of intersection of any two curves in the z-plane is preserved under the transformation $w(z)$, hence the name conformal transformation. If the curve at that location in the z-plane is k_{z}, then the curvature of the map of that point can be shown to be.

$$
\begin{equation*}
k_{w}=\frac{\left(k_{z}+\Im\left(\frac{w^{\prime \prime}}{w^{\prime}} e^{i \alpha_{z}}\right)\right)}{\left|w^{\prime}\right|} \tag{3}
\end{equation*}
$$

The sign convention used for this formula is such that a positive curvature means that if one proceeds in the direction of the tangent, the curve turns to the left, i.e. the conventional mathematically positive direction.

II. Application of (2).

Fundamental relationships. There are several ways to apply (2) to this problem. The most natural way to do so seems to be, at least at first, to assign quantities w and z in (2) to the the variables F and z of our problem, since we are looking at the map of a region of the F-plane to the z-plane. For most applications, this is not very practical since one then gets the curvature of the maps of constant potential lines as a function of A and V, when in fact one wants the curvature as a function of x and

[^3]y. We therefore proceed in the following manner: we assign z and w to z and F, and look in
\[

$$
\begin{equation*}
k_{F}=\frac{\left(k_{z}+\Im\left(\frac{F^{\prime \prime}}{F^{\prime}} e^{i \alpha_{z}}\right)\right)}{\left|F^{\prime}\right|} \tag{4}
\end{equation*}
$$

\]

for $k_{F}=0$, i.e. the curvature of maps of straight lines in the F-plane is given by

$$
\begin{equation*}
k_{z}=-\Im\left(\frac{F^{\prime \prime}}{F^{\prime}} e^{i \alpha_{z}}\right) \tag{5}
\end{equation*}
$$

To get a more practical formula, we express $e^{i \alpha_{z}}$ with the help of (2) through

$$
\begin{equation*}
e^{i \alpha_{z}}=e^{i \alpha_{F}} \frac{\left|F^{\prime}\right|}{F^{u}} \tag{6}
\end{equation*}
$$

and the derivatives of F through the fields as given in (1), yielding

$$
\begin{equation*}
k_{z}=-\Re\left(\frac{B^{*^{\prime}}}{B^{* 2}}|B| e^{i \alpha_{F}}\right) \tag{7}
\end{equation*}
$$

For some expressions of the fields, it is more convenient to write this as

$$
\begin{equation*}
k_{z}=+\Re\left(\left(\frac{1}{B^{*}}\right)^{\prime}|B| e^{i \alpha_{F}}\right) \tag{8}
\end{equation*}
$$

In both (7) and (8), $e^{i \alpha_{F}}$ has the absolute value 1 and is real if one is looking at a scalar potential line, and is purely imaginary if one looks at a field line.

Comments. It is worth noting that in order to calculate the curvatures of interest, one needs only the expressions for the complex field, not the complex potential. Under most circumstances, the expression for the complex potential is not more complicated than the expression for the complex field. There are, however, exceptions. For instance, the field of a modified sextupole is given by

$$
\begin{equation*}
B^{*}=i z^{2} e^{a z^{2}} \tag{9}
\end{equation*}
$$

Integrating this to get the complex potential, (1), leads to the error function in the complex plane.

III. Applications.

Figures $1(a, b)$.
(i) The regular multipole. For a multipole of order n with the field perpendicular to the midplane, the field is given by

$$
\begin{equation*}
B^{*}=i z^{n-1} \tag{10}
\end{equation*}
$$

Substituting in (8) gives directly

$$
\begin{equation*}
k_{z}=(n-1)\left|z^{n-1}\right| \Re\left(i z^{-n} e^{i \alpha_{w}}\right) . \tag{11}
\end{equation*}
$$

Using, for $e^{i \alpha_{F}}$, the phases corresponding to the arrows in Figures 1(a) and 1(b), and using $z=r e^{i \varphi}$, gives, for the curvature of the field line and the scalar equipotential:

$$
\begin{align*}
& k_{z}=(n-1) \cos \frac{n \varphi}{r} \tag{12A}\\
& k_{z}=(n-1) \sin \frac{n \varphi}{r} \tag{12V}
\end{align*}
$$

(ii) The modified sextupole. This particular implementation of a modified sextupole has the field in the midplane perpendicular to the midplane, and behaves like a good sextupole close to the origin, but has a stronger modified field, proportional to $x^{2} e^{a x^{2}}$, $a \in \Re$, as one moves away from the origin of the coordinate system. The complex field is therefore given by

$$
B^{*}=i z e^{a x^{2}}
$$

- $\quad \therefore \quad$ • $\because \square$

Fringe Field Model Function for Dipoles

For a number of beam optics tasks, it is important to have an analytical function that describes the field in the fringe field region of a dipole ${ }^{i}$. We restrict ourselves to the simple case of a dipole that has a straght effective field boundary, making this a very simple problem of describing two dimensional fields. Putting the x-axis into the midplane of a dipole whose half gap is normalized to be equal to 1 , with large $x>0$ describing the outside of the magnet, and the far negative end of the x-axis the deep inside region of the magnet, the field in the region of interest can be described by

$$
\begin{align*}
\frac{B_{y}(x, y)+i B_{x}(x, y)}{B_{0}}= & G(z)=D_{1}(z)+D_{2}(z)+D_{3}(z) \tag{0.0}\\
& z=x+i y \tag{0.1}
\end{align*}
$$

and the functions D_{1}, D_{2}, D_{3} chosen such that the asymptotic behavior of $G(z)$ reflects the properties of the fields in the regions deep inside and far outside the magnet. In addition, $G(z)$ should not have any singularities for the space within $-1<y<1$. The following functions satisfy these conditions:

$$
\begin{gather*}
D_{1}(z)=\frac{1+n A e^{\pi z / 2}}{\left(1+A e^{\pi z / 2}\right)^{n}} \tag{1}\\
D_{2}(z)=C_{1} e^{-C_{2}\left(z-x_{2}\right)^{2}} \tag{2}\\
D_{3}(z)=K_{1} \cdot \frac{\left(1+K_{3} e^{-\pi z / 2}\right)^{m}}{\left(1+K_{2}\left(z-x_{3}\right)^{2}\right)^{3 / 2}}, \tag{3}
\end{gather*}
$$

with all coefficients real, $n \geq 2, K_{2}>1$, and $A, C_{2}, K_{3}, m>0$. The fields deep inside the magnet are dominated by the "longest surviving" term $e^{\pi z}$ from $D_{1}(z)$, while far outside the magnet the field is dominated, as desired, by the "longest surviving" term proportional to $1 / z^{3}$ from D_{3}, with clearly no singularities for $-1<y<1$. $D_{2}(z)$ has been added (and one could add more such terms) to allow a good fit of $G(z)$ to measured or computed data in the transition region. While this suggested model function $G(z)$ has enough free parameters to fit data, the quality of such a fit has not been tested on a real problem, but the $G(z)$ given here should contain a sufficient number of suggestions that this approach to the Enge function promises to be successful.
\dagger See document 0609thry, Comments about RAYTRACE.

Comments about RAYTRACE

Introduction.

Several years ago I was asked at a workshop to comment on the representation of magnetic fields in the RAYTRACE code, a computer program that was developed by H. A. Enge and his students in the 1960 's ${ }^{\dagger}$. Since my comments contained not only some academically interesting points, but also suggestions for improvement of this enormously successful code, several people asked me to put my thoughts on this subject on paper. After describing the specific aspects of the code that I want to discuss, I will elaborate on what I would characterize as shortcomings, together with suggestions for eliminating them, and a description of some mathematical detail at the end.

Fields in RAYTRACE.

Even though it is not a major effort to generalize my comments, I restrict the discussion to the case of the fringe field region of a dipole magnet that has a straight effective field boundary in the region of interest. This means that we are dealing with two dimensional fields, with all the associated simplifications that make it possible to address the core of the problem without unnecessary distractions.
Using the midplane of the magnet as the x-axis of the $x y$ coordinate system, with large positive x representing the region far outside the dipole, and the other extreme the region deep inside the magnet, the field is characterized by the following function, commonly called the Enge function :

$$
\begin{equation*}
B_{y}(x, 0)=\frac{B_{0}}{1+e^{P(x)}} \tag{1a}
\end{equation*}
$$

where

$$
\begin{equation*}
P(x)=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}, \tag{1b}
\end{equation*}
$$

with n an odd integer and $C_{n}>0$.
The coefficients are obtained by fitting measured or computed field values in the midplane to (1), and fields off the midplane are obtained by using a Taylor series expansion, with the derivatives obtained from (1).

Comments and Suggestions.

I have' problems with three tightly linked aspects of this procedure:

[^4](A) It is true, in general, that if one fits parameters of a function so that the fields on the surface of a volume are well represented by that function, the quality of the fields computed with that function inside the volume is at least as good as (but usually better than) the original data on the surface. It is, of course, assumed that the function and field calculation algorithm satisfy all the relevant vacuum field equations. Conversely, calculating fields in the volume from a function whose free parameters were determined on a line inside the volume gives fields that are not nearly as accurate as the original data. These facts are qualitatively clear if one thinks of the fringe fields in the midplane of the dipole: significantly different pole contours produce very similar fields in the midplane. That means that if one calculates fields off the midplane accurately from the fields in the midplane, small differences in the function there will give significantly different fields far away from the midplane.
(B) Calculating fields off the midplane with a Taylor series expansion makes no sense in this case for the following reasons: since $B_{x}-i B_{y}$ or, more conveniently in this case, $B_{y}+i B_{x}$, is an analytical function of the complex variable $z=x+i y$, the field at location (x, y) can be obtained directly, without any approximation, by evaluating (1) for complex argument:
\[

$$
\begin{equation*}
B_{y}(x, y)+i B_{x}(x, y)=B_{y}(x+i y, 0)=\frac{B_{0}}{1+e^{P(x+i y)}} \tag{2}
\end{equation*}
$$

\]

This very simple evaluation of fields from a midplane model function makes it obviously easy to fit the parameters of the model, no matter the nature of that function, to fields off the midplane, thus eliminating the objection raised in (A).
(C) It seems to me that the form of the Enge function is not well suited to this problem for two reasons: 1) the function does not have ther appropriate asymptotic behavior far away from either end of the magnet; and 2) unless one makes a careful study of the Enge function, it may have one or more singularities in the "business" region. Avoiding that kind of disaster by evaluating the field only approximately is clearly not a satisfactory answer to this problem. While it is fairly easy with the help of (2) to make the singularity check (see Appendix), it might be simpler to "design" a function that can not have that kind of singularity, in addition to having the proper asymptotic behavior. I have some very promising candidates but have not made the effort to test them on some real problems.

Appendix.

For the Enge function to have no damaging singularity it is necessary and sufficient that the equation

$$
\begin{equation*}
P(z)=i m \pi \text { with } m=\text { odd integer } \neq 0 \tag{3}
\end{equation*}
$$

has no solution for z between the midplane and a line parallel to the midplane one half gap, h, away from the midplane. This test is most easily carried out with the argument principle that states, in this case, that the number of zeroes of $w(\approx)$ within a region of the z-plane equals the number of times $w(z)$ goes around $w=0$ when z traces the boundary of the region. Since, in this case,

$$
\begin{equation*}
w(z)=P(z)+i m \pi, \tag{4}
\end{equation*}
$$

with all C_{n} in $P(z)$ real, it is only necessary to find the locations where the map of the straight line parallel to the midplane at distance h intersects the imaginary axis of $\mathrm{P}(\mathrm{z})$, i.e. one has to find $\Im P(z)$ at the locations where $\Re P(x+i h)=0$. Since $\Re P(x+i h)=0$ means nothing more than finding the real roots (in x) of a polynomial of order n, this a very simple exercise for a computer. Having these points, it is trivial to see whether $w(z)=0$ is possible for any odd m. I have carried out that test for the example given by Spencer and Enge, and for four cases given to me by S. Kowalski. I am happy to report that while none of these cases had singularities within one half gap of the midplane, there were some singularities just outside the end of the dipole only a little more than a half gap away from the midplane.

Stored Energy in H-Magnet for $\mu=\infty$

Figure 1.

$$
2 \mathcal{E}=\int \mathbf{B} \cdot \mathbf{H} d v=\int \mathbf{H} \cdot \nabla \times \mathbf{A} d \dot{v}
$$

From

$$
\nabla \cdot(\mathbf{A} \times \mathbf{H})=\mathbf{H} \cdot(\nabla \times \mathbf{A})-\mathbf{A} \cdot(\nabla \times \mathbf{H})
$$

we have that, with $\mathbf{j}=j \mathbf{e}_{z}$,

$$
\begin{aligned}
2 \mathcal{E} & =\int \mathbf{A} \cdot \mathbf{j} d v+\int(\mathbf{A} \times \mathbf{H}) \cdot d \mathbf{a} \\
& =\int \mathbf{A} \cdot \mathbf{j} d v+\int \mathbf{A} \cdot(\mathbf{H} \times d \mathbf{a})
\end{aligned}
$$

where $\mathrm{H} \times d \mathrm{a}=0$ on $\mu=\infty$ surface.
In case of a long magnet, $\int j d a \equiv 0$ which means that we can add any constant to A without changing anything. We make $A=0$ along the y-axis. We now use $\mathrm{A}=\mu_{0} A \mathrm{e}_{z}$, so that the total energy per unit length is

$$
\mathcal{E}^{\prime}=\frac{1}{2} \mu_{0} j \int A d x d y
$$

where the integral is evaluated over the coil in the first quadrant.

To get

$$
J_{1}=\int A(x, y) d x d y
$$

we look at

$$
\begin{aligned}
J_{2}(y) & =\int_{0}^{y<y_{2}} \int_{0}^{h_{2}} H_{x} d x d y=\iint \frac{\partial A}{\partial y} d y d x \\
& =\int\left(A(x, y)-A_{t}\right) d x=\int A(x, y) d x-A_{t} h_{2}
\end{aligned}
$$

where A_{t} is A at top of the coil slot.
We integrate the original expression for J_{2} over x first, and by Ampère's Law,

$$
J_{2}(y)=\int_{0}^{y} \frac{I}{y_{2}} y d y=\frac{I y^{2}}{2 y_{2}} .
$$

Therefore,

$$
\frac{\int A(x, y) d x=\frac{I y^{2}}{2 y_{2}}+A_{t} h_{2}}{J_{1}=\int_{0}^{y_{2}} \int A(x, y) d x d y=\frac{I y_{2}^{2}}{6}+A_{t} h_{2} y_{2} .}
$$

From H-Magnet With Minimal Yoke Flux Density ${ }^{\dot{\dagger}}$ we know that

$$
A_{t}=I\left(\frac{W_{1}}{h_{1}}+\frac{D+y_{2} / 2}{h_{2}}+E_{1}\right)
$$

and thus we have that

$$
\begin{gathered}
J_{1}=I h_{2} y_{2}\left(\frac{W_{1}}{h_{1}}+\frac{D+y_{2} / 2}{h_{2}}+E_{1}+\frac{y_{2}}{6 h_{2}}\right) . \\
j J_{1}=I^{2}\left(\frac{W_{1}}{h_{1}}+\frac{2 y_{2}}{3 h_{2}}+\frac{D}{h_{2}}+E_{1}\left(\frac{h_{1}}{h_{2}}\right)\right) . \\
\quad . \\
\mathcal{E}^{\prime}=\frac{1}{2} \mu_{0}\left(j J_{1}\right),
\end{gathered}
$$

\dagger Document 0606thry.
where

$$
\begin{gathered}
I=H_{1} h_{1}=j h_{2} y_{2}, \\
E_{1}(a)=a+\frac{2}{\pi}\left(\ln \frac{a+1 / a}{4}+\left(\frac{1}{a}-a\right) \arctan a\right) \quad \text { with } a=h_{2} / h_{1} .
\end{gathered}
$$

H-Magnet With Minimal Yoke Flux Density

Figure 1.
W_{1}, H_{1}, W_{3}, D, and h_{1} are given. We want to minimize $\bar{B}_{\text {yoke,max }}$ for $\mu=\infty$ by chosing the proper h_{2}.

Procedure.

Calculate flux for 0-thickness coil at top of coil slot using excess flux coefficient E_{1} for corner. Subtract "window frame flux" from combination of real coil and 0 -thickness coil.
For $V=H_{1} h_{1}=j h_{2} y_{2}$ we chose h_{2} and j. Thus,

$$
\begin{aligned}
A= & V \cdot\left(\frac{W_{1}}{h_{1}}+\frac{D+y_{2}}{h_{2}}+E_{1}\left(\frac{h_{1}}{h_{2}}\right)-\frac{y_{2}}{2 h_{2}}\right) \mu_{0} \\
= & \mu_{0} V\left(\frac{W_{1}}{h_{1}}+\frac{D+y_{2} / 2}{h_{2}}+E_{1}\left(\frac{h_{1}}{h_{2}}\right)\right) \\
& \bar{B}_{\text {yoke,max }}=\frac{A}{W_{3}-W_{1}-h_{2}} .
\end{aligned}
$$

We determine the minimum value of $\bar{B}_{\text {yoke,max }}$ by varying h_{2}, and we define

$$
E_{1}(a)=a+\frac{2}{\pi}\left(\ln \frac{a+1 / a}{4}+\left(\frac{1}{a}-a\right) \arctan a\right) \quad \text { with } \quad a=h_{2} / h_{1}
$$

[^5]
Dipole with Small Gap Bypass

Figure 1.

$$
\begin{equation*}
B_{0} h_{0}+h_{1} \mu_{0} H\left(B_{0}\right)=B_{1}\left(h_{1}+h_{0}\right) \tag{1}
\end{equation*}
$$

For $W_{0} / W_{2}=\varepsilon_{0}$,

$$
\begin{gathered}
B_{2} W_{2}=B_{0} W_{0}+B_{1} W_{1} \text { and thus } B_{2}=B_{0} \varepsilon_{0}+B_{1}\left(1-\varepsilon_{0}\right) \\
V_{00}=\frac{B_{1}}{\mu_{0}}\left(h_{0}+h_{1}\right)+h_{2} H\left(B_{0} \varepsilon_{0}+B_{1}\left(1-\varepsilon_{0}\right)\right)
\end{gathered}
$$

The exact equation

$$
\begin{equation*}
\mu_{0} V_{00}=B_{1}\left(h_{0}+h_{1}\right)+\mu_{0} h_{2} H\left(B_{0} \varepsilon_{0}+B_{1}\left(1-\varepsilon_{0}\right)\right) \tag{2}
\end{equation*}
$$

has the following implementations

$$
B_{1} \rightarrow B_{0} \text { and then } B_{1}, B_{0} \rightarrow V_{00}
$$

We will now examine three special cases.

June, 1993. Note 0591thry.

In Case 1, V_{00} is so small that $\mu_{0} H(B)=\gamma B$,

$$
\begin{gathered}
B_{0}\left(h_{0}+\gamma h_{1}\right)=B_{1}\left(h_{0}+h_{1}\right), \\
\mu_{0} V_{00}=B_{1} \underbrace{\left(h_{0}+h_{1}+\gamma h_{2}\left(\varepsilon_{0} \frac{h_{0}+h_{1}}{h_{0}+\gamma h_{1}}+1-\varepsilon_{0}\right)\right)}_{K},
\end{gathered}
$$

where

$$
\begin{gathered}
\frac{h_{0}+h_{1}}{h_{0}+\gamma h_{1}}=1+\frac{(1-\gamma) h_{1}}{h_{0}+\gamma h 1} \text { and } K_{h_{0}}^{\prime}=1-\frac{\gamma h_{1} \varepsilon_{0} h_{2}(1-\gamma)}{\left(h_{0}+\gamma h_{1}\right)^{2}}, \\
B_{1}=\frac{\mu_{0} V_{00}}{K}, \quad B_{1}^{\prime}=\frac{-\mu_{0} V_{00}}{K^{2}} K^{\prime}=\frac{\mu_{0} V_{00}}{K^{2}}\left(\frac{\gamma h_{1} \varepsilon_{0} h_{2}(1-\gamma)}{\left(h_{0}+\gamma h_{1}\right)^{2}}-1\right) .
\end{gathered}
$$

For $h_{0} \ll \gamma h_{1}$:

$$
B_{1}^{\prime}=\frac{\mu_{0} V_{00}}{K^{2}}\left(\frac{\varepsilon_{0} h_{2}(1-\gamma)}{\gamma h_{1}}-1\right)>0
$$

$K^{\prime}=0$ for $h_{0}+\gamma h_{1}=\sqrt{\varepsilon_{0} \gamma h_{1} h_{2}(1-\gamma)}$ such that

$$
h_{0}=\gamma h_{1}(\underbrace{\sqrt{\frac{\varepsilon_{0} h_{2}(1-\gamma)}{\gamma h_{1}}}-1}_{\gg 1}) \approx \sqrt{\varepsilon_{0} h_{1} h_{2}(1-\gamma) \gamma} .
$$

For $h_{1}=1, h_{2}=5, \varepsilon_{0}=1 / 2, \gamma=10^{-3}$, we have

$$
h_{0}=\sqrt{1 / 2 \cdot 1 \cdot 5 \cdot 10^{-3}}=\frac{1}{20} \mathrm{~cm} .
$$

In Case 2, we need V_{00} large enough so that $B_{0} \approx B_{s}$, but small enough so that for (2) $\mu_{0} H(B)=\gamma B$, thus

$$
\mu_{0} V_{00}=B_{1}\left(h_{0}+h_{1}\right)+B_{1} h_{2} \gamma\left(1-\varepsilon_{0}\right)+B_{s} h_{2} \gamma \varepsilon_{0}
$$

where

$$
B_{1}=\frac{\mu_{0} V_{00}-B_{s} \gamma h_{2} \Xi_{0}}{h_{0}+h_{1}+h_{2} \gamma\left(1-\varepsilon_{0}\right)} .
$$

In a third, simple case, Case 3 , for a still higher V_{00},

$$
B_{s} \varepsilon_{0}+B_{1}\left(1-\varepsilon_{0}\right) \rightarrow B_{s}
$$

i.e. it is independent of V_{00}, and thus

$$
B_{1}=B_{s} .
$$

Boundary Condition at Iron-Air Interface for AC and Application to 2-Dimensional Cylinder

Interface at $y=0$,

$$
\begin{gathered}
\frac{\partial}{\partial x}=\frac{\partial}{\partial z}=0 \quad \text { and } \quad \frac{\partial}{\partial y}={ }^{\prime} \\
\mathbf{H}=H \mathrm{e}_{x}, \quad \mathrm{j}=\mathrm{e}_{z} \sigma E \text { and } \mathbf{E}=\mathrm{e}_{z} E . \\
(\nabla \times \mathbf{H})_{z}=-H^{\prime}=\sigma E \text { and } E=-\varrho H^{\prime} \\
(\nabla \times \mathbf{E})_{x}=E^{\prime}=-\mu_{0} \mu p H=-\varrho H^{\prime \prime} \quad \text { and } H^{\prime \prime}-k^{2} H=0
\end{gathered}
$$

where, depending on the application, p is either the Laplace transform variable or, for sinusoidal excitation, $i \omega$.

$$
\begin{gathered}
k=\sqrt{\sigma \mu_{0} \mu p}=\frac{1}{D_{1}} \\
H=H_{0} e^{-k y} \text { and } \Phi=\mu_{0} \mu \int_{0}^{\infty} H d y=\frac{H_{0} \mu_{0} \mu}{k}=\mu_{0} H_{0} \mu D_{1} .
\end{gathered}
$$

Therefore, with

$$
\mu D_{1}=D_{2}
$$

$$
\begin{gathered}
\frac{d \Phi}{d x} \Delta x=\mu_{0} D_{2} \frac{\partial H_{0}}{\partial x} \Delta x=\mu_{0} H_{y} \Delta x \\
H_{y}=D_{2} \frac{\partial H_{0}}{\partial x} \Longrightarrow H_{\perp}=D_{2} \frac{\partial H_{\|}}{\partial s_{\|}} .
\end{gathered}
$$

Given an iron cylinder with D_{2}, of radius 1 , in far-field $\mathbf{H}=H_{\infty} \mathbf{e}_{x}$, we try to solve for the complex potential F. Ansatz: the superposition of the macro and micro dipoles, with normalized units.

$$
F=-i H_{1}(z+1 / z)-i H_{2}(z-1 / z)
$$

with $z=x+i y$, normalized with radius r_{0} of the cylinder.

On $|z|=1$

$$
\begin{gathered}
F=A+i V=2 H_{2} \sin \varphi-i 2 H_{1} \cos \varphi \\
H^{*}=i F^{\prime}=H_{x}-i H_{y} \text { and } \mathcal{H}=H_{r}+i H_{\varphi}=H e^{-i \varphi} \\
\mathcal{H}^{*}=H^{*} e^{i \varphi}
\end{gathered}
$$

and the boundary condition is, with

$$
\begin{gathered}
H_{\|}=H_{\varphi} \quad \text { and } \quad H_{\perp}=-H_{r} \\
H_{\tau}=-D_{2} \frac{\partial H_{\varphi}}{\partial \varphi} \\
H^{*}=H_{1}\left(1-1 / z^{2}\right)+H_{2}\left(1+1 / z^{2}\right)=e^{-i \varphi} \mathcal{H}^{*}
\end{gathered}
$$

On the surface,

$$
\begin{aligned}
& \mathcal{H}^{*}=H_{r}-i H_{\varphi}=2 i H_{1} \sin \varphi+2 H_{2} \cos \varphi, \\
& H_{r}=2 H_{2} \cos \varphi \text { and } H_{\varphi}=2 H_{1} \sin \varphi
\end{aligned}
$$

and the boundary condition is, with

$$
2 H_{2} \cos \varphi=D_{2} 2 H_{1} \sin \varphi+2 H_{2} \cos \varphi \quad \text { and } \quad H_{2}=D_{2} H_{1}
$$

$$
H_{\infty}=H_{1}+H_{2}=H_{1}\left(1+D_{2}\right)
$$

$$
H_{1}=\frac{H_{\infty}}{1+D_{2}}, \quad H_{2}=\frac{H_{\infty} D_{2}}{1+D_{2}}
$$

$$
H_{\tau}=2 H_{\infty} \frac{D_{2}}{1+D_{2}} \cos \varphi \text { and } H_{\varphi}=-2 H_{\infty} \frac{\sin \varphi}{1+D_{2}}
$$

normalized with radius r_{0} of the cylinder.

Using SI units, we choose $\sigma \mu_{0}=10, \mu=10^{4}$ and $\omega=2 \pi \cdot 60 \mathrm{~Hz}$, and therefore we have

$$
\left|D_{2}\right|=\sqrt{\frac{\mu}{\sigma \mu_{0} \omega}}=\frac{10^{2}}{\sqrt{10^{4}(.12 \pi)}},
$$

$$
\left|D_{2}\right|=1.6 \mathrm{~m}
$$

$$
\left|D_{1}\right|=.16 \mathrm{~mm} \quad \text { and } \quad\left|D_{1}\right| \sqrt{2}=.23 \mathrm{~mm}
$$

For sinusoidal excitation,

$$
\begin{gathered}
D_{2}=\left|D_{2}\right| \frac{(1-i)}{\sqrt{2}} \\
\left|1+D_{2}\right|=\sqrt{\left(1+\frac{\left|D_{2}\right|}{\sqrt{2}}\right)^{2}+\frac{\left|D_{2}\right|^{2}}{2}}=\sqrt{1+\left|D_{2}\right|^{2}+\left|D_{2}\right| \sqrt{2}}
\end{gathered}
$$

Normalized, where r_{0} is the radius of the cylinder:

$$
D_{2}=\frac{D_{2}(\mathrm{~m})}{\mathrm{r}_{0}(\mathrm{~m})}
$$

That is, for same material and frequency, $\left|D_{2}\right|$ is large for a small cylinder and $\left|D_{2}\right|$ is small for a large cylinder.
Unfortunately, if $H_{\perp}=D_{2} \frac{\partial H_{\|}}{\partial s_{\|}}$is valid in z-geometry, it is not satisfied in conformally mapped w-geometry, i.e. dealing with this problem in mapped geometry is not practical.

Flux Into A Rectangular Box

Figure 1.

$$
\dot{z}=c \frac{\sqrt{t^{2}-\varepsilon^{2}}}{\sqrt{t^{2}-1}}
$$

For

$$
t=\varepsilon \sin \varphi, \quad d t=\varepsilon \cos \varphi d \varphi \quad \sqrt{1-\varepsilon^{2}}=\varepsilon_{1}
$$

we have

$$
\begin{gathered}
\frac{a}{c}=\int_{0}^{\varepsilon} \frac{\sqrt{\varepsilon^{2}-t^{2}}}{\sqrt{1-t^{2}}}=\varepsilon^{2} \int_{0}^{\pi / 2} \frac{\cos ^{2} \varphi d \varphi}{\sqrt{1-\varepsilon^{2} \sin ^{2} \varphi}}=\int_{0}^{\pi / 2} \frac{\left(1-\varepsilon^{2} \sin ^{2} \varphi\right)+\left(\varepsilon^{2}-1\right)}{\sqrt{1-\varepsilon^{2} \sin ^{2} \varphi}} d \varphi \\
\frac{a}{c}=\int_{0}^{\pi / 2} \sqrt{1-\varepsilon^{2} \sin ^{2} \varphi} d \varphi-\varepsilon_{1}^{2} \int_{0}^{\pi / 2} \frac{d \varphi}{\sqrt{1-\varepsilon^{2} \sin ^{2} \varphi}} \\
\frac{a}{c}=E\left(\varepsilon^{2}\right)-\varepsilon_{1}^{2} K\left(\varepsilon^{2}\right) .
\end{gathered}
$$

For

$$
t=\cos \varphi, d t=-\sin \varphi d \varphi, \quad \varepsilon=\cos \alpha, \quad \varepsilon_{1}=\sin \alpha
$$

May, 1988. Note 0491thry.

$$
\sin \varphi=\varepsilon_{1} \sin \psi, d \varphi=\frac{\varepsilon_{1} \cos \psi d \psi}{\sqrt{1-\varepsilon_{1}^{2} \sin ^{2} \psi}}
$$

we have

$$
\begin{aligned}
\frac{b}{c}=\int_{\varepsilon}^{1} \frac{\sqrt{t^{2}-\varepsilon^{2}}}{\sqrt{1-t^{2}}} d t= & \int_{0}^{\alpha} \sqrt{\varepsilon_{1}^{2}-\sin ^{2} \varphi} d \varphi=\varepsilon_{1}^{2} \int_{0}^{\pi / 2} \frac{\cos ^{2} \psi}{\sqrt{1-\varepsilon_{1}^{2} \sin ^{2} \psi}} d \psi \\
& \frac{b}{c}=E\left(\varepsilon_{1}^{2}\right)-\varepsilon^{2} K\left(\varepsilon_{1}^{2}\right) .
\end{aligned}
$$

Thus

$$
\frac{a}{b}=\frac{E\left(\varepsilon^{2}\right)-\varepsilon_{1}^{2} K\left(\varepsilon^{2}\right)}{E\left(\varepsilon_{1}^{2}\right)-\varepsilon^{2} K\left(\varepsilon_{1}^{2}\right)} .
$$

For

$$
F(t)=c B_{\infty} t, \quad F^{\prime}=B_{\infty} \frac{\sqrt{t^{2}-1}}{\sqrt{t^{2}-\varepsilon^{2}}}, \quad B_{0}=\frac{B_{\infty}}{\varepsilon} .
$$

and therefore

$$
F(\varepsilon)=\frac{a B_{\infty} \varepsilon}{E\left(\varepsilon^{2}\right)-\varepsilon_{1}^{2} K\left(\varepsilon^{2}\right)},
$$

$$
F(1)=\frac{a B_{\infty}}{E\left(\varepsilon^{2}\right)-\varepsilon_{1}^{2} K\left(\varepsilon^{2}\right)}
$$

Given a square box, with dimensions $\varepsilon^{2}=1 / 2, E(1 / 2)=1.3506, K(1 / 2)=1.8541$,

$$
F(\varepsilon)=F(\sqrt{1 / 2})=1.67 a B_{\infty}, \quad F(1)=2.361 a B_{\infty}, \quad B_{0}=1.41 B_{\infty}
$$

Propagation of Fast Perturbation in Dipole

We describe the boundary condition as

$$
H_{y}(h)=D_{2} \frac{\partial H_{x}}{\partial x} \cdot \text { with } \quad D_{2}=\mu D_{1}=\frac{\mu}{\sqrt{i \omega \sigma \mu_{0} \mu}}
$$

Ansatz:

$$
H_{y}(x, y)=\sum a_{n} \cos k_{n} y e^{-k_{n} x}
$$

where we look to satisfy the $H_{y}(-y)=\dot{H}_{y}(y)$ symmetry only. $\nabla^{2} H_{y}=0$ is obviously satisfied.

$$
\begin{gathered}
\frac{\partial H_{x}}{\partial y}=\frac{\partial H_{y}}{\partial x}=-\sum a_{n} k_{n} \cos k_{n} y e^{-k_{n} x} \\
H_{x}=-\sum a_{n} \sin k_{n} y e^{-k_{n} x}
\end{gathered}
$$

At the boundary we have

$$
\sum a_{n} \cos k_{n} h e^{-k_{n} x}=\sum a_{n} D_{2} k_{n} \sin k_{n} h e^{-k_{n} x}
$$

For

$$
D_{2} k_{n} \tan k_{n} \dot{h}=1 \quad \text { and } \quad \alpha_{n}=k_{n} h
$$

we therefore have

$$
\alpha_{n} \tan \alpha_{n}=\frac{h}{D_{2}}
$$

where

$$
\frac{1}{D_{2}}=\sqrt{\frac{i \omega \sigma \mu_{0}}{\mu}}
$$

November, 1987. Note 0489thry.

Case 1: "normal" case,

$$
\mu \rightarrow \infty \quad \alpha_{n}=n \pi
$$

Case 2: superconducting case, $\quad \sigma \rightarrow \infty \quad \alpha_{n}=(n+1 / 2) \pi$.
Case 3: using iron with $\omega=2 \pi 60 \mathrm{~Hz}$, and given that $D_{1}=\frac{1}{\sqrt{i \omega \sigma \mu_{0} \mu}}$,

$$
\left|D_{1}\right|=\frac{1}{\sqrt{2 \pi \cdot 60 \cdot 10^{1+3}}}=5.2 \cdot 10^{-4} \mathrm{~m}=.52 \mathrm{~mm}
$$

$$
\left|D_{2}\right|=\mu\left|D_{1}\right|=52 \mathrm{~cm}
$$

We introduce

$$
\alpha_{0} \tan \alpha_{0}=\frac{h}{D_{2}}=\varepsilon=h \sqrt{\frac{i \omega \sigma \mu_{0}}{\mu}}
$$

and for $|\varepsilon| \ll 1, \alpha_{0} \approx \sqrt{\varepsilon}$. Thus, for $\alpha_{n}=n \pi+\delta_{n}$,

$$
\left(n \pi+\delta_{n}\right) \tan \delta_{n}=\varepsilon \Longrightarrow \delta_{n} \approx \frac{\varepsilon}{n \pi}
$$

For a better notation of α_{0} we have that, for

$$
\alpha_{0}^{2}+\alpha_{0}^{4} / 3=\varepsilon \quad \Longrightarrow \quad \alpha_{0}^{2}=-3 / 2+\sqrt{9 / 4+3 \varepsilon}
$$

and it follows that

$$
\alpha_{0}^{2}=\frac{3 \varepsilon}{\frac{3}{2}+\sqrt{\frac{9}{4}+3 \varepsilon}}=\frac{2 \varepsilon}{1+\sqrt{1+\frac{4 \varepsilon}{3}}}
$$

$$
\alpha_{0}^{2}=\frac{2 \varepsilon}{2+\frac{2 \varepsilon}{3}}=\frac{\varepsilon}{1+\frac{\varepsilon}{3}} .
$$

To determine a_{n} from $H_{y}(y)$ at $x=0$ we try

$$
\int_{0}^{h} H_{y}(y) \cos k_{m} y d y=\sum a_{n} \int_{0}^{h} \cos k_{n} y \cos k_{m} y d y
$$

Since $2 \cos k_{n} y \cos k_{m} y=\cos \left(k_{n}+k_{m}\right) y+\cos \left(k_{n}-k_{m}\right) y$,

$$
\begin{aligned}
& \frac{2}{h} \int_{0}^{h} \cos k_{n} y \cos k_{m} y d y=\frac{\sin \left(\alpha_{n}+\alpha_{m}\right)}{\alpha_{n}+\alpha_{m}}+\frac{\sin \left(\alpha_{n}-\alpha_{m}\right)}{\alpha_{n}-\alpha_{m}} \\
&=\frac{\alpha_{n}\left(\sin \left(\alpha_{n}+\alpha_{m}\right)+\sin \left(\alpha_{n}-\alpha_{m}\right)\right)}{\alpha_{n}^{2}-\alpha_{m}^{2}} \\
&-\frac{\alpha_{m}\left(\sin \left(\alpha_{n}+\alpha_{m}\right)-\sin \left(\alpha_{n}-\alpha_{m}\right)\right)}{\alpha_{n}^{2}-\alpha_{m}^{2}} \\
&=\frac{2\left(\alpha_{n} \sin \alpha_{n} \cos \alpha_{m}-\alpha_{m} \cos \alpha_{n} \sin \alpha_{m}\right)}{\alpha_{n}^{2}-\alpha_{m}^{2}} \\
&=\frac{2 \cos \alpha_{n} \cos \alpha_{m}\left(\alpha_{n} \tan \alpha_{n}-\alpha_{m} \tan \alpha_{m}\right)}{\alpha_{n}^{2}-\alpha_{m}^{2}} \\
&=0 \text { for } n \neq m .
\end{aligned}
$$

Note: this orthogonality condition is not satisfied for $\int_{0}^{h} \sin k_{n} y \sin k_{m} y d y$. So, for instance, $V(0, y)$ would not work "directly". One would have to first calculate $H_{y}(0, y)$.

Description of the Properties of an Ellipse

For many problems, one needs integrals over the circumference of an ellipse, whose equation is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

One may describe the ellipse by the parametric representation

$$
z=a \cos \varphi+i b \sin \varphi
$$

and use φ as the integration variable.
However, in many cases, it is mathematically more convenient to use z on the circumference as the integrations variable. If one can represent all quantities of interest on the circumference as analytic functions of z, one can then use the Cauchy Theorem to execute the integration.
In using the parametric representation, one usually does something similar by introducing $e^{i \varphi}$ as the new integration variable. While this oftens works very well, it can lead to difficulties: for example, when $e^{k z}$ appears in the function to be integrated.

In general, problems are much simpler for circles, where $a=b$. When $b \neq a$ it often becomes so difficult to execute the integral that it is most convenient to expand in a quantity that is equivalent to $a-b$ and thus the formulas will be easily written and therefore the expansion will be similarly easy.
Thus,

$$
\begin{align*}
& z=a \cos \varphi+i b \sin \varphi=e^{i \varphi} \frac{a+b}{2}+e^{-i \varphi} \frac{a-b}{2} \tag{1}\\
& \quad 0=e^{i \varphi}-2 \frac{z}{a+b}+e^{-i \varphi} \frac{a-b}{a+b}=0 \\
& \quad=e^{2 i \varphi}(a+b)^{2}-2 z e^{i \varphi}(a+b)+\varepsilon \\
& \quad \varepsilon=a^{2}-b^{2} \text { and } W_{1}=\sqrt{1-\varepsilon / z^{2}} \tag{2}
\end{align*}
$$

$$
\begin{equation*}
e^{i \varphi}=\frac{z+\sqrt{z^{2}-\varepsilon}}{a+b}=z \frac{1+W_{1}}{a+b} \tag{3.1}
\end{equation*}
$$

January, 1988. Note 0476thry.

$$
\begin{align*}
e^{-i \varphi} & =2 \frac{z}{a-b}-e^{i \varphi} \frac{a+b}{a-b} \\
& =\frac{z-\sqrt{z^{2}-\varepsilon}}{a-b}=z \frac{1-W_{1}}{a-b} \tag{3.2}\\
& =\frac{(a+b) / z}{1+W_{1}} \tag{3.3}
\end{align*}
$$

For $\cos \varphi, \sin \varphi$:

$$
\begin{gather*}
\frac{1}{a+b}+\frac{1}{a-b}=\frac{2 a}{\varepsilon} \text { and } \frac{1}{a+b}-\frac{1}{a-b}=\frac{-2 b}{\varepsilon}, \\
\cos \varphi=\frac{a z-b \sqrt{z^{2}-\varepsilon}}{\varepsilon}=\frac{z^{2}+b^{2}}{a z+b \sqrt{z^{2}-\varepsilon}}=\frac{z^{2}+b^{2}}{z\left(a+b W_{1}\right)}, \tag{4.1}\\
i \sin \varphi=\frac{-b z+a \sqrt{z^{2}-\varepsilon}}{\varepsilon}=\frac{z^{2}-a^{2}}{b z+a \sqrt{z^{2}-\varepsilon}}=\frac{z^{2}-a^{2}}{z\left(b+a W_{1}\right)} . \tag{4.2}\\
d s=\sqrt{a^{2} \sin ^{2} \varphi+b^{2} \cos ^{2} \varphi d \varphi .} \tag{5}
\end{gather*}
$$

From (3.1) we have

$$
\begin{gather*}
i e^{i \varphi} d \varphi=\frac{\left(1+\left(z / \sqrt{z^{2}-\varepsilon}\right)\right) d z}{a+b}=\frac{e^{i \varphi} d z}{z W_{1}} \\
d \varphi=\frac{1}{i} \frac{d z}{z W_{1}} \tag{6.0}
\end{gather*}
$$

Thus,

$$
\begin{aligned}
\varepsilon^{2} G= & \varepsilon^{2}\left(a^{2} \sin ^{2} \varphi+b^{2} \cos ^{2} \varphi\right) \\
= & z^{2}\left(b^{2}\left(a-b W_{1}\right)^{2}-a^{2}\left(b-a W_{1}\right)^{2}\right) \\
= & z^{2}\left(W_{1}^{2}\left(b^{4}-a^{4}\right)+2 a b W_{1}\left(a^{2}-b^{2}\right)\right) \\
= & z^{2}\left(\frac{\varepsilon\left(a^{2}+b^{2}\right)}{z^{2}}-(a-b)^{2}-2 a b \frac{1-W_{1}^{2}}{1+W_{1}}\right) \\
& G=a^{2}+b^{2}-z^{2} \frac{\varepsilon}{(a+b)^{2}}-\frac{2 a b}{1+W_{1}}
\end{aligned}
$$

where

$$
\frac{2}{1+W_{1}}=1+\frac{1-W_{1}}{1+W_{1}}
$$

and thus

$$
\begin{align*}
G & =a^{2}+b^{2}-a b-z^{2} \frac{\varepsilon}{(a+b)^{2}}-a b \frac{1-W_{1}}{1+W_{1}} \\
& =(a-b)^{2}+a b-z^{2} \frac{\varepsilon}{(a+b)^{2}}-a b \frac{1-W_{1}}{1+W_{1}} \\
& =\frac{\varepsilon^{2}}{(a+b)^{2}}+a b-z^{2} \frac{\varepsilon}{(a+b)^{2}}-a b \frac{1-W_{1}}{1+W_{1}} \\
& =a b-\varepsilon \frac{z^{2}-\varepsilon}{(a+b)^{2}}-a b \frac{1-W_{1}}{1+W_{1}} . \tag{7.1}
\end{align*}
$$

To expand an expression like

$$
\frac{1-W_{1}}{1+W_{1}} \quad \text { with } \quad W_{1}=\sqrt{1-\varepsilon / z^{2}}
$$

in ε, it is often convenient to break it up into an even and odd part in ε :

$$
\begin{gathered}
2 F(\varepsilon)=F(\varepsilon)+F(-\varepsilon)+F(\varepsilon)-F(-\varepsilon) \text { with } W_{2}=\sqrt{1+\varepsilon / z^{2}}, \\
2 \frac{1-W_{1}}{1+W_{1}}=2 H=\frac{1-W_{1}}{1+W_{1}}+\frac{1-W_{2}}{1+W_{2}}+\frac{1-W_{1}}{1+W_{1}}-\frac{1-W_{2}}{1+W_{2}}, \\
2 H\left(1+W_{1} W_{2}+W_{1}+W_{2}\right)=\left(1-W_{1}\right)\left(1+W_{2}\right)+\left(1+W_{1}\right)\left(1-W_{2}\right) \\
\quad+\left(1-W_{1}\right)\left(1+W_{2}\right)-\left(1+W_{1}\right)\left(1-W_{2}\right) \\
=2\left(1-W_{1} W_{2}+W_{2}-W_{1}\right), \\
\cdot \\
\cdot \begin{array}{c}
\frac{1-W_{1}}{1+W_{1}}=\frac{1-\sqrt{1-\varepsilon^{2} / z^{4}}+\sqrt{1+\varepsilon / z^{2}}-\sqrt{1-\varepsilon / z^{2}}}{1+\sqrt{1-\varepsilon^{2} / z^{4}}+\sqrt{1+\varepsilon / z^{2}}+\sqrt{1-\varepsilon / z^{2}}}
\end{array}
\end{gathered}
$$

To second order in ε :

$$
\begin{equation*}
\frac{1-W_{1}}{1+W_{1}}=\frac{\varepsilon}{z^{2}} \frac{1+\varepsilon / 2 z^{2}}{4} \tag{7.2}
\end{equation*}
$$

A comment about the expansion in ε and subsequent integration: the expansion has to be valid and good for z on the ellipse. If, to carry out the integration, one later modifies the integration path (in particular, to a very small circle around $z=0$), this will not invalidate the original expansion.

Addendum. A different way to derive G.
For

$$
\begin{gathered}
W_{0}=\sqrt{z^{2}-\varepsilon} \\
\varepsilon=a^{2}-b^{2} \quad \text { and } s=a^{2}+b^{2} \\
s^{2}-\varepsilon^{2}=4 a^{2} b^{2} \quad \text { and } \quad 2 a b=\sqrt{s^{2}-\varepsilon^{2}}
\end{gathered}
$$

we have

$$
\begin{aligned}
\varepsilon^{2} G & =(b \varepsilon \cos \varphi+i a \varepsilon \sin \varphi)(b \varepsilon \cos \varphi-i a \varepsilon \sin \varphi) \\
& =W_{0}\left(2 a b z-W_{0}\left(a^{2}+b^{2}\right)\right) \\
& =s W_{0}\left(z \sqrt{1-\varepsilon^{2} / s^{2}}-W_{0}\right) \\
& =s W_{0} \frac{z^{2}\left(1-\varepsilon^{2} / s^{2}\right)-z^{2}+\varepsilon}{z \sqrt{1-\varepsilon^{2} / s^{2}}+W_{0}} \\
G=s W_{0} & \frac{1-\varepsilon z^{2} / s^{2}}{z \sqrt{1-\varepsilon^{2} / s^{2}}+W_{0}}=s W_{1} \frac{1-\varepsilon z^{2} / s^{2}}{\sqrt{1-\varepsilon^{2} / s^{2}}+W_{1}} .
\end{aligned}
$$

To first order in ε :

$$
G=s \frac{1}{2}\left(1-\frac{\varepsilon}{2 z^{2}}\right)\left(1-\frac{\varepsilon z^{2}}{s^{2}}\right)\left(1+\frac{\varepsilon}{4 z^{2}}\right)=\frac{s}{2}\left(1-\varepsilon\left(\frac{z^{2}}{s^{2}}+\frac{1}{4 z^{2}}\right)\right)
$$

for $s=2 a^{2}$ and $s^{2}=4 a^{4}$,

$$
\sqrt{G}=a\left(1-\frac{\varepsilon}{2}\left(\frac{z^{2}}{s^{2}}+\frac{1}{4 z^{2}}\right)\right)
$$

$$
\sqrt{G}=a\left(1-\frac{\varepsilon}{8 a^{2}}\left(\frac{z^{2}}{a^{2}}+\frac{a^{2}}{z^{2}}\right)\right)
$$

Characterization of Dipole Fringe Fields with Field Integrals

Figure 1.

Background and Introduction.

The quantity $\int B_{y}(x, y, z) d z$ was measured as a function of y for a fixed x, with integration region beginning in the homogenous field region inside the dipole magnet and reaching into the essentially field-free region outside. This resulted in the approximate plotted curve of Figure 1 below.

Figure 2.

The conclusion reached pointed to the coil being too close to or too far from the midplane. For didactic purposes this is a very interesting problem for two reasons.
(1) The coil position is only indirectly responsible. The fact that $\int B_{y} d z$ depends on y indicates that this is a 3 D problem: namely, $\int B_{y}(x, 0, z) d z$ will have a curvature of opposite polarity (i.e. effective field boundary is curved). This is due either to a curvature of the pole ends (when projected into the $x z$-plane) or to the finite width in the x-direction. If the latter is the cause, the problem is magnified by the absence (or incorrect design) of the field clamp and by a coil that is too far from the midplane.
(2) The characterization of the fringe field by measuring $\int B_{y}(x, 0, z) d z$ gives, in case of midplane symmetry, more information than $\int B_{y}(0, y, z) d z$ alone.

May, 1986. Note 0438thry.

Analysis.

We assume midplane symmetry. Violation of midplane symmetry should be detected and/or measured, preferably with null method.
In vacuum, full 3D, the following hold:

$$
\begin{gather*}
\frac{\partial B_{y}}{\partial x}-\frac{\partial B_{x}}{\partial y}=0 \tag{1.1}\\
\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}=0 \tag{1.2}
\end{gather*}
$$

We now investigate the properties of

$$
\begin{equation*}
\int_{z_{1}}^{z_{2}} B_{x}(x, y, z) d z / L=b_{x}(x, y) \text { and } \int_{z_{1}}^{z_{2}} B_{y}(x, y, z) d z / L=b_{y}(x, y) \tag{2a,b}
\end{equation*}
$$

where z_{1}, z_{2} are constants, i.e. they are not considered variables; L is a convenient length that is used only for normalization purposes. Integration is performed over (1.1). Integration and differentiation can be interchanged and thus

$$
\begin{equation*}
\frac{\partial b_{y}}{\partial x}-\frac{\partial b_{x}}{\partial y}=0 \tag{3.1}
\end{equation*}
$$

Integration is performed over (1.2) and

$$
\begin{equation*}
\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}=\left(B_{z}\left(x, y, z_{1}\right)-B_{z}\left(x, y, z_{2}\right)\right) / L \tag{3.2}
\end{equation*}
$$

If, independently of x and y, B_{z} at the two end-points is the same ${ }^{\dagger}$, we have

$$
\begin{equation*}
\frac{\partial b_{x}}{\partial x}+\frac{\partial b_{y}}{\partial y}=0 \tag{3.3}
\end{equation*}
$$

(3.1) and (3.2) mean that b_{x} and $-b_{y}$ satisfy the Cauchy-Riemann conditions of real and imaginary parts of the analytic function of $Z=x+i y$:

$$
\begin{equation*}
b_{x}-i b_{y}=b^{*}(Z) \tag{4}
\end{equation*}
$$

We use the Taylor series to represent $b^{*}(Z)$:

$$
b^{*}(Z)=-i \sum_{0}^{n} a_{n} Z^{n}
$$

where $n=$ multipole order -1 , i.e. $n=0 \Longrightarrow$ dipole, $n=1 \Longrightarrow$ quadrupole, etc. Because of midplane symmetry all a_{n} must be real. Notice that for $y=0$,

[^6]$b_{y}(x, 0)=\sum a_{n} x^{n}$, i.e. all harmonics contribute; while for $x=0$, only a_{n} with even n contributes to $b_{y}(0, y)$. If one measures for $x=0$ both b_{y} and b_{x}, then one gets information about all harmonics. There is an advantage to measuring both $b_{y}(0, y)$ and $b_{x}(0, y)$ since one gives only the odd harmonics and the other only the even, while they are all mixed when calculating $b_{y}(x, 0)$.
Looking at (5) it is obvious that if $b_{y}(0, y)$ is not constant, but depends on y, then $b_{y}(x, 0)$ must depend on x. That is, one is in fact dealing with 3D fields which must be due to curved (in projection on $x y$-plane) poles or poles of insufficient width in the x-direction, and failure to use a field clamp. It is also qualitatively clear that these 3D effects get more pronounced with increasing distance of the coils from the midplane.
Specifically, for a known value of $b_{y}(0, y)$, what is $b_{y}(x, 0)$?
\[

$$
\begin{gather*}
b_{y}(0, y)=\sum_{0}^{m} a_{2 m} y^{2 m}(-1)^{m} \tag{6.1}\\
b_{y}(x, 0)=\sum_{0}^{m} a_{2 m} x^{2 m}+\sum_{0}^{m} a_{2 m+1} \tag{6.2}
\end{gather*}
$$
\]

where in (6.2) $a_{2 m+1}$ is not obtainable from $b_{y}(0, y)$, but can be obtained from $b_{x}(0, y)$. If one measures $b_{x}(0, y)$, one gets

$$
\begin{equation*}
b_{x}(0, y)=\sum_{0}^{m} a_{2 m+1} y^{2 m+1}(-1)^{m} \tag{6.3}
\end{equation*}
$$

For simple analysis, one should plot $b_{y}(0, y)$ vs y^{2}, and $b_{x}(0, y) / y$ vs y^{2}. One has to be careful to make the measurements in such a way that they really mean something. The flux loop and integrator method is perhaps best because it can practically always be done in such a way that one makes a null measurment.

Penetration of Solenoidal Field through Conducting Shell

Preliminaries: Solenoid, shield infinitely long. Thin shell, circular cross-section: treat eddy currents in it in plane geometry with proper boundary values. Only one shell: matrix formulation not needed.

Figure 1.

At $z=0$,

$$
H_{y}=H_{0}(p)=\text { given solenoid current. }
$$

At $z=D$,

$$
E_{x}=\frac{\mu_{0} p H_{1} \pi r_{1}^{2}}{2 \pi r_{1}}=\frac{r_{1}}{2} \mu_{0} p H_{1}
$$

In shell,

$$
\begin{gathered}
\mathbf{H}=\mathbf{e}_{y} H, \quad \mathbf{E}=\mathbf{e}_{x} E, \quad \text { and } \quad \sigma=\frac{\partial}{\partial z} \\
\nabla \times \mathbf{H}=\sigma \mathbf{E} \quad \Longrightarrow \quad-H^{\prime}=\sigma E \\
\nabla \times \mathbf{E}=-\mu_{0} \mu p \mathbf{H} \quad \Longrightarrow \quad E^{\prime}=-\mu_{0} \mu p H
\end{gathered}
$$

For $\mu_{0} \mu \sigma p=k^{2}$,

$$
\begin{gathered}
H^{\prime \prime}=-\sigma E^{\prime}=\mu_{0} \mu \sigma p H=k^{2} H \\
H=H_{0} \cosh k z+b \sinh k z
\end{gathered}
$$

and for $\gamma=k D$,

$$
H_{1}=H_{0} \cosh \gamma+b \sinh \gamma, \quad \text { and thus } \quad b=\frac{H_{1}-H_{0} \cosh \gamma}{\sinh \gamma}
$$

May, 1986. Note 0437thry.

$$
\begin{gathered}
E_{1}=\frac{r_{1}}{2} \mu_{0} p H_{1}=-\frac{H_{1}^{\prime}}{\sigma}=-\frac{k}{\sigma}\left(H_{0} \sinh \gamma+b \cosh \gamma\right), \\
H_{1}=\frac{\mu_{0} \sigma p r_{1}}{2 k}=-\left(H_{0} \sinh \gamma+\frac{\cosh \gamma\left(H_{1}-H_{0} \cosh \gamma\right)}{\sinh \gamma}\right),
\end{gathered}
$$

where, for

$$
\frac{\mu_{0} \sigma p r_{1}}{2 k}=\frac{k^{2} r_{1} / \mu}{2 k}=\frac{r_{1}}{2} \frac{k}{\mu}=\gamma \varepsilon, \quad \text { and thus } \quad \varepsilon=\frac{r_{1}}{2 \mu D},
$$

where diffusion occurs for $\mu \gg 1$. Thus, for

$$
\begin{gathered}
H_{1}(\varepsilon \gamma \sinh \gamma+\cosh \gamma)=H_{0}, \\
H_{1}(p)=\frac{H_{0}}{\cosh \gamma+\varepsilon \gamma \sinh \gamma} .
\end{gathered}
$$

The zeroes of $\cosh \gamma+\varepsilon \gamma \sinh \gamma$ are given, with

$$
\gamma_{n}=D \sqrt{\mu_{0} \mu \sigma p_{n}}=i \alpha_{n}
$$

And

$$
\begin{gathered}
\cosh \gamma+\varepsilon \gamma \sinh \gamma=\cos \alpha_{n}-\varepsilon \alpha_{n} \sin \alpha_{n}=0 \\
\frac{1}{\varepsilon}=\alpha_{n} \tan \alpha_{n} \\
p_{n}=\frac{-\alpha_{n}^{2}}{\mu_{0} \mu \sigma D^{2}}
\end{gathered}
$$

One may expect difficulties for some calculations because $\gamma=D \sqrt{\mu_{0} \mu \sigma p}$, but this is not so, for

$$
\begin{aligned}
\cosh \gamma+\varepsilon \gamma \sinh \gamma & =1+\gamma^{2}\left(\frac{1}{2}+\varepsilon\right)+\gamma^{4}\left(\frac{1}{4!}+\frac{\varepsilon}{3!}\right)+\gamma^{6}\left(\frac{1}{6!}+\frac{\varepsilon}{5!}\right)+\cdots \\
& =1+\sum_{n=1}^{\infty} \gamma^{2 n}\left(\frac{1}{(2 n)!}+\frac{\varepsilon}{(2 n-1)!}\right)
\end{aligned}
$$

and $\cosh \gamma+\varepsilon \gamma \sinh \gamma$ is a simple function of γ^{2}, not a complicated function of γ. For

$$
\varepsilon \gg 1 \Rightarrow \alpha_{0}^{2} \approx \frac{1}{\varepsilon}=\mu_{0} \mu \sigma p_{0} D^{2}=\frac{2 \mu D}{r_{1}} \Longrightarrow \mu_{0} \sigma D r_{1} p_{0}=2
$$

with σD implying non-diffusion.

The roots, in quadrants 1 and 3 , are given by,

$$
\tan \alpha_{n}=\frac{1}{\alpha_{n} \varepsilon}
$$

Where, for $\alpha_{n} \varepsilon \gg 1, \alpha_{n}=n \pi+\sigma_{n}$, and thus

$$
\sigma=\frac{1}{\varepsilon\left(n \pi+\sigma_{n}\right)} \approx \frac{1}{\varepsilon n \pi}
$$

The residue contribution from $\cosh \gamma+\varepsilon \gamma \sinh \gamma$ is given by

$$
\frac{1}{\cosh \gamma+\varepsilon \gamma \sinh \gamma} \quad \Longrightarrow \quad R=\frac{1}{\frac{d \gamma}{d p}(\sinh \gamma+\varepsilon \sinh \gamma+\varepsilon \gamma \cosh \gamma)}
$$

where $d \gamma / d p=\gamma / 2 p$ and $\varepsilon \gamma=-\cosh \gamma / \sinh \gamma$. Thus,

$$
R=\frac{2 p}{\gamma} \frac{\sinh \gamma}{\varepsilon \sinh ^{2} \gamma-1}=\frac{2 p}{\gamma^{2}} \frac{\gamma \sinh \gamma}{\varepsilon \sinh ^{2} \gamma-1}=\frac{2 p}{\gamma^{2}} \frac{\alpha_{n} \sin \alpha_{n}}{\varepsilon \sin ^{2} \alpha_{n}+1}
$$

For $\cot \alpha_{n}=\alpha_{n} \varepsilon$, and $\sin \alpha_{n}=1 / \sqrt{1+\cot ^{2} \alpha^{2}}=1 / \sqrt{1+\alpha_{n}^{2} \varepsilon^{2}}$,

$$
R_{n}=\frac{2}{\mu_{0} \mu D^{2} \sigma} \frac{\alpha_{n}}{\sqrt{1+\alpha_{n}^{2} \varepsilon^{2}}\left(1+\frac{\varepsilon}{1+\alpha_{n}^{2} \varepsilon^{2}}\right)}=\frac{2}{\mu_{0} \mu D^{2} \sigma} \frac{\alpha_{n} \sqrt{1+\alpha_{n}^{2} \varepsilon^{2}}}{1+\alpha_{n}^{2} \varepsilon^{2}+\varepsilon}
$$

For $\alpha_{0}^{2}=1 / \varepsilon$,

$$
R_{0}=\frac{2}{\mu_{0} \mu \sigma D^{2}} \frac{1}{\sqrt{\varepsilon}} \frac{\sqrt{1+\varepsilon}}{1+2 \varepsilon}=\frac{1}{\mu_{0} \mu \sigma D^{2} \varepsilon} \frac{\sqrt{1+1 / \varepsilon}}{1+1 / 2 \varepsilon}
$$

Rogowski Dipole

Figure 1.

$$
\begin{gathered}
B=B_{0} \cos \alpha \cdot \frac{e^{i \alpha}}{i} \text { and } B^{*}=i B_{0} \cos \alpha \cdot e^{-i \alpha}, \\
\frac{i B_{0}}{B^{*}}=G=\frac{e^{i \alpha}}{\cos \alpha}=1+i \tan \alpha \cdot \text { with } G=\frac{1}{F^{\prime}}=\frac{\dot{z}}{\dot{F}} .
\end{gathered}
$$

On pole: $\Re G=0$. On $0,1, \infty: \Im G=0$.

Figures $2(\mathrm{a}, \mathrm{b})$.

$$
\begin{gathered}
\dot{G}=\frac{a / 2}{\sqrt{t}} \text { and } G=1+a \sqrt{t} \\
\dot{F}=\frac{b / 2}{\sqrt{t} \sqrt{t-1}} \text { and } F=b \ln (\sqrt{t}+\sqrt{t-1}) .
\end{gathered}
$$

Thus

$$
\dot{z}=\dot{F} G=\frac{b}{2}\left(\frac{1}{\sqrt{t} \sqrt{t-1}}+\frac{a}{\sqrt{t-1}}\right) \text { and } z=b(\ln (\sqrt{t}+\sqrt{t-1})+a \sqrt{t-1}) .
$$

February, 1981. Note 0397thry.

Since $i h=b(\ln i+i a)=i b(\pi / 2+a)$, we let

$$
\pi / 2+a=C \text { and } h=b C .
$$

On pole: $t=-\tau<0$,

$$
x+i y=b(i \pi / 2+\ln (\sqrt{\tau}+\sqrt{\tau+1})+i a \sqrt{\tau+1})
$$

with

$$
\tau=\sinh ^{2} \alpha, \quad x=b \alpha
$$

$$
b\left(\frac{\pi}{2}+a \cosh \alpha\right)=\frac{h}{C}\left(C+a\left(\cosh \frac{x}{b}-1\right)\right)=y=h\left(1+\frac{a}{c}\left(\cosh C \frac{x}{h}-1\right)\right)
$$

and

$$
G(1)=1+a=\frac{B(z=i \hbar)}{B(z=0)}
$$

Rogowski Quadrupole: Formulation of Problem

$$
\mu=\infty, \quad \text { and } \quad B^{*}=+i B_{0}
$$

$$
B=B_{0} \cos \alpha \cdot \frac{e^{i \alpha}}{i}, \quad \text { and } \quad B^{*}=i B_{0} \cos \alpha \cdot e^{-i \alpha}
$$

Thus,

$$
\frac{i B_{0}}{B^{*}}=G=\frac{e^{i \alpha}}{\cos \alpha}=1+i \tan \alpha
$$

on the pole, with $\Re G=$ constant $=1$, and

$$
|G|=\frac{B_{0}}{|B|} .
$$

On the 45° line,

$$
B \approx e^{i \pi / 4} / i, \quad B^{*} \approx i e^{i \pi / 4}, \quad \text { and } \quad G \approx \epsilon^{i \pi / 4}
$$

February, 1981. Note 0326thry.

Observe Figures 2(a,b,c):

Figures 2(a,b,c).

$$
\frac{d G}{d t}=b \frac{t-a}{t^{5 / 4} \sqrt{t+1}} e^{i \pi / 4}
$$

$$
B^{*}=i B_{0} \frac{d F}{d z}, \quad \frac{d z}{d F}=\frac{\dot{z}}{\dot{F}}=G \quad \text { and } \quad \dot{z}=G(t) \cdot \dot{F} .
$$

In the F-plane, for $-1 \leq t \leq 0$:

$$
\pi \dot{F}=\frac{c:}{\sqrt{t} \sqrt{t+1}}
$$

The mathematical difficulty arises in the integration of \dot{G}. For

$$
t=w^{4}, \quad d t=4 w^{3} d w, \quad \frac{d t}{t^{5 / 4}}=\frac{4 w^{3} d w}{w^{5}}=\frac{4 d w}{w^{2}}
$$

we solve the elliptic integral

$$
G=b \int \frac{w^{4}-a}{w^{2} \sqrt{1+w^{4}}} d w
$$

The integration of $\dot{z}=(\dot{G} F)-\dot{G} F$ leads to

$$
z=G F-b e^{i \pi / 4} \int \frac{t-1}{t^{5 / 4} \sqrt{t+1}} F d t
$$

and therefore

$$
F=2 C \ln (\sqrt{t}+\sqrt{t+1})
$$

Eddy Currents for Fast Permanent Magnet Magnetization

Sometimes permanent magnets are magnetized by "hitting" them for a short time with high H. It is of interest to know how the magnetization front propagates through the material. Since this is a highly non-linear problem, a strongly simplified model is used in this document, but one which has all the essential features of the real process.

At the left edge of the material, assume a step function excitation starting at $t=0$, with amplitude H_{00}. Our model is a 1-dimensional block of material with the left edge at $x=0$, and

$$
\frac{\partial}{\partial y}=\frac{\partial}{\partial z}=0, \quad \mathbf{H}=\mathrm{e}_{y} H, \quad \mathbf{E}=\mathrm{e}_{z} E, \quad \text { and } \quad \mathbf{j}=\sigma \mathbf{E}
$$

For the times of interest, $H \geq 0$ everywhere. We use a strongly simplified $B(H)$ curve.

Figure 1.

Figure 1 shows that in the beginning, the material "sees" no H and $B=0$. As soon as it "sees" $H>0$, it becomes magnetized according to the above curve.

To reach an initial understanding of the problem, only the propagation in a medium that is, at least at first, unlimited to the right is treated.

$$
\begin{gathered}
\nabla \times \mathbf{H}=\mathbf{j} \quad \Longrightarrow \quad H^{\prime}=\sigma E, \quad \text { with } H^{\prime}=\frac{\partial}{\partial x} \\
\nabla \times \mathbf{E}=-\dot{\mathbf{B}} \quad \Longrightarrow \quad+E^{\prime}=+\dot{B}
\end{gathered}
$$

August, 1977. Note 0264thry.

Figure 2.
The "location" of the front is designated by $x_{0}(t)$. We integrate $E^{\prime}=\dot{B}$ over x across $x_{0}(t)$:

$$
E\left(x_{0}+\varepsilon\right)-E\left(x_{0}-\varepsilon\right)=-E\left(x_{0}\right)=\int \dot{B} d x=B_{0} \dot{x}_{0}
$$

giving the equation of the front for both Case I and Case II below.

Cāse I: $B(H)=B_{0}$.
For $x<x_{0}$:

$$
\begin{gathered}
E^{\prime}=0, \quad \text { and } \quad E=-B_{0} \dot{x}_{0}=\varrho H^{\prime} . \\
H(x)=H_{00}-\sigma B_{0} x \dot{x}_{0},
\end{gathered}
$$

meaning that for this $B(H)$ model, the $H(x)$ curves of Figure 2 are straight lines.

$$
H\left(x_{0}\right)=0=H_{00}-\sigma B_{0} x_{0} \dot{x}_{0}
$$

Integrating over t gives $H_{00} t-\sigma B_{0} x_{0}^{2} / 2$, giving the following result for the propagation of the front:

$$
\frac{2 t H_{00}}{B_{0} \sigma}=\frac{B_{00}}{B_{0}} \cdot \frac{2 t}{\mu_{0} \sigma}=x_{0}^{2}=r \frac{2 t}{\mu_{0} \sigma}, \quad \text { with } \quad r=\frac{\mu_{0} H_{00}}{B_{0}}=\frac{B_{00}}{B_{0}} .
$$

Case II: $B=B_{0}+\mu_{0} H$.
For $x<x_{0}: \quad H^{\prime}=\sigma E, \quad$ and $\quad E^{\prime}=\mu_{0} \dot{H}^{\dagger}$.
For $x=x_{0_{+}}: \quad H=0$.
\dagger The right side of this last equation is now non-zero in contrast to Case I where $\dot{B}=0$ in the magnetized part of the material; i.e. $\dot{B} \neq 0$ only at the propagating front.

For $x=x_{0_{-}}: \quad B=B_{0}, \quad E=-B_{0} \dot{x}_{0}=\varrho H^{\prime}$.
For $x=0: \quad H=H_{00}$.
The differential equation is $H^{\prime \prime}=\mu_{0} \sigma \dot{H}$.
We introduce

$$
\sqrt{\frac{t}{\mu_{0} \sigma}}=\tau \text { and thus } t=\tau^{2} \mu_{0} \sigma
$$

and get

$$
\dot{H}=\frac{\partial H}{\partial \tau} \cdot \frac{d \tau}{d t}=\frac{\partial H}{\partial \tau} \cdot \frac{1}{2 \tau \mu_{0} \sigma}, \quad \text { and } \frac{\partial^{2} H}{\partial x^{2}}=\frac{\partial H}{\partial \tau} \cdot \frac{1}{2 \tau} .
$$

We use the dimensional analysis argument that x and τ are the only dimensional quantities entering the problem. This means that H must be a function of x / τ. We let $u=x / 2 \tau$. For $H=F(u)$:

$$
\begin{gathered}
\frac{\partial^{2} H}{\partial x^{2}}=\frac{F^{\prime \prime}}{4 \tau^{2}}=\frac{1}{2 \tau} \cdot F^{\prime} \cdot \frac{-u}{\tau}=\frac{-F^{\prime} u}{2 \tau^{2}}, \quad \text { and thus } F^{\prime \prime}+2 u F^{\prime}=0, \\
\ln \frac{F^{\prime}}{F_{0}^{\prime}}+u^{2}=0, \quad \text { and } \quad F^{\prime}=-a e^{-u^{2}},
\end{gathered}
$$

with $F_{0}^{\prime}=-a$ because F^{\prime} has to be less than 0 .
The boundary conditions, with fixed $\tau>0$, are

$$
F=H(u)=H_{00}-a \int_{0}^{u} e^{-u^{2}} d u
$$

$u_{0}=x_{0} / 2 \tau$ and x_{0} refer to the location of front.

$$
H\left(u_{0}\right)=H_{00}-a \int_{0}^{u_{0}} e^{-u^{2}} d u=0, \quad \text { with } \quad a=\frac{H_{00}}{\int_{0}^{u_{0}} e^{-u^{2}} d u}
$$

Just as in Case I, the location x_{0} of the front is proportional to \sqrt{t}. Thus,

$$
\begin{aligned}
& \frac{\partial H\left(u_{0}\right)}{\partial x}=\frac{-a e^{-u_{0}^{2}}}{2 \tau}=\sigma E=-B_{0} \sigma \dot{x}_{0}=-B_{0} \sigma \cdot \frac{d x_{0}}{d \tau} \cdot \frac{1}{2 \tau \mu_{0} \sigma} \\
& a=e^{u_{0}^{2}} \cdot \frac{B_{0}}{\mu_{0}} \cdot \frac{d x_{0}}{d \tau} \text { and } \frac{B_{00}}{B_{0}}=r=\frac{d x_{0}}{d \tau} \cdot e^{-u_{0}^{2}} \cdot \int_{0}^{u_{0}} e^{-u^{2}} d u .
\end{aligned}
$$

Since $u_{0}=x_{0} / 2 \tau$, this is a first order differential equation that looks difficult at first.

However, it is obvious that from dimensional considerations the solution must be

$$
x_{0}=2 \tau g(r)
$$

where the factor of 2 is for neatness. That is, $u_{0}=g(r)$, and then $g(r)$ is determined by

$$
r=2 g e^{g^{2}} \int_{0}^{g} e^{-u^{2}} d u
$$

For small g :

$$
r=2 g^{2} \quad \Longrightarrow \quad g=\sqrt{r / 2}, \quad \text { and } \quad x_{0}=\tau \sqrt{2 r}=\sqrt{r \cdot \frac{2 t}{\mu_{0} \sigma}}
$$

where x_{0} has the same solution as the case of $B=B_{0}$, as it has to be.
Evaluation with a TI59 gives the following results:

g	0.01	0.1	0.2	0.3	0.4	0.6	0.8	1.0
r	2.0×10^{-4}	2.01×10^{-2}	8.22×10^{-2}	.191	.356	.920	2.00	4.06

g	1.1	1.2	1.3	1.4	1.5	1.6	1.8	2.0
r	5.76	8.17	11.7	16.8	24.4	35.8	80.6	193

If r is of order 4 , then

$$
\ddot{g} \approx 1 \Longrightarrow x_{0}=2 \tau=2 \sqrt{\frac{t}{\mu_{0} \sigma}} .
$$

Case III: H after complete penetration of the slab.
When the front has reached $x_{0}=x_{1}$, where $2 x_{1}$ is the slab thickness, the boundary conditions change. In contrast to our earlier analysis, a given length x_{1} enters the problem implicitly, and thus the dimensional analysis argument that H must be equal to $F(x / 2 \tau)$ is no longer valid. If time is counted anew, with $t=0$ when $x_{0}=x_{1}$, we are dealing with a linear system with boundary condition

$$
H\left(x_{1}+\Delta x\right)=H\left(x_{1}-\Delta x\right) \quad \text { for } \quad t \geq 0
$$

with known and given $H(x)$ for $t=0$ and $0 \leq x \leq 2 x$.

If $H(x)-H_{00}$ is defined to be an odd function of x with respect to $x=0$, and an even function with respect to $x= \pm x_{1}$, and this function is expanded into a Fourier series, then the period is $4 x_{1}$, and

$$
H(x)-H_{00}=\sum a_{n}(t) \sin \left(n \frac{2 \pi}{4 x_{1}} x\right)
$$

To satisfy these symmetry conditions n must be odd, and we get

$$
H(x)=H_{00}+\sum a_{2 m+1}(t) \sin \left((2 m+1) \frac{\pi x}{2 x_{1}}\right)
$$

and $a_{2 m+1}(0)$ from known $H(x)$ at $t=0$, the time of complete penetration. Recalling the differential equation, $H^{\prime \prime}=\mu_{0} \sigma \dot{H}$, with $n=2 m+1$ we have

$$
\begin{gathered}
-a_{n}\left(\frac{n \pi}{2 x_{1}}\right)^{2}=\mu_{0} \sigma \dot{a}_{n} \\
a_{n}(t)=a_{n}(0) \cdot e^{-\left(\frac{n \pi}{2 x_{1}}\right)^{2} \frac{t}{\mu_{0} \sigma}}, \\
a_{2 m+1}(t)=a_{2 m+1}(0) \cdot e^{-(2 m+1)^{2} \frac{\pi^{2} t}{4 \pi_{1}^{2} \mu_{0} \sigma}}
\end{gathered}
$$

At $t=0:$

$$
\begin{gathered}
H(x)=H_{00}-H_{00} \frac{\int_{0}^{u} e^{-u^{2}} d u}{\int_{0}^{u_{0}} e^{-u^{2}} d u}=H_{00}\left(1-\frac{\int_{0}^{g \frac{x}{x_{1}}} e^{-u^{2}} d u}{\int_{0}^{g} e^{-u^{2}} d u}\right), \\
-H_{00} \frac{\int_{0}^{g \frac{x}{x_{1}}} e^{-u^{2}} d u}{\int_{0}^{g} e^{-u^{2}} d u}=\sum a_{2 m+1}(0) \sin \left((2 m+1) \frac{\pi x}{2 x_{1}}\right) .
\end{gathered}
$$

To determine $a_{2 m+1}(0)$ we let

$$
a_{n}(0) \cdot \int_{0}^{1} \sin ^{2}\left(n \frac{\pi}{2} v\right) d v=-\frac{H_{00}}{\int_{0}^{g} e^{-u^{2}} d u} \cdot \int_{0}^{1} \underbrace{\left(\int_{0}^{g v} e^{-u^{2}} d u\right)}_{\zeta} \underbrace{\sin \left(n \frac{\pi}{2} v\right) d v}_{d \eta}
$$

with

$$
\int_{0}^{1} \sin ^{2}\left(n \frac{\pi}{2} v\right) d v=\frac{1}{2} \int_{0}^{1}(1-\cos (n \pi v)) d v=\frac{1}{2}
$$

$$
\begin{gathered}
\zeta=\int_{0}^{g v} e^{-u^{2}} d u, \quad \text { and } \quad d \zeta=g e^{-g^{2} v^{2}}, \\
d \eta=\sin \left(n \frac{\pi}{2} v\right) d v, \text { and } \eta=-\frac{\cos \left(n \frac{\pi}{2} v\right)}{n \frac{\pi}{2} v}, \\
\left(\int_{0}^{1} \zeta d \eta\right)_{n=\mathrm{odd}}=\frac{2 g}{n \pi} \int_{0}^{1} e^{-g^{2} v^{2}} \cos \left(n \frac{\pi}{2} v\right) d v .
\end{gathered}
$$

Thus,

$$
a_{2 m+1}=-H_{00} \cdot \frac{4}{(2 m+1) \pi} \cdot \frac{\int_{0}^{1} e^{-g^{2} v^{2}} \cos \left((2 m+1) \frac{\pi}{2} v\right) d v}{\frac{1}{g} \int_{0}^{g} e^{-u^{2}} d u} .
$$

One would let

$$
\frac{1}{g} \int_{0}^{g} e^{-u^{2}} d u=\int_{0}^{1} e^{-g^{2} v^{2}} d v
$$

if one wants to evaluate it with the integral of the numerator. Otherwise, one may return to the definition of g and use

$$
\frac{1}{g} \int_{0}^{g} e^{-u^{2}} d u=\frac{r e^{-g^{2}}}{2 g}
$$

The total time required to get good magnetization is determined as follows:
(1) Time to reach $x=x_{1}: \quad t_{1}=\mu_{0} \sigma\left(x_{1}^{2} / 4\right)$.
(2) Time for a_{1} to decay by a factor of e : $\quad t_{2}=\mu_{0} \sigma x_{1}^{2}\left(4 / \pi^{2}\right)$. Thus,

$$
\mu_{0} \sigma x_{1}^{2}\left(\frac{1}{4}+\frac{4}{\pi^{2}}\right)=t_{\text {total }} \approx .65 \mu_{0} \sigma x_{1}^{2}
$$

(3) If time for a_{1} to decay by e^{π} is used, $t_{2}=\mu_{0} \sigma x_{1}^{2}(4 / \pi)$, and

$$
\mu_{0} \sigma x_{1}^{2}(0.25+1.27)=t_{\text {total }} \approx 1.5 \mu_{0} \sigma x_{1}^{2} .
$$

Change of Determinant for Small Changes of One Element of the

 Matrix that Describes a System that Is Least Squares Optimized with Restraints and Has Least Squares Limitations on ParametersWe let

$$
A=\left(\begin{array}{cc}
M^{t} W M+V & N^{t} \\
N & 0
\end{array}\right)
$$

and consider only those terms linear in $\Delta M_{n m}$ or $\Delta N_{n m}$.
1)

$$
\Delta M_{i k}=\Delta M_{n m} \delta(i-n) \delta(k-m) \quad \text { with } \quad \Delta M_{n m}=a
$$

Here and below we sum over indices appearing more than once.

$$
\begin{aligned}
\left(M^{t} W M\right)_{i k}= & M_{l i} W_{l l} M_{l k} \\
& \rightarrow\left(M_{l i}+a \delta(l-n) \delta(i-m)\right) W_{l l}\left(M_{l k}+a \delta(l-n) \delta(k-m)\right) \\
= & M_{l i} W_{l l} M_{l k}+a W_{n n}\left(M_{n i} \delta(k-m)+M_{n k} \delta(i-m) .\right)+a^{2}
\end{aligned}
$$

To get $\|A+\Delta A\|$ to first order in a, one must differentiate $\|A+\Delta A\|$ with respect to a and then evaluate, knowing that A^{-1} is Hermitian.

$$
\|A+\Delta A\|=\|A\|+a W_{n n} \cdot 2 M_{n k} K_{m k}
$$

where K is the co-factor, and summation over k is done only over values consistent with the number of rows in M.

$$
\frac{\|A+\Delta A\|}{\|A\|}=1+\frac{\Delta M_{n m}}{M_{n m}} \cdot 2 W_{n n} M_{n m} \cdot \sum_{k} M_{n k} A_{k m}^{-1}
$$

where $W_{n n} \sum_{k} M_{n k} A_{k m}^{-1}=\left(A^{-1} M^{t} W\right)_{m n}$.
2)

$$
\begin{gathered}
\Delta N_{i k}=\Delta N_{n m} \delta(i-n) \delta(k-m) \\
\|A+\Delta A\|=\|A\|+2 \Delta N_{n m} K_{n m} \\
\frac{\|A+\Delta A\|}{\|A\|}=1+\frac{\Delta N_{n m}}{N_{n m}} \cdot 2 V_{n m} A_{m n}^{-1}
\end{gathered}
$$

November, 1968. Note 0072thry.

Sensitivity of Solution of Linear Equations to Change of an Individual Matrix Element

We let

$$
\begin{gathered}
M P=S, \quad M^{-1}=N \quad \text { and } P=N S \\
(M+\Delta M)(P+\Delta P)=M(I+A)(P+\Delta P)=S \quad \text { where } A=N \Delta M, \\
P+\Delta P=(I+A)^{-1} P \quad \text { and } \Delta P=\left((I+A)^{-1}-I\right) P .
\end{gathered}
$$

Further

$$
\begin{gathered}
\Delta M_{n m}=a \delta\left(n-n_{0}\right) \delta\left(m-m_{0}\right) \quad \text { where } \quad a=\Delta M_{n_{0} m_{0}}, \\
A_{k m}=N_{k n} \Delta M_{n m}=a N_{k n} \delta\left(n-n_{0}\right) \delta\left(m-m_{0}\right)=a N_{k n_{0}} \delta\left(m-m_{0}\right), \\
A_{k m}^{2}=A_{k i} A_{i m}=a^{2} N_{k n_{0}} \delta\left(i-m_{0}\right) N_{i n_{0}} \delta\left(m-m_{0}\right),
\end{gathered}
$$

where $A^{2}=a N_{m_{0} n_{0}} A$, and we let $\alpha=a N_{m_{0} n_{0}}$.

$$
(I+A)^{-1}=I+\gamma A \quad \text { and } \quad(I+A)(I+\gamma A)=I+A(I+\gamma+\gamma \alpha)=I,
$$

thus,

$$
\gamma=-\frac{1}{1+\Delta M_{n_{0} m_{0}} N_{m_{0} n_{0}}} \text { with } \Delta M_{n_{0} m_{0}} N_{m_{0} n_{0}} \neq-1
$$

$$
\begin{gathered}
\Delta P=\gamma A P \\
\Delta P_{k}=\gamma A_{k m} P_{m}=\gamma a N_{k n_{0}} \delta\left(m-m_{0}\right) P_{m}, \\
\Delta P_{k}=-\frac{\Delta M_{n_{0} m_{0}} P_{m_{0}}}{1+\Delta M_{n_{0} m_{0}} N_{m_{0} n_{0}}} \cdot N_{k n_{0}}
\end{gathered}
$$

That the matrix M becomes exactly singular for $\Delta M_{n_{0} m_{0}}=-1 / N_{m_{0} n_{0}}$ is easily shown with Cramer's Rule. Let $K_{n m}$ be the co-factor to the $n m$ element, and $\|M+\Delta M\|=$ $\|M\|+\Delta M_{n_{0} m_{0}} K_{m_{0} n_{0}}:$

$$
\Delta M_{n_{0} m_{0}} \cdot \frac{K_{n_{0} m_{0}}}{\|M\|}=\Delta M_{n_{0} m_{0}} N_{m_{0} n_{0}}=-1
$$

which is the necessary condition for a singular matrix.

November, 1968. Note 0071thry:

This condition can easily be used to judge whether a matrix is "close" to being singular. One would test

$$
\frac{M_{n_{0} m_{0}}}{\Delta M_{n_{0} m_{0}}}=-M_{n_{0} m_{0}} N_{m_{0} n_{0}}
$$

and when the result is large compared to the inverse of the relative error of $M_{n_{0} m_{0}}$, one is likely to be in trouble. This is of particular importance when the matrix elements are experimentally determined.

Fourier Analysis of Numerical Data

We assume that the spacing between data points is uniform, $2 \pi / N$. Representing $F(\varphi)$ by a Fourier series with unknown coefficients and making the coefficients such that

$$
\sum_{\varphi_{n}}\left(F\left(\varphi_{n}\right)-\sum_{m} a_{m} e^{i m \varphi_{n}}\right)^{2}=\min
$$

gives the same coefficients that one obtains by evaluating the integral

$$
\int F(\varphi) e^{-i m \varphi} d \varphi
$$

with trapezoidal rule applied to the whole integrand:

$$
a_{m}^{*}=\frac{1}{2 \pi} \int F(\varphi) e^{i m \varphi} d \varphi \Longrightarrow \frac{\Delta \varphi}{2 \pi} \sum F\left(\varphi_{n}\right) e^{i m \varphi_{n}}=\frac{1}{N} \sum F\left(\varphi_{n}\right) e^{i m \varphi_{n}}
$$

A better way to integrate would be to assume that not the whole integrand changes linearly over an individual interval, but that only $F(\varphi)$ changes linearly over the interval.
For one interval,

$$
\int F(\varphi) e^{i(m \varphi+\alpha)} d \varphi=\int(a+b \varphi) e^{i(m \varphi+\alpha)} d \varphi=(a+b \varphi) \frac{e^{i(m \varphi+\alpha)}}{i m}+\frac{b e^{i(m \varphi+\alpha)}}{m^{2}}
$$

When summing over the whole range of φ, the first term contributions cancel. With $b=\left(F_{2}-F_{1}\right) / \Delta \varphi$, we get

$$
\begin{aligned}
I & =\int_{\text {interval }} F(\varphi) e^{i(m \varphi+\alpha)} d \varphi \\
& =\frac{F_{2}-F_{1}}{m^{2} \Delta \varphi}\left(e^{i\left(m \varphi_{2}+\alpha\right)}-e^{i\left(m \varphi_{1}+\alpha\right)}\right) \\
& =\frac{F_{2} e^{i\left(m \varphi_{2}+\alpha\right)}\left(1-e^{-i m \Delta \varphi}\right)-F_{1} e^{i\left(m \varphi_{1}+\alpha\right)}\left(e^{i m \Delta \varphi}-1\right)}{m^{2} \Delta \varphi} .
\end{aligned}
$$

When summing over the whole circle, we get:

$$
\begin{aligned}
\int_{0}^{2 \pi} F(\varphi) e^{i(m \varphi+\alpha)} d \varphi & =\sum \frac{F\left(\varphi_{n}\right)\left(1-e^{-i m \Delta \varphi}-e^{i m \Delta \varphi}+1\right)}{m^{2} \Delta \varphi} e^{i\left(m \varphi_{n}+\alpha\right)} \\
& =\sum \frac{F\left(\varphi_{n}\right) 4 \sin ^{2} \varepsilon}{m^{2} \Delta \varphi} e^{i\left(m \varphi_{n}+\alpha\right)} \quad \text { with } \quad \varepsilon=\frac{m \Delta \varphi}{2} \\
& =\left(\frac{\sin \varepsilon}{\varepsilon}\right)^{2} \Delta \varphi \sum F\left(\varphi_{n}\right) e^{i\left(m \varphi_{n}+\alpha\right)}
\end{aligned}
$$

with

$$
\frac{m \Delta \varphi}{2}=\varepsilon=m \frac{\pi}{N}
$$

A parabolic approximation for F over two intervals, $-\Delta \varphi \leq \varphi \leq \Delta \varphi$, without $e^{i \alpha}$, gives after some calculation:

$$
I_{2}=\left(\frac{\sin ^{4} \varepsilon}{\varepsilon^{2}}+\cos \varepsilon\left(\frac{\sin \varepsilon}{\varepsilon}\right)^{3}\right) \cdot \Delta \varphi \cdot \sum_{n} F\left(\varphi_{n}\right) e^{i\left(m \varphi_{n}+\alpha\right)}
$$

with $\varepsilon=m \pi / N$, and

$$
\left(\frac{\sin ^{4} \varepsilon}{\varepsilon^{2}}+\cos \varepsilon\left(\frac{\sin \varepsilon}{\varepsilon}\right)^{3}\right)=t=\left(\frac{\sin \varepsilon}{\varepsilon}\right)^{2} \cdot\left(\sin ^{2} \varepsilon+\cos \varepsilon \frac{\sin \varepsilon}{\varepsilon}\right)
$$

Program to Calculate t, and Results.

5 CLS
10 FOR $N=1$ TO 18
$15 \mathrm{E}=\mathrm{F} * 3.14159265 / 36$
$20 \operatorname{PRINT}((\operatorname{SIN}(E) / E) \wedge 2 *((\operatorname{SIN}(E)) \wedge 2+\operatorname{COS}(E) * \operatorname{SIN}(E) / E)$
30 NEXT N
For $\varepsilon=N^{*} 5$:

ε	5°	10°	15°	20°	25°	30°	35°	40°	45°
t	.9999	.9998	.9988	.9962	.9911	.9821	.9682	.9482	.9213

ε	50°	55°	60°	65°	70°	75°	80°	85°	90°
t	.8870	.8450	.7957	.7397	.6780	.6120	.5434	.4739	.4053

Program to Calculate K_{1} / ε^{2} and K_{2} / ε^{2}, and Results.

5 CLS
10 FOR N=1 TO 18
$20 \mathrm{E}=\mathrm{N} * 3.14159265 / 36$
$30 \operatorname{PRINT} N * 5,(3+\operatorname{COS}(4 * E)-\operatorname{SIN}(4 * E) / E) /\left(4 * E^{\sim} 2\right),(\operatorname{SIN}(2 * E) /(2 * E)-\operatorname{COS}(2 * E)) /\left(E^{-} 2\right)$ 40 NEXT N

ε	K_{1} / ε^{2}	K_{2} / ε^{2}
5°	. 67069299	1.3292762
10°	. 68235368	1.3171576
15°	. 70042915	1.2971353
20°	. 72300072	1.2694693
25°	. 74761149	1.2345172
30°	. 77147163	1.1927287
35°	. 79169091	1.1446375
40°	. 80551841	1.0908528
45°	. 81056947	1.0320491
50°	. 8050208	. 96895504
55°	. 78775796	. 90234147
60°	. 75866353	. 83300908
65°	. 71763969	. 76177546
70°	. 6665645	. 68946226
75°	. 60718709 .	. 61688241
80°	. 54197173	. 54482766
85°	. 47370526	. 47405682
90°	. 40528474	. 40528474

Curvature of Field Lines in a Quadrupole

Figure 1.

$$
F(z)=(z+r)^{2} \quad \text { with } \quad r=1 / K
$$

The field line is described by $\Re(z+r)^{2}=(x+r)^{2}-y^{2}=$ constant, thus

$$
(x+r)^{2}-y^{2}=\left(x_{0}+r\right)^{2} \quad \rightarrow \quad x=-r+\sqrt{y^{2}+\left(x_{0}+r\right)^{2}}
$$

Further, $1 / R=x^{\prime \prime} /\left(1+\left(x^{\prime}\right)^{2}\right)^{3 / 2}$, with

$$
\begin{gathered}
x^{\prime}=\frac{y}{\sqrt{y^{2}+\left(x_{0}+r\right)^{2}}} \text { and } x^{\prime \prime}=\frac{\left(x_{0}+r\right)^{2}}{\left(y^{2}+\left(x_{0}+r\right)^{2}\right)^{3 / 2}} \\
1+\left(x^{\prime}\right)^{2}=\frac{2 y^{2}+\left(x_{0}+r\right)^{2}}{\sqrt{y^{2}+\left(x_{0}+r\right)^{2}}}, \quad \text { and } \quad\left(1+\left(x^{\prime}\right)^{2}\right)^{3 / 2}=\frac{\left(2 y^{2}+\left(x_{0}+r\right)^{2}\right)^{3 / 2}}{\left(y^{2}+\left(x_{0}+r\right)^{2}\right)^{3 / 2}}
\end{gathered}
$$

Thus,

$$
\frac{1}{R}=\frac{\left(x_{0}+r\right)^{2}}{\left(2 y^{2}+\left(x_{0}+r\right)^{2}\right)^{3 / 2}} \text { and } R=\left(x_{0}+r\right)\left(1+\frac{2 y^{2}}{\left(x_{0}+r\right)^{2}}\right)^{3 / 2}
$$

for field line starting at x_{0}.

May, 1986. Note 0009thry.

The field line at x, y is described by

$$
\frac{\left((x+r)^{2}+y^{2}\right)^{3 / 2}}{(x+r)^{2}-y^{2}}=R=(x+r) \frac{\left(1+\left(\frac{y}{x+r}\right)^{2}\right)^{3 / 2}}{1-\left(\frac{y}{x+r}\right)^{2}}
$$

We make the following substitutions:

$$
\frac{y}{x+r}=\tan \alpha, \quad 1+\tan ^{2} \alpha=\frac{1}{\cos ^{2} \alpha}, \quad \text { and } \quad 1-\tan ^{2} \alpha=\frac{\cos 2 \alpha}{\cos ^{2} \alpha}
$$

and thus,

$$
R=\frac{(x+r)}{\cos \alpha \cos 2 \alpha}
$$

Also,

$$
\sqrt{(x+r)^{2}+y^{2}}\left(\frac{1+\tan ^{2} \alpha}{1-\tan ^{2} \alpha}\right)=R=\frac{\sqrt{(x+r)^{2}+\dot{y}^{2}}}{\cos 2 \alpha}
$$

Skin Effect in Fe

Figure 1.

We introduce initial conditions and definitions:

$$
\begin{gathered}
\mathbf{E}=\mathbf{e}_{x} E, \quad \text { and } \mathbf{B}=\mathrm{e}_{z} B \text { with } B=\mu_{0} \mu_{\mathrm{rel}} H=\mu H \\
\frac{\partial}{\partial z}=\frac{\partial}{\partial x}=0, \quad \text { and } \frac{\partial}{\partial y} \neq 0 \\
\nabla \times \mathbf{H}=H^{\prime}=\sigma E=j, \quad \text { and } \nabla \times \mathbf{E}=-E^{\prime}=-i \omega \mu H \\
\sigma E^{\prime}=j^{\prime}=i \omega \mu \sigma H
\end{gathered}
$$

We let $i \omega \mu \sigma=k^{2}$, and

$$
H^{\prime \prime}-k^{2} H=0, \quad H=H_{0} \cosh k y, \quad \text { and } \quad j=H_{0} k \sinh k y
$$

The average field in the sheet, \bar{H}, compared to the field outside, H_{1}, is given by

$$
\bar{H}=\frac{1}{2 y_{1}} \int_{-y_{1}}^{y_{1}} H d y=H_{0} \frac{\sin k y_{1}}{k y_{1}}, \quad H_{1}=H_{0} \cosh k y_{1}, \quad \text { and } \quad H_{0}=\frac{H_{1}}{\cosh k y_{1}}
$$

$$
\begin{equation*}
\frac{\bar{H}}{H_{1}}=\frac{\tanh k y_{1}}{k y_{1}} \tag{1}
\end{equation*}
$$

In (1), we let $x=k y_{1}$, and solve

February, 1966. Note 0007thry.

$$
\begin{align*}
\frac{\bar{H}}{H_{1}}=\frac{\tanh x}{x} & \approx \frac{1+x^{2} / 6+x^{4} / 120}{1+x^{2} / 2+x^{4} / 24} \\
& \approx\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{120}\right)\left(1-\frac{x^{2}}{2}+\frac{5 x^{4}}{24}+\cdots\right) \\
& \approx 1-\frac{1 x^{2}}{3}+\frac{2 x^{4}}{15} . \tag{2}
\end{align*}
$$

The power dissipation per cubic meter is given by

$$
P=\frac{\varrho}{2}|j|^{2}=\frac{1}{2} \varrho H_{0}^{2}|k|^{2}\left|\sinh ^{2} k y\right|
$$

We let $k y=\alpha+i \alpha$ where $\alpha=|k| / \sqrt{2}$ thus

$$
\begin{aligned}
\sinh (\alpha & +i \alpha)=\sinh \alpha \cos \alpha+i \cosh \alpha \sin \alpha \\
|\sinh (\alpha+i \alpha)|^{2} & =\sinh ^{2} \alpha \cos ^{2} \alpha+\cosh ^{2} \alpha \sin ^{2} \alpha \\
& =\sinh ^{2} \alpha \cdot\left(1-\sin ^{2} \alpha\right)+\left(1-\sinh ^{2} \alpha\right) \cdot \sin ^{2} \alpha \\
& =\sinh ^{2} \alpha+\sin ^{2} \alpha \\
& =\frac{1}{2}(1-\cos 2 \alpha+\cosh 2 \alpha-1) \\
& =\frac{1}{2}(\cosh 2 \alpha-\cos 2 \alpha)
\end{aligned}
$$

and

$$
\begin{aligned}
\overline{|\sinh (\alpha+i \alpha)|^{2}} & =\frac{1}{2 \mathrm{y}_{1}} \int_{0}^{y_{1}}(\cosh 2 \alpha-\cos 2 \alpha) d y \\
& =\frac{1}{2 \alpha_{1}} \int_{0}^{\alpha_{1}}(\cosh 2 \alpha-\cos 2 \alpha) d \alpha \\
& =\frac{1}{4 \alpha_{1}}\left(\sinh 2 \alpha_{1}-\sin 2 \alpha_{1}\right)
\end{aligned}
$$

Thus,

$$
\bar{P}=\frac{H_{0}^{2} \mu}{2} \cdot \omega \cdot \frac{\sinh 2 \alpha_{1}-\sin 2 \alpha_{1}}{4 \alpha_{1}} \quad \text { with } \quad \alpha_{1}=y_{1} \sqrt{\frac{\omega \mu \sigma}{2}}
$$

For

$$
\frac{\sinh x-\sin x}{x} \approx \frac{2 \cdot\left(\frac{x^{3}}{3!}+\frac{x^{7}}{7!}\right)}{x}=\frac{x^{2}}{3}\left(1+\frac{x^{4}}{7!/ 3!}\right)=\frac{x^{2}}{3}\left(1+\frac{x^{4}}{840}\right) \approx \frac{x^{2}}{3}
$$

and thus,

$$
\frac{\sinh 2 \alpha_{1}-\sin 2 \alpha_{1}}{4 \alpha_{1}}=\frac{\left(2 \alpha_{1}\right)^{2}}{6}=\frac{\left(\sqrt{2} \gamma_{1}\right)^{2}}{6}=\frac{\gamma_{1}^{2}}{3}, \quad \text { with } \quad \gamma_{1}=y_{1} \sqrt{\omega \mu \sigma}=\sqrt{2} \alpha_{1}
$$

Therefore,

$$
\bar{P}=\frac{H_{0}^{2} \mu}{2} \cdot \omega \cdot \frac{y_{1}^{2} \omega \mu \sigma}{3}
$$

For $H_{0} \mu=B_{0}$,

$$
\bar{P}=\frac{B_{0}^{2}}{2} \cdot \frac{y_{1}^{2} \omega^{2} \sigma}{3}=\frac{B_{0}^{2}}{2} \cdot \frac{\left(2 y_{1}\right)^{2} \omega^{2} \sigma}{12}
$$

Resulting, thermally, in a trivial geometry:

Figure 2.

For heat conductivity, $S=\lambda T^{\prime}$ in power $/ \mathrm{m}^{2}$,

$$
\Delta S(x)=\bar{P} \Delta x, \quad \text { and thus } \quad \bar{P}=S^{t}=\lambda T^{\prime \prime}
$$

and thus,

$$
T_{\max }-T_{0}=\frac{x^{2} \bar{P}}{2 \lambda}
$$

Typical Numbers for Dynamo Steel.

We let

$$
\begin{gathered}
\rho=46 \mu \Omega \mathrm{~cm}=4.6 \times 10^{-7} \Omega \mathrm{~m}, \\
\mu(14 \mathrm{kG})=2100, \quad \text { and } \mu(18 \mathrm{kG})=125, \\
\lambda=27-36 \frac{\mathrm{BTU} / \mathrm{h}}{\mathrm{ft}^{\circ} \mathrm{F}} \quad \text { with } \quad 1 \frac{\mathrm{BTU} / \mathrm{h}}{\mathrm{ft}^{\circ} \mathrm{F}}=\frac{0.293}{1.84} \frac{\mathrm{Watts}}{\mathrm{~m}^{\circ} \mathrm{C}} \\
=47.5-63.5 \mathrm{Watts} / \mathrm{m}^{\circ} \mathrm{C} .
\end{gathered}
$$

(1) For $\left|x^{2}\right| / 3=1 / 10$ we have

$$
\begin{gathered}
\frac{\left|x^{2}\right|}{3}=\frac{\omega \mu}{3 \varrho} \cdot y_{1}^{2}=\frac{1}{10}, \quad \text { and } \quad y_{1}=\sqrt{\frac{0.3 \varrho}{\omega \mu}}=10^{-3} \sqrt{\frac{2.3}{16.8}}=0.37 \times 10^{-3} \mathrm{~m}=0.37 \mathrm{~mm} \\
2 y_{1}=0.74 \mathrm{~mm} .
\end{gathered}
$$

(2) For $B_{0}=14 \mathrm{kG}=1.4 \mathrm{~T}$ and the above $2 y_{1}$,

$$
\bar{P}=\frac{60}{4.6} \times 10^{3}=13 \times 10^{3} \mathrm{Watts} / \mathrm{m}^{3}=13 \times 10^{-3} \mathrm{Watts} / \mathrm{cm}^{3}
$$

(3) For $x=0.4 \mathrm{~m}$ and the above \bar{P},

$$
\Delta T=\frac{(.16)\left(13 \times 10^{3}\right)}{(2)(50)}=(13)(.16)^{\circ} \mathrm{C} \approx 21^{\circ} \mathrm{C}
$$

If the field is a sinusoidal function between $B=0 \mathrm{~T}$ and 14 kG , one has to use $B_{0}=$ 7 kG .

A More Detailed Expression for \bar{H} / H_{1}.
With $2 y_{1}=D$, we let

$$
x=\frac{k D}{2}=\frac{D}{2} \sqrt{i \omega \mu \sigma}=\frac{D}{2} \sqrt{2} \sqrt{i \frac{\omega \mu \sigma}{2}} .
$$

With $\lambda=\sqrt{2 / \omega \mu \sigma}$,

$$
x=\sqrt{i} \frac{D}{\sqrt{2} \lambda}=\sqrt{i} \varepsilon, \quad \text { where } \quad \varepsilon=\frac{D}{\sqrt{2} \lambda} .
$$

Therefore,

$$
\begin{gathered}
\frac{\bar{H}}{H_{1}}=1-i \frac{\varepsilon^{2}}{3}-\frac{2 \varepsilon^{4}}{15} \text { and } \tan \varphi \approx \frac{\varepsilon^{2}}{3}=\frac{(D / \lambda)^{2}}{6}, \\
\left|\frac{\bar{H}}{H_{1}}\right|^{2}=1-\frac{7 \varepsilon^{4}}{45}, \text { and }\left|\frac{\bar{H}}{H_{1}}\right|=1-\frac{7 \varepsilon^{4}}{90},
\end{gathered}
$$

and thus,

$$
\left|\frac{\bar{H}}{H_{1}}\right|=1-\frac{7}{(4)(90)} \frac{D^{4}}{\lambda}
$$

Results for Al, Cu and Fe at $\mathbf{6 0 H z}$.
For Al and Cu , we let

$$
\begin{gathered}
\lambda=\sqrt{\frac{2 \varrho}{\sigma \mu_{0}}}=\sqrt{\frac{10^{4} \varrho}{2.4}} . \\
\varrho_{\mathrm{Al}}=2.8 \times 10^{-8} \quad \text { and } \quad \lambda_{\mathrm{Al}}=1.08 \mathrm{~cm}, \\
\varrho_{\mathrm{Cu}}=1.7 \times 10^{-8} \quad \text { and } \quad \lambda_{\mathrm{Cu}}=0.84 \mathrm{~cm},
\end{gathered}
$$

and $D=(1 / 4)$ in $=0.635 \mathrm{~cm}$:

	D / λ	$(D / \lambda)^{2}$	$(D / \lambda)^{2} / 6$	$0.7\left(D^{2} / 6 \lambda^{2}\right)^{2}$
Cu	0.755	0.570	0.095	0.00635
Al	0.587	0.345	0.0575	.0023

For Fe with $\mu \approx 2000$,

$$
\varrho_{\mathrm{Fe}}=4.6 \times 10^{-7} \quad \text { and } \quad \lambda_{\mathrm{Fe}} \approx 1 \mathrm{~mm},
$$

and $D=14 \mathrm{~mm}$:

	D / λ	$(D / \lambda)^{2}$	$(D / \lambda)^{2} / 6$	$0.7\left(D^{2} / 6 \lambda^{2}\right)^{2}$
Al	0.350	0.1225	0.0205	0.00029

Magnetic Field Energy Calculations

$$
E=\frac{1}{2} \int(\mathbf{B} \cdot \mathbf{H}) d \tau=\frac{1}{2} \int(\mathbf{B} \cdot \nabla V) d \tau=\frac{1}{2} \int \mathbf{H} \cdot(\nabla \times \mathbf{A}) d \tau
$$

with

$$
\begin{aligned}
& \mathbf{B} \cdot \nabla V=\nabla \cdot(V \mathbf{B})-V \nabla \cdot \mathbf{B}=\nabla \cdot(V \mathbf{B}) \\
& \mathbf{H} \cdot(\nabla \times \mathbf{A})=\mathbf{A} \cdot(\nabla \times \mathbf{H})=\mathbf{A} \cdot \mathbf{j}
\end{aligned}
$$

Field Energy in the Airspace of a Long, Symmetrical Bending Magnet.
The airspace is bounded by the midplane, an equipotential and two field lines (lines starting at two locations on the midplane).

Figure 1.

Derive B from the potential: $\mathbf{B}=\nabla V$,

$$
2 \mu_{0} E=\int(\mathbf{B} \cdot \nabla V) d \tau=\int \nabla \cdot(V \mathbf{B}) d \tau=\int V \mathbf{B} \cdot d \sigma
$$

Normalize $V=0$ on equipotential, then contribution on equipotential is 0 , as well as being 0 along the field lines:

$$
2 \mu_{0} E=L V_{0} \int B_{y} d x
$$

where L is the length of the magnet.

February, 1966. Note 0006thry.

For $B_{y}=B_{0}(1+K x)$:

$$
\int_{-a}^{a} B_{y} d x=2 a B_{0}, \quad \text { and }\left.\quad V_{y}^{\prime}\right|_{x=0}=B_{y}=B_{0} \quad \Longrightarrow \quad V_{0}=y B_{0}
$$

Thus,

$$
2 \mu_{0} E=L B_{0} y_{0} 2 a B_{0} \quad \Longrightarrow \quad \frac{E}{L}=\frac{B_{0}^{2}}{2 \mu_{0}} 2 a y_{0} .
$$

y_{0} equipotential is the hyperbola tangent to an ellipse with half-axis a :

$$
y_{0}=\frac{c}{r_{0}}=\frac{b}{r_{0} a} \sqrt{\left(x+r_{0}\right)^{3} x}=b \frac{r_{0}}{a} \sqrt{\frac{x}{r_{0}}\left(\frac{x}{r_{0}}+1\right)^{3}} .
$$

For $a / r_{0}=\varepsilon$,

$$
s=\frac{x}{r_{0}}=\frac{2 \varepsilon^{2}}{1+\sqrt{1+8 \varepsilon^{2}}}=\frac{1}{4}\left(\sqrt{1+8 \varepsilon^{2}}-1\right)
$$

we redefine $y_{0}=b F(\varepsilon)$, where

$$
F(\varepsilon)=\sqrt{\frac{s(s+1)^{3}}{\varepsilon^{2}}}=\sqrt{\frac{2}{1+\sqrt{1+8 \varepsilon^{2}}}\left(\frac{3+\sqrt{1+8 \varepsilon^{2}}}{4}\right)^{3}} .
$$

For $8 \varepsilon^{2} \ll 1$:

$$
\begin{gathered}
\sqrt{1+8 \varepsilon^{2}}=1+4 \varepsilon^{2} \\
F^{2}(\varepsilon)=\frac{2}{2+4 \varepsilon^{2}}\left(\frac{4+4 \varepsilon^{2}}{4}\right)^{3}=\left(1-2 \varepsilon^{2}\right)\left(1+3 \varepsilon^{2}\right) \\
F(\varepsilon)=1+\varepsilon^{2} / 2
\end{gathered}
$$

For $\varepsilon=1 / 2, F(1 / 2)=1.2$, while if $\varepsilon=1, F(1)=1.3$.

Magnetic Energy of 2D Vacuum Field Inside Arbitrary Boundary.

Represent \mathbf{B} by scalar potential: $\mathbf{B}=\nabla V$,

$$
2 \mu_{0} E=\int(\mathbf{B} \cdot \nabla V) d \tau=\int \nabla \cdot(V \mathbf{B}) d \tau=\int V(\mathbf{B} \cdot d \boldsymbol{\sigma})
$$

The expression for scalar product of two vectors in 2-dimensional space, when vectors are expressed by the complex numbers $a=a_{x}+i a_{y}$ and $b=b_{x}+i b_{y}$, is

$$
\mathbf{a} \cdot \mathbf{b}=a_{x} b_{x}+a_{y} b_{y}=\Re a b^{*}=\Re a^{*} b .
$$

Thus, for $d \sigma=i L d z$:

$$
2 \mu_{0} E / L=\Re \int V i B^{*} d z
$$

For $V=v$, and $i B^{*}=F^{\prime}$:

$$
\begin{aligned}
2 \mu_{0} E / L & =\Re \int v F^{\prime} d z=\Re \int v d F=\Re \int v(d u+i d v) \\
& =\int v d u=\int v\left(u_{x}^{\prime}+u_{y}^{\prime} y^{\prime}\right) d x .
\end{aligned}
$$

Special Case.

The energy of field derived from $F=\left(B_{0} K / 2\right)\left(z+r_{0}\right)^{2}$, with $r_{0}=1 / K$, inside the ellipse described by $(x / a)^{2}+(y / b)^{2}=1$, is given by

$$
F=\frac{1}{2} B_{0} K\left(\left(x+r_{0}\right)^{2}-y^{2}+2 i y\left(x+r_{0}\right)\right) .
$$

With

$$
u_{x}^{\prime}=B_{0} K\left(x+r_{0}\right), \quad u_{y}^{\prime}=-B_{0} K y, \quad v=B_{0} K y\left(x+\dot{r}_{0}\right) ; \quad y^{\prime}=-\frac{b^{2}}{a^{2}} \frac{x}{y}
$$

and

$$
x=a \sin \varphi, \quad d x=a \cos \varphi d \varphi, \quad y=b \sqrt{1-(x / a)^{2}}=b \cos \varphi
$$

and $a / r_{0}=\varepsilon$,

$$
\begin{aligned}
2 \mu_{0} E / L & =B_{0}^{2} K^{2} \int y\left(x+r_{0}\right)\left(x+r_{0}+y \frac{b^{2} x}{a^{2} y}\right) d x \\
& =B_{0}^{2} K^{2} \int\left(x+r_{0}\right)\left(r_{0}+x\left(1+\frac{b^{2}}{a^{2}}\right)\right) y d x \\
& =B_{0}^{2} a b \int_{0}^{2 \pi}(1+\varepsilon \sin \varphi)\left(1+\varepsilon \sin \varphi\left(1+\frac{b^{2}}{a^{2}}\right)\right) \cos ^{2} \varphi d \varphi \\
& =B_{0}^{2} a b \int_{0}^{2 \pi}\left(1+\varepsilon \sin \varphi\left(2+\frac{b^{2}}{a^{2}}\right)+\varepsilon^{2} \sin ^{2} \varphi\left(1+\frac{b^{2}}{a^{2}}\right)\right) \cos ^{2} \varphi d \varphi \\
& =B_{0}^{2} a b\left(\pi+0+\varepsilon^{2} \frac{\pi}{4}\left(1+\frac{b^{2}}{a^{2}}\right)\right) \\
& =B_{0}^{2} a b \pi\left(1+\frac{a^{2}+b^{2}}{4 r_{0}^{2}}\right) .
\end{aligned}
$$

Scalar Potential for 3D Fields in "Business Region" of Insertion Device with Finite Width Poles

Task.
In the absence of random errors, we are interested in the formulation of 3-dimensional $V(x, y, z)$ (with $\nabla^{2} V=0$) for \mathbf{B} in the "business region" of an insertion device (hybrid or electro-magnetic) with finite width poles, and containing only a small number of free, easily measured constants.

Notation and Coordinate System.

The beam will be in the direction of the z-axis. The midplane will be in the $x z$-plane. The field will be in the y-direction in the midplane.

Field Symmetries.
B_{y} will be the even function of x, y and B_{x} will be the odd function of x, y.

Figure 1.
Representation of $V(x, y, z)$.
We represent $V(x, y, z)$ by a Fourier series in z :

$$
\begin{equation*}
V(x, y, z)=\sum_{n=\mathrm{odd}} \cos n k_{3} z \cdot G_{n}(x, y) \quad \text { with } \quad k_{3}=2 \pi / \lambda \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla^{2}=0 \quad \Longrightarrow \quad \nabla^{2} G_{n}=n^{2} k_{3}^{2} G_{n} \tag{2}
\end{equation*}
$$

February, 1992. Note 0144u-w.

For an infinitely wide pole:

$$
\partial G_{n} / \partial x=0 \quad \Longrightarrow \quad G_{n}(x, y)=a_{n} \sinh n k_{3} y
$$

which is a standard 2D solution. The effect of the finite width pole is described by

$$
G_{n}=a_{n} \sinh n k_{3} y+g_{n}(x, y),
$$

where g_{n} is the effect of the finite width pole. Thus

$$
\begin{equation*}
\nabla^{2} g_{n}=n^{2} k_{3}^{2} g_{n} . \tag{3}
\end{equation*}
$$

Case 1:

$$
\begin{equation*}
\mu_{\mathrm{Fe}}=\infty \quad \Longrightarrow \quad B_{x}(x, \pm h, u \lambda / 2)=0 \tag{4}
\end{equation*}
$$

where u is an integer.
1.1) We initially assume that

$$
G_{n}=g_{n}=0 \quad \text { for } \quad n>1
$$

and we see that the symmetries and (4) give $g_{1 x}^{\prime}(x, 0)=g_{1 x}^{\prime}(x, \pm h)=0$. We expand $g_{1 x}^{\prime}(x, y)$ in a Fourier series in y with a $2 h$ period, and see that

$$
\begin{equation*}
g_{1 x}^{\prime}(x, y)=b_{m}^{\prime}(x) \sin m k_{2} y \quad \text { with } \quad k_{2}=\pi / h \tag{5}
\end{equation*}
$$

We now substitute (5) into (3). We have $b_{m}^{\prime \prime \prime}=b_{m}^{\prime}\left(m^{2} k_{2}^{2}+n^{2} k_{3}^{2}\right)$, with $n=1$. A solution which satisfies this equation and the symmetries is given by

$$
\begin{equation*}
b_{m}(x)=c_{m} \cosh k_{n m} x, \quad \text { where } \quad k_{n m}=\left(m^{2} k_{2}^{2}+n^{2} k_{3}^{2}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

A complete solution is given by

$$
\begin{equation*}
V(x, y, z)=\cos k_{3} z \cdot a_{0}\left(\sinh k_{3} y+\sum_{m=1} \sin m k_{2} y \cosh k_{1 m} x \cdot \frac{a_{m}}{\cosh k_{1 m} w}\right) \tag{7}
\end{equation*}
$$

c_{m} is chosen such that a_{m} can be expected to be only weakly dependent on w.
1.2) We now assume that

$$
G_{n}=g_{n} \neq 0 \quad \text { for } \quad n \geq 1
$$

(7) can be generalized, but one must realize that the resulting formula does not have the same force of logic that was inherent in its original derivation. This generalized
formula allows the possibility that contributions from many n could combine to make $B_{x}(x, \pm h, u \lambda / 2)=0$.

$$
\begin{align*}
V(x, y, z) & =\sum_{n=\mathrm{odd}} \cos n k_{3} z \cdot G_{n}(x, y) \\
G_{n}(x, y) & =A_{n 0}\left(\sinh n k_{3} y+\sum_{m=1} \sin m k_{2} y \cosh k_{n m} x \cdot \frac{a_{n m}}{\cosh k_{n m} w}\right) \tag{8}\\
k_{n m} & =\left(n^{2} k_{3}^{2}+m^{2} k_{2}^{2}\right)^{1 / 2} \quad \text { with } \quad k_{3}=2 \pi / \lambda \quad \text { and } \quad k_{2}=\pi / h
\end{align*}
$$

Notice that in the above set of equations $A_{n 0}$ has units of Tesla-meters and $a_{n m}$ is dimensionless.
We expect that $a_{n m}$ is of the first order, the finite width effects decrease with increasing n and m, and further, that only a few $a_{n m}$ are needed.

Case 2:

$$
\begin{equation*}
\mu_{\mathrm{Fe}}<\infty \quad \Longrightarrow \quad B_{x}(x, \pm h, u \lambda / 2)=-B_{x}(-x, \pm h, u \lambda / 2) \neq 0 \tag{9}
\end{equation*}
$$

The contributions from Fe alone are given by the addition of $Q_{n}(x, y)$:

$$
V=\sum \cos n k_{3} z \cdot Q_{n}(x, y) \quad \text { where } \quad \nabla^{2} Q_{n}=n^{2} k_{3}^{2} Q_{n}
$$

For the sake of simplification, we shall look at one Q_{n}, normalize lengths so that $n k_{3}=1$, and denormalize at the end

$$
\begin{equation*}
\nabla^{2} Q=Q \tag{10}
\end{equation*}
$$

We follow the logic of Case 1 as well as also satisfying $Q_{y}^{\prime}(x, 0) \approx x^{2}$ for sufficiently small x. Thus, we start with

$$
\begin{equation*}
Q(x, y)=(\cosh \eta x-1) P_{1}(y)+P_{2}(y) \tag{11}
\end{equation*}
$$

where η is real and arbitrary. Later we will let $\eta \rightarrow 0$. We substitute (11) into (10) and get

$$
\begin{aligned}
\nabla^{2} Q & =\eta^{2} c P_{1}+(c-1) P_{1}^{\prime \prime}+P_{2}^{\prime \prime} \\
& =Q \\
& =(\dot{c}-1) P_{1}+P_{2}
\end{aligned}
$$

where $c=\cosh \eta x$ and P_{1}, P_{2} are unknown. Separating into terms with and without
c, we have

$$
\begin{gather*}
\eta^{2} P_{1}+P_{1}^{\prime \prime}=P_{1}, \quad P_{2}^{\prime \prime}-P_{1}^{\prime \prime}=P_{2}-P_{1} \tag{12}\\
p^{2}=1-\eta^{2}, \quad P_{1}^{\prime \prime}-p^{2} P_{1}=0 \Rightarrow P_{1}=\sinh p y \tag{13}\\
P_{2}^{\prime \prime}-P_{2}=P_{1}^{\prime \prime}-P_{1}=-\eta^{2} P_{1}=-\eta^{2} \sinh p y \\
P_{2}=\sinh p y-p \sinh y \tag{14}
\end{gather*}
$$

in which the second term serves to satisfy the condition $P_{2 y}^{\prime}(0)=0$.

$$
\begin{equation*}
Q(x, y)=(\cosh \eta x-1) \sinh p y+\sinh p y-p \sinh y \tag{15}
\end{equation*}
$$

with $\eta \rightarrow 0$ and $p \rightarrow\left(1-\eta^{2} / 2\right)$.

$$
\begin{equation*}
Q(x, y)=\frac{\eta^{2}}{2}\left(x^{2} \sinh y-y \cosh y+\sinh y\right) \tag{16}
\end{equation*}
$$

We denormalize (16) and drop $\eta^{2} / 2$ and get

$$
\begin{gather*}
Q_{n}(x, y)=\left(n k_{3} x\right)^{2} \sinh n k_{3} y-n k_{3} y \cosh n k_{3} y+\sinh n k_{3} y \tag{17}\\
V(x, y, z)=\sum_{n=\text { odd }} \cos n k_{3} z\left(G_{n}(x, y)+Q_{n}(x, y)\right) \tag{18}
\end{gather*}
$$

Magnetic Measurements.

First, the simplest implementation consists of measuring the Fourier coefficients of the expansion of B_{z}, B_{y}, B_{x} in $\sin n k z$ and $\cos n k z$ and determining the value of the free coefficients in G_{n} and Q_{n} that best fit the data. Use a "filter" to remove the random errors from the data sets.
Second, choose x, y very carefully for each of these sets of measurements in order to take advantage of the properties of $G_{n}(x, y)$ and $Q_{n}(x, y)$ and its derivatives with respect to x, y. This is particularly important for the contributions originating from $\sin m k_{2} y$ in $G_{n}(x, y)$.
Third, investigate suitability of less conventional magnetic measurements, like a Hall probe or flux loop that vibrates in the x-direction, with phase sensitive de-modulation.

Use of Model.

After verification of the validity region of the model is completed, it can be used for trajectory calculations. Furthermore, one can use this model to determine the maximal narrowness of the pole before detrimental effects become intolerable.
In application to existing hardware, one can break up the total field into the ideal 3D field and the random errors.

Magnetic Measurement and Data Reduction to Identify Some Specific Error Field Consequences

Measurement of Steering in Wigglers and Undulators.

Prefer null measurement method, if it can be done.
In "body" of wiggler or undulator: use coil with length equal to the product of period and integer.

In the end-region, from the field-free region to the periodic part: measure using long coil reaching from the outside to the periodic part, together with an attached compensation coil in the periodic part. This gives a signal that depends only on the steering integral, and is independent of position in the periodic part. It is an important tool for correcting the ends.
Normalized sensitivity of system, for $\varphi=k z=2 \pi z / \lambda$ is given by

$$
S(\varphi)=S_{0}(\varphi)+S_{1}(\varphi)
$$

where S_{0} refers to the main coil, and S_{1} to the compensation coil. With $\varphi=0$ referring to the end of the main coil, and $\varphi=-\alpha$ to the center of the correction coil (of length $2 \varphi_{1}$) relative to the end of the main coil, we have, in the coil coordinate system,

$$
\begin{aligned}
& S_{0}(\varphi)=1 \text { at }-\infty \leq \varphi \leq 0 \\
& S_{0}(\varphi)=0 \text { at } 0 \leq \varphi, \\
& S_{1}(\varphi)=\varepsilon \text { at }-\alpha-\varphi_{1} \leq \varphi \leq-\alpha+\varphi_{1} \\
& S_{1}(\varphi)=0 \text { at } \varphi \text { outside the above region. }
\end{aligned}
$$

For the periodic region, $\varphi>0$ and

$$
B=\sum_{n=\mathrm{odd}} n a_{n} \cos n \varphi=\Re \sum n a_{n} e^{i n \varphi}
$$

with the end of main coil at $\varphi_{0}>\pi$ in the field coordinate system, the signal from the main coil is

$$
F_{0}=\int_{-\infty}^{0} B d \varphi+\int_{0}^{\varphi_{0}} \Re \sum n a_{n} e^{i n \varphi} d \varphi=\text { Steering } \int+\Re \sum a_{n}\left(e^{i n \varphi_{0}}-1\right) / i
$$

and similarly, the signal from the compensating coil is

$$
F_{1}=\varepsilon \int_{\varphi_{0}-\alpha-\varphi_{1}}^{\varphi_{0}-\alpha+\varphi_{1}} \sum n a_{n} e^{i n \varphi} d \varphi=\Re \sum a_{n} e^{i n\left(\varphi_{0}-\alpha\right)} 2 \varepsilon \sin \varphi_{1}
$$

$$
F_{0}-F_{1}=\text { Steering } \int+\Re \sum a_{n} e^{i n \varphi_{0}}\left(\frac{1}{i}-2 \varepsilon e^{-i n \alpha} \sin n \varphi_{1}\right) .
$$

We want $F_{0}-F_{1}$ independent of φ_{0}, thus

$$
2 \varepsilon \sin n \alpha \sin n \varphi_{1}=1, \quad \text { and } \quad 2 \varepsilon \cos n \alpha \cos n \varphi_{1}=0
$$

When harmonics are weak (undulator), we need to satisfy these conditions only for $n=1$, but when strong harmonics are present (wiggler), we need to satisfy them for all odd n : to get

$$
\begin{array}{ll|}
\cos n \alpha=0 & \text { choose } \alpha=\pi / 2 \\
\sin n \alpha=(-1)^{(n-1) / 2} & \text { choose }
\end{array}
$$

$\varphi_{1}=\pi / 2$ needs to be done by hardware, $\alpha=\pi / 2, \varepsilon=1 / 2$, can be done by "tuning" if one provides for it. Other solutions should be obvious.
This scheme can also be implemented with simple coil (or Hall probes) and software. However, software implementation is not a null method and therefore suffers much more from equipment imperfections.

Phase Shifts of Emitted Light Due to Error Fields.

This is one of a number of ways to develop more insight into why or how synchrotron light properties deteriorate because of error fields.
We make the following definitions:

$$
\begin{gathered}
x^{\prime \prime}=\frac{g}{\gamma} B, \quad \text { with } \quad g=\frac{e}{m_{0}^{\prime} c} \\
\prime=\frac{\partial}{\partial z}, \quad \varphi=k z, \quad \text { and } \quad k=\frac{2 \pi}{\lambda} .
\end{gathered}
$$

For the reference trajectory:

$$
B(\varphi)=B_{0} \cos \varphi
$$

$$
\begin{gathered}
x_{0}^{\prime}=\frac{g B_{0}}{\gamma k} \sin \varphi=\frac{K}{\gamma} \sin \varphi, \quad \text { with } \frac{g B_{0}}{k}=K=.934 \cdot B_{0}(\mathrm{~T}) \cdot \lambda(\mathrm{cm}) \\
x_{0}=-\frac{K}{k \gamma} \cos \varphi \\
\cdot x_{W}=\frac{K}{k \gamma} .
\end{gathered}
$$

We define the trajectory length error as

$$
\begin{aligned}
\Delta s & =\int_{-\infty}\left(\sqrt{1+\left(x_{0}^{\prime}+\Delta x^{\prime}\right)^{2}}-\sqrt{1+{x_{0}^{\prime}}^{2}}\right) d z \\
& =\int\left(x_{0}^{\prime} \Delta x^{\prime}+\frac{1}{2} \Delta{x^{\prime}}^{2}\right) d z \\
& =x_{0} \Delta x^{\prime}-\int x_{0} \Delta x^{\prime \prime} d z+\frac{1}{2} \int \Delta{x^{\prime}}^{2} d z
\end{aligned}
$$

For $D=\Delta B / B_{0}$ as a function of φ :

$$
\begin{gathered}
\Delta x^{\prime \prime}=\frac{g B_{0}}{\gamma} \frac{\Delta B}{B_{0}}=\frac{g B_{0}}{\gamma} D=\frac{K k}{\gamma} D \\
\Delta x^{\prime}=\frac{K}{\gamma} \int D d \varphi
\end{gathered}
$$

Thus,

$$
\Delta s=\left(\frac{K}{\gamma}\right)^{2} \frac{1}{k}\left(-\cos \varphi \int D d \varphi+\int \cos \varphi D d \varphi+\frac{1}{2} \int\left(\int \dot{D d \varphi}\right)^{2} d \varphi\right)
$$

With $\Delta t=\Delta s / c, \Delta \Phi=\omega_{L} \Delta t=\Delta s \omega_{L} / c=\Delta s k_{L}$, and

$$
\lambda_{L}=\frac{\lambda}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)=\frac{\lambda K^{2}}{4 \gamma^{2}}\left(1+\frac{2}{K^{2}}\right)
$$

$$
\Delta \Phi=P(\underbrace{-\cos \varphi \int D d \varphi}_{\left(G_{1}\right)}+\underbrace{\int \cos \varphi D d \varphi}_{\left(G_{2}\right)}+\underbrace{\frac{1}{2} \int\left(\int D d \varphi\right)^{2} d \varphi}_{\left(G_{3}\right)})
$$

where

$$
P=\frac{4}{1+2 / K^{2}}
$$

Notice that, as a function of $K, \Delta \Phi \approx K^{2}$ for $K^{2} \ll 2$, and $\Delta \Phi$ is independent of K^{2} for $K^{2} \gg 2 . G_{1}$ produces harmonics and reduces the intensity of the fundamental, but only if steering is not 0 . The $G_{2} \neq 0$ contribution depends on symmetry of D, not on the presence or absence of steering. In G_{3} only steering errors contribute and it always gives $\Delta \Phi$ of the same sign. G_{3} being of second order, we may expect a significant contribution only for a long undulator. We will see below that G_{3} can be surprisingly large even for a short undulator.

We present order of magnitude estimates for $\overline{G_{2}^{2}}, \overline{G_{3}^{2}}$, for the ensemble.
For G_{2} from one primary source:

$$
G_{2}=\varepsilon_{2} D_{2} \frac{\lambda}{2} \frac{2 \pi}{\lambda}=\varepsilon_{2} D_{2} \pi
$$

For n_{2} sources per period: after $N_{1}=z / \lambda$ periods

$$
\overline{G_{2}^{2}}=\overline{\left(\varepsilon_{2} D_{2} \pi\right)^{2}} n_{2} \frac{z}{\lambda}=\overline{D_{2}^{2}} \pi^{2} \varepsilon_{2}^{2} n_{2} \frac{z}{\lambda}
$$

Without $\cos \varphi$ in the integrand, we may expect from steering:

$$
\begin{gathered}
\overline{G_{0}^{2}}=\overline{D_{0}^{2}} \pi^{2} \varepsilon_{0}^{2} n_{0} \frac{z}{\lambda}=\overline{D_{0}^{2}} \pi^{2} \varepsilon_{0}^{2} n_{0} N_{1} \\
\overline{G_{3}}=\frac{1}{2} \overline{D_{0}^{2}} \pi^{2} \varepsilon_{0}^{2} n_{0} \int_{0}^{L=N_{1} \lambda} \frac{z}{\lambda} d z \frac{2 \pi}{\lambda}=\frac{1}{2} \overline{D_{0}^{2}} \pi^{3} \varepsilon_{0}^{2} n_{0} N_{1}^{2} . \\
\varepsilon_{4}=\frac{\overline{G_{3}}}{\sqrt{G_{2}^{2}}}=\frac{\overline{D_{0}^{2}} \pi^{3} \varepsilon_{0}^{2} n_{0} N_{1}^{2} / 2}{\sqrt{\overline{D_{2}^{2}}} \pi \varepsilon_{2} \sqrt{n_{2}} \sqrt{N_{1}}}=\frac{\varepsilon_{0}^{2} n_{0} \overline{D_{0}^{2}}}{\sqrt{\varepsilon_{2} n_{2} \overline{D_{2}^{2}}}} \frac{\pi^{2}}{2} N_{1}^{3 / 2} .
\end{gathered}
$$

To get a feeling for the order of magnitude, we assume that the first order term, $\sqrt{\overline{G_{2}^{2}}}$, contributes twice the contribution of the second order term, $\overline{G_{3}}$, i.e. $\varepsilon_{4}=1 / 2$, and further, $\varepsilon_{0}=\varepsilon_{2}=1 n_{0}=n_{2}=4, N_{1}=10^{2} \overline{D_{0}^{2}}=\overline{D_{2}^{2}}$, then

$$
\sqrt{\overline{\overline{D_{0}^{2}}}}=\frac{1}{20 \times 10^{3}}=5 \times 10^{-5}
$$

has to be satisfied. And for $\sqrt{\overline{D_{0}^{2}}}=10^{-3}, \varepsilon_{0}=1, n_{0}=4, N_{1}=10^{2}$,

$$
\Delta \Phi=.6 \text { radians }
$$

$\Delta \Phi$ over-estimates the damage done to the emitted light because $\Delta \Phi=a+b z$ causes no real damage. We subtract the straight line from the original $\Delta \Phi(z)=f(z)$, and
then normalize the length of the undulator to 1 :

$$
H=\int_{0}^{1}(a+b z-f(z))^{2} d z
$$

and minimize H with a, b,

$$
\int f(z) d z=F_{0}, \quad \int z f(z) d z=F_{1}, \quad \text { and } \quad \int f^{2}(z) d z=F_{2}
$$

The solution gives

$$
a=2\left(2 F_{0}-3 F_{1}\right), \quad \text { and } \quad b=6\left(2 F_{1}-F_{0}\right),
$$

and this gives

$$
H=F_{2}-4\left(F_{0}^{2}+3 F_{1}\left(F_{1}-F_{0}\right)\right)
$$

For a specific function $f(z)=u \sqrt{z}+v z^{2}$, corresponding to the ensemble model used above, and after optimization (see Appendix A for details),

$$
H=\left(\frac{1}{180}\right) \frac{2 u^{2}}{5}-\frac{8 u v}{7}+v^{2}
$$

With $\alpha=v / u$, we get the following improvement factor:

$$
\frac{H}{F_{2}}=\left(\frac{1}{36}\right) \frac{\alpha^{2}-8 \alpha / 7+2 / 5}{\alpha^{2}+20 \alpha / 7+5 / 2}
$$

Figure 1.

For Figure 1,

$$
\left(H / F_{2}\right)_{\min }=4.5 \times 10^{-4} \quad \text { at } \alpha=.605
$$

$$
\left(H / F_{2}\right)_{\max }=.274 \quad \text { at } \alpha=-1.65,
$$

Even if one does not consider the model of $f(z)=u \sqrt{z}+v z^{2}$ a realistic one, it is quite clear that (a) one should optimize not $\Delta \Phi(z)$, but $\Delta \Phi(z)$ minus "best" straight line, and that (b) gains can be remarkable. In other words, the quality of the light generated may be much better than one would think if one were to only look at $\Delta \Phi(z)$ or $D(z)$. We make a trivial, but interesting observation: since H.(before or after subtraction of straight line) is a quadratic function of u, v, an increase in the G_{2} or G_{3} contribution may lead to a decrease of H.

For the measurement of $G_{2}=\int \cos \varphi D d \varphi$, consider the following 2-coil configuration:

Figure 2.

The above design will measure the integral over $\cos \varphi \cdot B(\varphi)$. But, $\cos \varphi \cdot B_{0} \cos \varphi$ gives a large signal, therefore the null-coil system is needed. The proposed system cancels $B_{0} \cos \varphi$ but also "sees" steering; thus, it is fine only if steering is small enough or known. Therefore, we give below only the basic design and performance equations for system components, and one system.
Since $\Delta \Phi$ is only relevant for undulator, we ignore the harmonics.
The compensation coil is the same for measurement of steering at ends.
The main coil sensitivity is $S_{0}=\cos \left(\alpha_{0}+\varphi\right)$ at $-\varphi_{2} \leq \varphi \leq \varphi_{2}$, and $S_{0}=0$ outside this region. At the center of the coil, sensitivity is $\cos \alpha_{0}$, and $B=\cos \varphi_{0}=\Re e^{i \varphi_{0}}=B$.

$$
\begin{aligned}
F_{0} & =\Re \int_{-\varphi_{2}}^{\varphi_{2}} e^{i\left(\varphi_{0}+\varphi\right)} \cos \left(\alpha_{0}+\varphi\right) d \varphi \\
& =\frac{1}{2} \Re e^{i \varphi_{0}} \int_{-\varphi_{2}}^{\varphi_{2}}\left(e^{i \alpha_{0}} e^{2 i \varphi}+e^{-i \alpha_{0}}\right) d \varphi \\
& =\frac{1}{2} \Re e^{i \varphi_{0}}\left(e^{i \alpha_{0}} \sin 2 \varphi_{2}+e^{-i \alpha_{0}} 2 \varphi_{2}\right) .
\end{aligned}
$$

The compensation coil sensitivity is $S_{1}(\varphi)=\varepsilon_{1}$ at $-\varphi_{1} \leq \varphi \leq \varphi_{1}$, and $S_{1}(\varphi)=0$ outside this region. At the center of the coil, $B=\cos \left(\varphi_{0}+\beta\right)=\Re e^{i\left(\varphi_{0}+\beta\right)}$.

$$
\begin{aligned}
F_{1} & =\dot{\Re \varepsilon} \int_{-\varphi_{1}}^{\varphi_{1}} e^{i\left(\varphi_{0}+\beta+\alpha\right)} d \varphi \\
& =2 \varepsilon_{1} \Re e^{i\left(\varphi_{0}+\beta\right)}-\sin \varphi_{1} .
\end{aligned}
$$

With $\varepsilon=4 \varepsilon_{1} \sin \varphi_{1}$ and $2 \varphi_{2}=\gamma$,

$$
F_{0}+F_{1}=\frac{1}{2} \Re e^{i \varphi_{0}}\left(e^{i \alpha_{0}} \sin \gamma+e^{-i \alpha_{0}} \gamma+\varepsilon e^{i \beta}\right) .
$$

To get no signal for all φ_{0}, we must satisfy

$$
\cos \alpha_{0}(\sin \gamma+\gamma)=-\varepsilon \cos \beta, \quad \text { and } \quad \sin \alpha_{0}(\sin \gamma-\gamma)=-\varepsilon \sin \beta,
$$

and since there are four parameters to satisfy two equations there are many possible solutions. We pick one with $\beta=0$ and $\alpha_{0}=0$ and have

$$
\varepsilon=4 \varepsilon_{1} \sin \varphi_{1}=-(\gamma+\sin \gamma), \quad \varepsilon_{1}=-\frac{2 \varphi_{2}+\sin 2 \varphi_{2}}{4 \sin \varphi_{1}} .
$$

If $\left|\varepsilon_{1}\right|>1$, we can use a combined coil system as follows, with $\varphi_{2}=\varphi_{1}=3 \pi / 2$ and therefore $\varepsilon_{1}=3 \pi / 4$.

Figure 2.

This is not the ultimate answer, but only a first step, and it may start similar thinking on other issues.

Appendix A.

For the execution of the optimization of H, we let

$$
\begin{gathered}
a+b / 2=F_{0}, \quad 2 F_{1}-F_{0}=b / 3, \quad a / 2+b / 3=F_{1}, \\
b=6\left(2 F_{1}-F_{0}\right) \quad a=2\left(2 F_{0}-3 F_{1}\right) .
\end{gathered}
$$

With the above, we have

$$
\begin{aligned}
H & =a^{2}+b^{2} / 3+F_{2}-2 a F_{0}-2 b F_{1}+a b \\
& =a \underbrace{(a+b / 2)}_{F_{0}}+b \underbrace{(b / 3+a / 2)}_{F_{1}}+F_{2}-2 a F_{0}-2 b F_{1} \\
& =F_{2}-a F_{0}-b F_{1} \\
& =F_{2}-2 F_{0}\left(2 F_{0}-3 F_{1}\right)-6 F_{1}\left(2 F_{1}-F_{0}\right) \\
& =F_{2}-4 F_{0}^{2}-12 F_{1}^{2}+12 F_{0} F_{1} .
\end{aligned}
$$

For the special case of $f(z)=\sqrt{z}+\alpha z^{2}$:

$$
F_{0}=2 / 3+\alpha / 3=(\alpha+2) / 3, \quad \text { and } \quad F_{1}=2 / 5+\alpha / 4
$$

and for $f^{2}(z)=z+\alpha^{2} z^{4}+2 \alpha z^{2.5}, F_{2}=\frac{{ }_{2}}{}+\frac{\alpha^{2}}{5}+\frac{4 \alpha}{7}$. Therefore,

$$
\begin{aligned}
& F_{2}-H=\frac{4}{9}(\alpha+2)^{2}+12\left(\frac{\alpha}{4}+\frac{2}{5}\right)^{2}-4(\alpha+2)\left(\frac{\alpha}{4}+\frac{2}{5}\right) \\
&=\frac{7 \alpha^{2}}{36}+\frac{26 \alpha}{45}+\frac{112}{225}, \\
& H=\alpha^{2}\left(\frac{1}{5}-\frac{7}{36}\right)+\alpha\left(\frac{4}{7}-\frac{26}{45}\right)+\frac{1}{2}-\frac{112}{225} . \\
&=\frac{1}{180}\left(\alpha^{2}-\frac{8 \alpha}{7}+\frac{2}{5}\right)=\frac{1}{180}\left(v^{2}-\frac{8 u v}{7}+\frac{2 u^{2}}{5}\right) . \\
& \frac{H}{F_{2}}=\frac{1}{36} \frac{\alpha^{2}-8 \alpha / 7+2 / 5}{\alpha^{2}+20 \alpha / 7+5 / 2} .
\end{aligned}
$$

Least Square Fit of $f(z)$ with $a+b z$ in $0 \leq z \leq 1$

Origin and Purpose of Study. If $f(z)=$ phase shift, the difference between $f(z)$ and $a+b z$ is the only damaging property of $f(z)$ since a would be an irrelevant shift of phase reference, and b represents a shift of center of line without any broadening. We define

$$
S=\int(a+b z-f(z))^{2} d z
$$

For $S_{a}^{\prime}=0: \quad a+b / 2=F_{0}=\int f(z) d z$,
For $S_{b}^{\prime}=0: \quad a / 2+b / 3=F_{1}=\int z f(z) d z$.
Therefore,

$$
b=12 F_{1}-6 F_{0} \text { and } a=4 F_{0}-6 F_{1} .
$$

For $\int f(z)^{2} d z=F_{2}$,

$$
\begin{aligned}
S & =a^{2}+b^{2} / 3+F_{2}+a b-2 a F_{0}-2 b F_{1} \\
& =a(a+b / 2)+b(a / 2+b / 3)-2 a F_{0}-2 b F_{1}+F_{2} \\
& =F_{2}-a F_{0}-b F_{1} \\
& =F_{2}-F_{0}\left(4 F_{0}-6 F_{1}\right)-F_{1}\left(12 F_{1}-6 F_{0}\right) \\
& =F_{2}-4\left(F_{0}^{2}+3 F_{1}^{2}-3 F_{0} F_{1}\right) .
\end{aligned}
$$

For a specific function, $f(z)=\sqrt{z}+\alpha z^{2}$,

$$
\begin{gathered}
f(z)^{2}=z+2 \alpha z^{5 / 2}+\alpha^{2} z^{4} \\
F_{0}=\frac{2}{3}+\frac{\alpha}{3}, \quad F_{1}=\frac{2}{5}+\frac{\alpha}{4}, \quad \text { and } \quad F_{2}=\frac{1}{2}+\frac{4 \alpha}{7}+\frac{\alpha^{2}}{5}
\end{gathered}
$$

thus,

$$
\begin{aligned}
S & =\frac{\alpha^{2}}{5}+\frac{4 \alpha}{7}+\frac{1}{2}-4\left(\frac{1}{9}\left(\alpha^{2}+4 \alpha+4\right)+3\left(\frac{\alpha^{2}}{16}+\frac{\alpha}{5}+\frac{4}{25}\right)-(\alpha+2)\left(\frac{\alpha}{4}+\frac{2}{5}\right)\right) \\
& =\alpha^{2}\left(\frac{1}{180}\right)-\alpha\left(\frac{2}{315}\right)+\frac{1}{450} \\
& =\alpha^{2} a_{2}+\alpha a_{1}+a_{0}
\end{aligned}
$$

with

$$
a_{2}=\frac{1}{180}, \quad a_{1}=-\frac{2}{315}, \quad \text { and } \quad a_{0}=\frac{1}{450},
$$

therefore,

$$
\begin{aligned}
& S=\frac{1}{180}\left(\alpha^{2}-\frac{8 \alpha}{7}+\frac{2}{5}\right), \\
& \frac{S}{F_{2}}=\frac{1}{36} \cdot \frac{\alpha^{2}-\frac{8 \alpha}{7}+\frac{2}{5}}{\alpha^{2}+\frac{20 \alpha}{7}+\frac{5}{2}}
\end{aligned}
$$

For $\alpha \gg 1, \sqrt{S / F_{2}}$ is improved by a factor of 6 , and for $\alpha \ll 1, \sqrt{S / F_{2}}$ is improved by a factor of 15 .
S / F_{2} is a strongly peaked function:
$\left(S / F_{2}\right)_{\max } \approx .274$ at $\alpha \approx-1.65$,
$S / F_{2} \approx .125$ at $\alpha \approx-3$,
$S / F_{2} \approx .004$ at $\alpha \approx 0$.
$\left(S / F_{2}\right)_{\text {min }} \approx 4.5 \times 10^{-4}$ at $\alpha \approx .605$,
Since $a+b z$ represents the error-free condition, looking at the deviation of phase shift from the straight line may represent the best way to characterize the consequences of the error fields.

$$
S_{\min }=\frac{1}{180}\left(\frac{2}{5}-\frac{16}{49}\right)=\frac{1}{50 \cdot 49} \quad \text { with } \quad \alpha=\frac{4}{7}
$$

and the values for a, b are

$$
\begin{gathered}
a=4 F_{0}-6 F_{1}=\frac{4}{3}(\alpha+2)-6\left(\frac{\alpha}{4}+\frac{2}{5}\right)=-\frac{\alpha}{6}+\frac{4}{15} \\
b=12 F_{1}-6 F_{0}=3\left(\alpha+\frac{8}{5}\right)-2(\alpha-2)=\alpha+\frac{4}{5}
\end{gathered}
$$

At the center

$$
\begin{aligned}
\Delta B & =b(0) \\
& =\frac{V_{1}}{h} \frac{1}{k_{0}\left(x_{2}-x_{1}\right)} \ln \frac{\cosh k_{0} x_{2}+1}{\cosh k_{0} x_{1}+1} \\
& =\frac{V_{1}}{h} \cdot \frac{\left(\ln \frac{\sinh k_{0} x_{2} / 2}{\sinh k_{0} x_{1} / 2}\right)}{\left(\frac{k_{0}\left(x_{2}-x_{1}\right)}{2}\right)},
\end{aligned}
$$

with $k_{0}=\pi / h$ and $k_{1}=2 \pi / \lambda$. Further,

$$
\begin{aligned}
\int b(z) \cos \left(k_{1} z\right) k_{1} d z & =\frac{V_{1}}{h} \cdot \frac{2}{\pi} \cdot k_{1} \cdot \frac{2 \pi}{k_{0}} \cdot \int_{x_{1}}^{x_{2}} \frac{\sin k_{1} x}{\sinh \left(\pi k_{1} / k_{0}\right)} \cdot \frac{d x}{x_{2}-x_{1}} \\
& =\frac{V_{1}}{h} \cdot \underbrace{\frac{4 k_{1}}{k_{0}} \cdot \frac{\sin \left(k_{1} \Delta x / 2\right) /\left(k_{1} \Delta x / 2\right)}{\sinh \left(\pi k_{1} / k_{0}\right)}}_{g_{1}}
\end{aligned}
$$

$$
\frac{V_{1}}{h}=\frac{\Delta B}{g_{0}}
$$

$$
\int b(z) \cos \left(k_{1} z\right) k_{1} d z=\frac{\Delta B}{g_{0}} g_{1}
$$

$$
\int b d z=\frac{V_{1}}{h} \cdot \frac{\lambda}{2}=\frac{\Delta B \cdot \lambda / 2}{g_{0}}
$$

Thus,

$$
\int \frac{\Delta B}{B_{0}} k_{1} d z=\varepsilon_{2} \pi \frac{\Delta B}{B_{0}}=\frac{\Delta B}{B_{0}} \frac{\lambda / 2}{g_{0}} \frac{2 \pi}{\lambda},
$$

$$
\varepsilon_{2}=\frac{1}{g_{0}}
$$

Similarly,

$$
\begin{gathered}
\frac{1}{B_{0}} \int b \cos \left(k_{1} z\right) k_{1} d z=\frac{\Delta B}{B_{0}} \frac{g_{1}}{g_{0}}=\varepsilon_{1} \pi \frac{\Delta B}{B_{0}} \\
\varepsilon_{1}=\frac{g_{1}}{\pi g_{0}} .
\end{gathered}
$$

Thus,

$$
\frac{\varepsilon_{1}}{\varepsilon_{2}^{2}}=\frac{g_{0} g_{1}}{\pi},
$$

and

$$
\frac{g_{0} g_{1}}{\pi}=\frac{4}{\pi} \cdot \ln \left(\frac{\sinh k_{0} x_{2} / 2}{\sinh k_{0} x_{1} / 2}\right) \cdot \frac{\sin \left(k_{1} \Delta x / 2\right)}{\sinh \left(\pi k_{1} / k_{0}\right)} \cdot \frac{\left(k_{1} / k_{0}\right)^{2}}{\left(k_{1} \Delta x / 2\right)^{2}}
$$

Figure 1.

For the above figure,

$$
\begin{gathered}
x_{1}+\frac{1}{2}\left(x_{2}-x_{1}\right)=\frac{\lambda}{4}=\frac{x_{1}+x_{2}}{2}, \\
\frac{\lambda / 4}{x_{1}}=3, \quad x_{1}=\frac{\lambda}{12}, \\
x_{2}=\frac{\lambda}{2}-x_{1}=\lambda \frac{5}{12} .
\end{gathered}
$$

Further,

$$
\begin{gathered}
k_{1} \frac{\Delta x}{2}=\frac{2 \pi}{\lambda} \cdot \frac{1}{2} \cdot \frac{4 \lambda}{12}=\frac{\pi}{3}, \\
k_{0} \frac{x_{2}}{2}=\frac{\pi}{h} \cdot \frac{5 \lambda}{24}=\frac{\lambda}{h} \cdot \frac{5 \pi}{24}, \\
k_{0} \frac{x_{1}}{2}=\frac{\pi}{h} \cdot \frac{\lambda}{24}=\frac{\lambda}{h} \cdot \frac{\pi}{24}, \\
\frac{k_{1}}{k_{0}}=\frac{2 h}{\lambda}, \quad \frac{\lambda}{h}=a .
\end{gathered}
$$

Thus,

$$
\frac{g_{0} g_{1}}{\pi}=\frac{36 \cdot 4}{\pi^{3}} \cdot \frac{\sqrt{3}}{2} \cdot \ln \left(\frac{e^{a 5 \pi / 12}-1}{e^{a \pi / 12}-1}\right) \cdot \frac{1}{a^{2}} \cdot \frac{1}{\sinh (2 \pi / a)}
$$

where for $\frac{2 h}{\lambda}=b=\frac{2}{a}$, and $a=\frac{2}{b}$,

$$
\frac{g_{0} g_{1}}{\pi}=\frac{36 \sqrt{3}}{\pi^{3}} \cdot b^{2} \cdot \ln \left(\frac{e^{5 \pi / 6 b}-1}{e^{\pi / 6 b}-1}\right) \cdot \frac{1}{2 \sinh (\pi b)}
$$

Comparison of First and Second Order Contributions of Error Fields to Phase Shift

We introduce, for $k z=\varphi, k d z=d \varphi$, and $\frac{\Delta B}{B_{0}}=D$,

$$
\Delta \Phi=P(\underbrace{-\cos \varphi \int D d \varphi}_{\left(A_{1}\right)}+\underbrace{\int \cos \varphi D d \varphi}_{\left(B_{1}\right)}+\underbrace{\frac{1}{2} \int\left(\int D d \varphi\right)^{2} d \varphi}_{\left(B_{2}\right)})
$$

where

$$
P=\frac{4}{1+2 / K^{2}}
$$

Notice that $\Delta \Phi \approx K^{2}$ for $K^{2} \ll 2$, and $\Delta \Phi$ is independent of K^{2} for $K^{2} \gg 2$.
We denote the "typical" case of B_{1} as

$$
B_{1}=\varepsilon_{1} D \frac{\lambda}{2} \frac{2 \pi}{\lambda}=\varepsilon_{1} \pi D
$$

At every error source, B_{1} changes by the above "typical" value of $B_{1}{ }^{\ddagger}$. We assume n contributions per period. After $N=z / \lambda$ periods, the total expectation value is

$$
\overline{B_{1}^{2}}=n \frac{z}{\lambda} \overline{\left(\varepsilon_{1} \pi D\right)^{2}}
$$

When

$$
B_{1}=\int D d \varphi
$$

we expect

$$
\overline{B_{1}^{2}}=n \frac{z}{\lambda} \overline{\left(\varepsilon_{2} \pi D\right)^{2}}
$$

At the end of insertion device with N periods we expect

$$
\left\langle B_{1}^{2}\right\rangle=\varepsilon_{1}^{2} \pi^{2} \overline{D^{2}} n N
$$

[^7]\[

$$
\begin{aligned}
\left\langle B_{2}\right\rangle & =\frac{1}{2} \varepsilon_{2}^{2} \pi^{2} \overline{D^{2}} n \frac{(N \lambda)^{2}}{2 \lambda} \frac{2 \pi}{\lambda} \\
& =\frac{1}{2} \varepsilon_{2}^{2} \pi^{3} \overline{D^{2}} n N^{2} \\
& =\varepsilon_{3} \sqrt{\left\langle B_{1}^{2}\right\rangle} \quad \text { with } \quad \varepsilon_{3}<1
\end{aligned}
$$
\]

This means that

$$
\begin{gathered}
\frac{1}{2} \varepsilon_{2}^{2} \pi^{3} \overline{D^{2}} n N^{2}=\varepsilon_{3} \varepsilon_{1} \pi \sqrt{\overline{D^{2}}} \sqrt{n} \sqrt{N} \\
\sqrt{\overline{D^{2}}}=\frac{2 \varepsilon_{3} \varepsilon_{1} / \varepsilon_{2}^{2}}{\pi^{2} \sqrt{n}(\sqrt{N})^{3}}
\end{gathered}
$$

We make the following definitions:

$$
\varepsilon_{1}=\varepsilon_{2}=1, \quad 2 \varepsilon_{3}=1, \quad n=4 \quad \text { and } \quad N=81
$$

Thus,

$$
\sqrt{\overline{D^{2}}} \approx \frac{1}{20 \times 10^{3}} \approx 5 \times 10^{5} .
$$

This means that the second order contributions will dominate. Or, similarly

$$
\varepsilon_{3}=\frac{\pi^{2}}{2} \frac{\varepsilon_{2}^{2}}{\varepsilon_{1}} \sqrt{\overline{D^{2}}} \sqrt{n}(\sqrt{N})^{3},
$$

and for $\sqrt{\overline{D^{2}}}=10^{-3}$,

$$
\varepsilon_{3} \approx 5 \times 2 \times 10^{-3+} \times 10^{3} \approx 10
$$

still demonstrating that second order contributions will dominate.
The magnitude of the $\Delta \Phi$ shift along the length of the insertion device with second order contributions is

$$
\begin{aligned}
\Delta \Phi & =4 \frac{1}{2} \varepsilon_{2}^{2} \pi^{3} \overline{D^{2}} n N^{2} \\
& \approx 2 \times 30 \times 10^{-6} \times 4 \times 6.5 \times 10^{3} \\
& \approx 30 \times 50 \times 10^{-3} \\
& \approx 1.5 \text { radians. }
\end{aligned}
$$

Thus,

$$
\frac{\varepsilon_{1}}{\varepsilon_{2}^{2}} \approx .5 \rightarrow D
$$

for equal contributions (i.e.: $\varepsilon_{3}=1$), and for

$$
D \approx 5 \times 10^{-5} \rightarrow D \approx 5 \times 10^{-3} \rightarrow \alpha=100
$$

for representation of phase shift by straight line.

Connection Between Undulator Field Errors and Optical Phase

We begin with the following definitions:

$$
x^{\prime \prime}=\frac{g}{\gamma} B \quad \text { and } \quad g=\frac{e}{m_{0} c}
$$

We introduce the following references:

$$
\begin{gathered}
B(z)=B_{0} \cos k z \\
x_{0}^{\prime}=\frac{g B_{0}}{\gamma k} \sin k z=\frac{K}{\gamma} \sin k z \quad \text { with } \quad \frac{g B_{0}}{k}=K \\
x_{0}=-\frac{K}{k \gamma} \cos k z \\
x_{W}=\frac{K}{k \gamma}
\end{gathered}
$$

We now proceed with the analysis.

$$
\Delta s=\int\left(\sqrt{1+\left(x_{0}^{\prime}+\Delta x^{\prime}\right)^{2}}-\sqrt{1+\left(x_{0}^{\prime}\right)^{2}}\right) d z=\int\left(x_{0}^{\prime} \Delta x^{\prime}+\frac{1}{2} \Delta\left(x^{\prime}\right)^{2}\right) d z
$$

By integration by parts, with $d u=x_{0}^{\prime} d z, u=x_{0}, v=\Delta x^{\prime}$, and $d v=\Delta x^{\prime \prime} d z$,

$$
\Delta s=x_{0} \Delta x^{\prime}-\int x_{0} \Delta x^{\prime \prime} d z+\frac{1}{2} \int \Delta\left(x^{\prime}\right)^{2} d z
$$

with

$$
\Delta x^{\prime}=\frac{g B_{0}}{\gamma k} \int \frac{\Delta B}{B_{0}} k d z \quad \text { and } \quad \Delta x^{\prime \prime}=\frac{g B_{0}}{\gamma} \frac{\Delta B}{B_{0}}
$$

where $g B_{0} / \gamma k=K / \gamma$, and thus

$$
\Delta s=\frac{K^{2}}{\gamma^{2} k}\left(-\cos k z \int \frac{\Delta B}{B_{0}} k d z+\int \cos (k z) \frac{\Delta B}{B_{0}} k d z+\frac{1}{2} \int\left(\int \frac{\Delta B}{B_{0}} k d z\right)^{2} k d z\right)
$$

Furthermore,

$$
\Delta t=\frac{\Delta s}{c}
$$

$$
\Delta \varphi=\omega \Delta t=\Delta s \frac{\omega}{c}=\Delta s \cdot k_{L}
$$

where,

$$
\begin{aligned}
& \lambda_{L}=\frac{\lambda}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right) \\
& k_{L}=k \frac{4 \gamma^{2}}{K^{2}\left(1+\frac{2}{K^{2}}\right)}
\end{aligned}
$$

and therefore,

$$
\Delta \varphi=P(\underbrace{-\cos k z \int \frac{\Delta B}{B_{0}} k d z}_{(a)}+\underbrace{\int \cos (k z) \frac{\Delta B}{B_{0}} k d z}_{(b)}+\underbrace{\frac{1}{2} \int\left(\int \frac{\Delta B}{B_{0}} k d z\right)^{2} k d z}_{(c)}),
$$

with

$$
P=\frac{4}{1+2 / K^{2}}
$$

Term (c) is of second order and is important only for a long insertion device. Term (a) gives harmonics and reduces line intensity for steering errors, but produces no effect if there is no steering. Term (b) produces phase shift and line broadening. Whether or not it is equal 0 depends on such elements as symmetry, but not on presence of net steering.

$\varrho, A_{0} / B_{1}$ for Hybrid Insertion Device

This note is a result of ANL lecture notes, and from Simple Analytical Model For Fields From One Pole Of Hybrid Insertion Device, \dagger with $k_{1}=2 \pi / \lambda$ and $k_{n}=n k_{1}$, and

$$
B(x)=\sum_{n=\mathrm{odd}} B_{n} \cos k_{n} x
$$

from poles with \pm " 1 ", and

$$
B_{n}=\frac{2}{\pi} \int_{-\infty}^{\infty} b(x) \cos k_{n} x d k_{1} x
$$

where $b(x)$ is the field from one pole with excitation +1 .
For V from 0 to V_{1} at the edge of pole going from $-x_{1}$ to x_{1},

$$
B_{n}=4 \frac{k_{1}}{k_{0}} \frac{\sin k_{n} x_{1}}{\sinh \left(\pi k_{n} / k_{0}\right)} \frac{V_{1}}{h} \quad \text { with } \quad k_{0}=\pi / h
$$

For V going linearly from 0 to \dot{V}_{1} over thickness of CSEM $=\left(x_{2}-x_{1}\right) / 2$, we have

$$
A_{0}=\int_{-\infty}^{\infty} b(x) d x=\frac{V_{1}}{h} \frac{\lambda}{2}
$$

$$
B_{n}=4 \frac{k_{1}}{k_{0}} \frac{V_{1}}{h} \frac{\sin \left(k_{n}\left(x_{2}-x_{1}\right) / 2\right)}{\left(k_{n}\left(x_{2}-x_{1}\right) / 2\right)} \frac{1}{\sinh \left(\pi k_{n} / k_{0}\right)} .
$$

For $k_{1}\left(x_{2}-x_{1}\right)^{2} / 6 \ll 1$,

$$
B_{1}=4 \frac{k_{1}}{k_{0}} \frac{V_{1}}{h} \frac{1}{\sinh \left(\pi k_{1} / k_{0}\right)}=\frac{4}{\pi} \frac{V_{1}}{h} \frac{\alpha}{\sinh \alpha} \quad \text { with } \quad \alpha=\pi \frac{k_{1}}{k_{0}}=2 \pi \frac{h}{\lambda}=\pi \frac{g}{\lambda} .
$$

We may now conclude that

$$
\frac{A_{0}}{B_{1}}=\lambda \frac{\pi}{8} \frac{\sinh \alpha}{\alpha}
$$

\dagger Document 0136u-w

For

$$
\varrho=\frac{A_{0}}{\int_{-\lambda / 4}^{\lambda / 4} B_{1} \cos k_{1} x d x}=\frac{B_{1} \lambda \frac{\pi}{8} \frac{\sinh \alpha}{\alpha}}{B_{1}\left(2 / k_{1}\right)}=\frac{k_{1} \lambda \pi}{16} \frac{\sinh \alpha}{\alpha}=\frac{\pi^{2}}{8} \frac{\sinh \alpha}{\alpha}
$$

we have

ϱ	1.5	2.0	2.5	3.0	4.0	5.0
g / λ	.35	.57	.70	.79	.94	1.05

Simple Analytical Model for Fields from One Pole of Hybrid Insertion Device

Figùre 1.

Model: midplane on $V=0$, and pole from $-\infty$ to $+\infty$ on $V=0$, except on $V=V_{1}$ for $-x_{1} \leq x \leq x_{1}$.

The above geometry is described by the following conformal map

$$
\pi \dot{z}=\frac{h}{t}
$$

and the following elements

$$
k_{0} z=\ln t, \quad t=e^{k_{0} z} \quad \text { and } \quad k_{0}=\frac{\pi}{h},
$$

and where x_{1} is the half-width of the pole. Putting \pm current filaments at $x= \pm x_{1}$,

$$
\begin{gathered}
\pi F=V_{1} \ln \frac{\left(t-t_{1}\right)}{\left(t-t_{2}\right)} \\
F^{\prime}=\frac{V_{1}}{h}\left(\frac{t}{t-t_{1}}-\frac{t}{t-t_{2}}\right) \\
=\frac{V_{1}}{h}\left(\frac{1}{t / t_{1}-1}-\frac{1}{t / t_{2}-1}\right) .
\end{gathered}
$$

where $t=e^{k_{0} z}, t_{1}=e^{k_{0}\left(x_{1}+i h\right)}=-e^{k_{0} x_{1}}$. Thus,

$$
\begin{align*}
F^{\prime} \frac{h}{V_{1}} & =\frac{1}{e^{k_{0}\left(z+x_{1}\right)}+1}-\frac{1}{e^{k_{0}\left(z-x_{1}\right)}+1} \\
& =-\frac{e^{k_{0} z}\left(e^{k_{0} x_{1}}-e^{-k_{0} x_{1}}\right)}{e^{2 k_{0} z}+1+e^{k_{0} z}\left(e^{k_{0} x_{1}}+e^{-k_{0} x_{1}}\right)} \\
& =-\frac{\sinh k_{0} x_{1}}{\cosh k_{0} z+\cosh k_{0} x_{1}}=-b(z) . \tag{1}
\end{align*}
$$

The odd harmonics of the field are described by

$$
\begin{equation*}
B_{N}=a \int_{-\infty}^{\infty} b(x) \cos \left(N k_{1} x\right) d x \tag{2}
\end{equation*}
$$

where $N=2 n+1, k_{N}=k_{1} N=k_{1}(2 n+1), k_{1}=2 \pi / \lambda$, and a is a constant, thus

$$
\begin{align*}
\frac{B_{N}}{a} & =\sinh k_{0} x_{1} \int_{-\infty}^{\infty} \frac{\cos \left(k_{N} x\right) d x}{\cosh k_{0} x+\cosh k_{0} x_{1}} \\
& =\sinh k_{0} x_{1} \cdot G_{N} \tag{3}\\
G_{N} & =\Re \int_{-\infty}^{\infty} \frac{e^{i k_{N} x}}{\cosh k_{0} x+\cosh k_{0} x_{1}} d x \tag{4}
\end{align*}
$$

That is, to evaluate this integral, one can integrate a line integral along the real axis of the complex z-plane, and close it at ∞ in the upper half-plane without changing its value.

There are singularities at $\cosh k_{0} z=-\cosh k_{0} x_{1}$ in the upper half-plane, with $k_{0} z=$ $\pm k_{0} x_{1}+i \pi(2 m+1)$, for $m=0,1,2, \ldots$. We take the first singularity at $k_{0} z=$ $+k_{0} x_{1}+i \pi M$ and do others later by replacing x_{1} by $-x_{1}$. We integrate over the upper half-plane:

$$
\begin{aligned}
G_{N+} & =\Re \int \frac{e^{i k_{N} z} d z}{\cosh k_{0} z+\cosh k_{0} x_{1}} \\
& =\Re \sum_{m=0} \frac{e^{i k_{N}\left(x_{1}+i \pi M / k_{0}\right)}}{k_{0} \sinh k_{0} z_{m}} \cdot 2 \pi i \\
& =+\frac{2 \pi}{k_{0}} \cdot \frac{\sin k_{N} x_{1}}{\sinh k_{0} x_{1}} \cdot \sum e^{-\pi\left(k_{N} / k_{0}\right)(2 m+1)} \\
& =+\frac{2 \pi}{k_{0}} \cdot \frac{\sin k_{N} x_{1}}{\sinh k_{0} x_{1}} \cdot \frac{e^{-\pi k_{N} / k_{0}}}{1-e^{-2 \pi k_{N} / k_{0}}} \\
& =+\frac{2 \pi}{k_{0}} \cdot \frac{\sin k_{N} x_{1}}{\sinh k_{0} x_{1}} \cdot \frac{1}{2 \sinh \left(\pi k_{N} / k_{0}\right)} \\
& =\frac{\pi}{k_{0}} \cdot \frac{\sin k_{N} x_{1}}{\sinh k_{0} x_{1}} \cdot \frac{1}{\sinh \left(\pi k_{N} / k_{0}\right)}
\end{aligned}
$$

One solves for G_{N-} similarly. Thus, we may re-write (3),

$$
\begin{equation*}
\frac{B_{N}}{a}=\frac{2 \pi}{k_{0}} \cdot \frac{\sin k_{N} x_{1}}{\sinh \left(\pi k_{N} / k_{0}\right)} \tag{5}
\end{equation*}
$$

and further,

$$
\begin{equation*}
\frac{B_{(2 n+1)}}{B_{1}}=\frac{\sin \left(k_{1}(2 n+1) x_{1}\right)}{\sinh \left(\left(\pi k_{1} / k_{0}\right)(2 n+1)\right)} \cdot \frac{\sinh \left(\pi k_{1} / k_{0}\right)}{\sin \left(k_{1} x_{1}\right)}, \tag{6}
\end{equation*}
$$

with $\quad k_{0}=\frac{\pi}{h}, \quad k_{1}=\frac{2 \pi}{\lambda}, \quad$ and thus $\pi \frac{k_{1}}{k_{0}}=2 \pi \frac{h}{\lambda}$.
This model of $b(z)$, and the resultant B_{N}, assume that the potential increases like a step function at the edge of the pole. As a next approximation, to improve this model, one would assume that the potential increases linearly over the size of the CSEM and represent this by the operation

$$
\frac{1}{x_{2}-x_{1}} \int_{x_{1}}^{x_{2}} d x_{1}
$$

which is easily executed on both $b(z)$ and B_{N}. For $b(z)$ we have

$$
\begin{equation*}
\int \frac{\sinh k_{0} x_{1}}{\cosh k_{0} z+\cosh k_{0} x_{1}} \cdot \frac{d x_{1}}{\left(x_{2}-x_{1}\right)}=\frac{1}{k_{0}\left(x_{2}-x_{1}\right)} \ln \frac{\cosh k_{0} z+\cosh k_{0} x_{2}}{\cosh k_{0} z+\cosh k_{0} x_{1}} \tag{7}
\end{equation*}
$$

and for B_{N} we have

$$
\begin{align*}
\int \sin \left(N k_{1} x_{1}\right) \frac{d x_{1}}{\left(x_{2}-x_{1}\right)} & =\frac{\cos N k_{1} x_{1}-\cos N k_{1} x_{2}}{N k_{1}\left(x_{2}-x_{1}\right)} \\
& =-\sin \left((2 n+1) k_{1} \frac{x_{2}+x_{1}}{2}\right) \frac{\sin \left((2 n+1) k_{1} \frac{x_{2}-x_{1}}{2}\right)}{\frac{(2 n+1)}{k_{1}} \cdot \frac{x_{2}-x_{1}}{2}} \tag{8}
\end{align*}
$$

where

$$
\begin{gathered}
-\sin \left(k_{1}(2 n+1)\left(\frac{x_{2}+x_{1}}{2}\right)\right)=(-1)^{n+1}, \\
\frac{x_{2}+x_{1}}{2}=\frac{\lambda}{4} \text { and }(2 n+1) k_{1} \frac{x_{2}-x_{1}}{2}=\frac{\pi}{2}+n \pi .
\end{gathered}
$$

The argument of the log function can, and should be, operated on in the same manner, such that for

$$
\begin{gathered}
\cosh k_{0} z=C_{0}, \quad \cosh k_{0} x_{1}=C_{1}, \quad \text { and } \quad \cosh k_{0} x_{2}=C_{2}, \\
\frac{C_{0}+C_{2}}{C_{0}+C_{1}}=\frac{C_{0}+a+b}{C_{0}+a-b}=\frac{1+\frac{b}{C_{0}+a}}{1-\frac{b}{C_{0}+a}}
\end{gathered}
$$

where

$$
a=\frac{C_{2}+C_{1}}{2}, \quad b=\frac{C_{2}-C_{1}}{2}, \quad \text { and } \quad \ln \frac{H \varepsilon}{1-\varepsilon}=2\left(\varepsilon+\frac{\varepsilon^{3}}{3}+10\right)
$$

Wiggler Parameter K Definitions

For $v=c$ we have

$$
\begin{gathered}
m_{0} \gamma v^{2} x^{\prime \prime}=e v B=e v A^{\prime}, \\
x^{\prime}=\frac{1}{\gamma} \frac{e}{m_{0} v} A \quad \text { and } \quad x_{\max }^{\prime}=\frac{K_{1}}{\gamma} .
\end{gathered}
$$

Definition 1:

$$
K_{1}=\frac{e}{m_{0} c} A_{\max }=\frac{e}{2 \pi m_{0} c} 2 \pi A_{\max }
$$

For a pure sinusoidal field we have

$$
B=B_{0} \sin k z \quad \text { and } \quad A=\frac{B_{0}}{k} \cos k z
$$

Thus

$$
A_{\max }=\frac{B_{0}}{k} \Longrightarrow K_{1}=\frac{e}{2 \pi m_{0} c} B_{0} \lambda_{u}
$$

Definition 2:

The "path length" slippage in λ_{u} equals $\lambda_{\text {light }}$. (We shall refer to $\lambda_{\text {light }}$ as λ_{L} for the remainder of this document.)

$$
\Delta t=\frac{s}{c \beta}-\frac{\lambda_{u}}{c}=\frac{\lambda_{\mathrm{L}}}{c} \quad \text { and thus } \quad \lambda_{\mathrm{L}}=\lambda_{u}\left(\frac{s}{\lambda_{u} \beta}-1\right)
$$

where $s=$ path length over one period, and $s^{\prime}=\sqrt{1+x^{\prime 2}}$.
Proceeding from above, we now have that

$$
\begin{aligned}
\frac{\lambda_{\mathrm{L}}}{\lambda_{u}} & =\frac{1}{\beta \lambda_{u}} \int_{0}^{\lambda_{u}}\left(1+\frac{x^{\prime 2}}{2}\right) d z-1 \\
& =\frac{1}{\beta}-1+\frac{1}{2 \lambda_{u}} \int_{0}^{\lambda_{u}} x^{\prime 2} d z
\end{aligned}
$$

By introducing

$$
\beta^{2}+\frac{1}{\gamma^{2}}=1 \text { and thus } \beta^{-1}=\left(1-\frac{1}{\gamma^{2}}\right)^{-1 / 2}=1+\frac{1}{2 \gamma^{2}}
$$

we further simplify

$$
\begin{aligned}
\frac{\lambda_{\mathrm{L}}}{\lambda_{u}} & =\frac{1}{2 \gamma^{2}}+\frac{1}{2 \lambda_{u}} \int_{0}^{\lambda_{u}}{x^{\prime}}^{2} d z \\
& =\frac{1}{2 \gamma^{2}}(1+\underbrace{\left(\frac{e}{m_{0} c}\right)^{2} \frac{\int_{0}^{\lambda_{u}} A^{2} d z}{\lambda_{u}}}_{K_{2}^{2} / 2})
\end{aligned}
$$

and we now arrive at our definition

$$
K_{2}^{2}=\left(\frac{e}{m_{0} c}\right)^{2} \frac{2}{\lambda_{u}} \int_{0}^{\lambda_{u}} A^{2} d z
$$

For $A=\frac{B_{0}}{k} \cos k z$ we have

$$
K_{2}^{2}=\left(\frac{e}{m_{0} c}\right)^{2} \frac{2}{\lambda_{u}} \frac{B_{0}^{2}}{k^{2}} \frac{\lambda_{u}}{2}=\left(\frac{e}{2 \pi m_{0} c} B_{0} \lambda_{u}\right)^{2}
$$

where $\left(e / 2 \pi m_{0} c\right)=.934 \cdot 10^{2}$ in SI units.

We define $\left(2 \pi m_{0} c / e\right)=A_{e}$ and thus $1 / A_{e}=.934 \cdot 10^{2}$ MKS.
We now reformulate our Definitions 1 and 2 such that

$$
K_{1}=\frac{2 \pi}{A_{e}} A_{\max }
$$

and

$$
K_{2}=\frac{2 \pi}{A_{\dot{e}}} \sqrt{\frac{2 \int_{0}^{\lambda_{u} / 4} A^{2} d z}{\lambda_{u} / 4}}
$$

Definition 3:

$$
K_{3}=\frac{B_{0} \lambda_{u}}{A_{e}}=\frac{V_{0}}{A_{e}} 4 \frac{\lambda_{u} / 4}{D_{4}}
$$

Where D_{4} refers to the NPOLEI.BAS program variable which describes the distance factor in the transformation from scalar potential to the field.

NPOLE

A recreation, with "Korea modification," of a program (for HP71B) to design and analyze $\lambda / 4$ of hybrid insertion device.

We will begin by establishing some background information for the conformal map and the limits for t_{1} and t_{2}.

Figure 1.

For the map of Figure 1,

$$
\pi \dot{z}=-i \frac{1-t_{1}}{\sqrt{t}\left(t-t_{1}\right)(t-1)}
$$

$$
a=\frac{1}{\sqrt{t_{1}}} \text { and thus } t_{1}=\frac{1}{a^{2}} .
$$

Figure 2.

We proved in Korea in 1987 that

$$
0<t_{1}<1 / a^{2}<t_{2}<1 \text { and } \frac{1}{a^{2}}=\left(\frac{W_{1}}{W_{0}}\right)^{2}
$$

for the geometry of Figure 2.
Therefore, in program NPOLE1.BAS (included at the end of this document),

$$
t_{1}=\frac{1}{a^{2}} \operatorname{RANG}(\mathrm{C} 1), \quad t_{2}=\frac{1}{a^{2}}+\left(1-\frac{1}{a^{2}}\right) \operatorname{RANG}(\mathrm{C} 2),
$$

with $0<\operatorname{RANG}(x)<1$ as used in the first version, and $\operatorname{RANG}(x)=1 /\left(1+e^{x}\right)$ as specifically used now.
The map for geometry with corners at t_{1}, t_{2} is described by

$$
\dot{z}=-i W_{1} \frac{Q_{1}}{\sqrt{t} \sqrt{t-t_{1}} \sqrt{t-t_{2}}(t-1)} \quad \text { and } \quad Q_{1}=\frac{\sqrt{1-t_{1}} \sqrt{1-t_{2}}}{\pi} .
$$

We determine t_{1} and t_{2} from

$$
\frac{h_{0}}{W_{1}}=Q_{1} \int_{0}^{t_{1}} \frac{d t}{\sqrt{t} \sqrt{t_{1}-t} \sqrt{t_{2}-t}(1-t)}
$$

$$
\frac{W_{0}}{W_{1}}=Q_{1} \int_{t_{1}}^{t_{2}} \frac{d t}{\sqrt{t} \sqrt{t-t_{1}} \sqrt{t_{2}-t}(1-t)}
$$

To evaluate the integrals, we use

$$
\int_{t_{1}}^{t_{2}} \frac{f(t) d t}{\sqrt{t-t_{1}} \sqrt{t_{2}-t}}=3 \int_{-1}^{1} \frac{f(t)}{\sqrt{4-x^{2}}} d x
$$

$$
t=\frac{2\left(t_{2}+t_{1}\right)+\left(t_{2}-t_{1}\right) x\left(3-x^{2}\right)}{4}
$$

We use Gaussian integration with segmented intervals for testing and accuracy purposes. We use a " 2 D " secant equation solver to determine t_{1} and t_{2} from the above integrals.
We describe the complex potentials for fluxes, fields:

Figure 3.

$$
\dot{F}=-\frac{Q_{2} V_{0}}{\sqrt{t} \sqrt{t-t_{1}}(t-1)} \quad \text { and } \quad Q_{2}=\frac{\sqrt{1-t_{1}}}{\pi} .
$$

We therefore have

$$
F=-Q_{2} V_{0} \int \frac{d t}{t^{2} \sqrt{1-t_{1} / t}(1-1 / t)}=-Q_{2} \int \frac{2 d u}{t_{1}\left(1-\left(1-u^{2}\right) / t_{1}\right)} V_{0}
$$

where

$$
\begin{gathered}
\sqrt{1-\frac{t_{1}}{t}}=u, \quad \frac{t_{1}}{t}=1-u^{2}, \quad \text { and thus } \quad \frac{d t}{t^{2}}=\frac{2 u d u}{t_{1}} \\
1-t_{1}=t_{3}^{2}
\end{gathered}
$$

Thus,

$$
\begin{aligned}
\frac{1}{V_{0}} F & =-Q_{2} \int \frac{2 d u}{u^{2}-t_{3}^{2}} \\
& =-Q_{2} \int\left(\frac{1}{u-t_{3}}-\frac{1}{u+t_{3}}\right) \frac{d u}{t_{3}} \\
& =\frac{Q_{2}}{t_{3}} \ln \frac{u+t_{3}}{u-t_{3}} \\
& =\frac{Q_{2}}{t_{3}} \ln \frac{\sqrt{1-t_{1} / t}+t_{3}}{\sqrt{1-t_{1} / t}-t_{3}} .
\end{aligned}
$$

Flux into pole / V_{0} :

$$
\begin{aligned}
E_{p} & =\left.\frac{Q_{2}}{t_{3}} \ln \left|\frac{\sqrt{1+t_{1} / \tau}+t_{3}}{\sqrt{1+t_{1} / \tau}-t_{3}}\right|\right|_{0} ^{\infty} \\
& =\frac{Q_{2}}{t_{3}} \ln \frac{1+t_{3}}{1-t_{3}} .
\end{aligned}
$$

Flux into midplane (for K):

$$
\begin{aligned}
E_{M} & =\left(F\left(t_{2}\right)-F\left(t_{1}\right)\right) / V_{0} \\
& =\frac{Q_{2}}{t_{3}} \ln \frac{t_{3}+\sqrt{1-t_{1} / t_{2}}}{t_{3}-\sqrt{1-t_{1} / t_{2}}}
\end{aligned}
$$

with $K_{1}=2 \pi V_{0} E_{M}\left(1 / A_{e}\right)$ where $\left(1 / A_{e}\right)=.934 \cdot 10^{2} \mathrm{MKS}$.
We calculate the excess flux coefficient for the side of the pole $\left(V_{0}=1\right)$:

$$
\left(A(t)-A(\infty)=\frac{y(t)-y(\infty)}{W_{1}}+E_{s}\right)_{t \rightarrow 1}
$$

$$
E_{s}=\int_{1}^{\infty}\left(-\dot{F}+\frac{\dot{z}}{i}\right) d t=\int_{1}^{\infty} \frac{1}{\sqrt{t} \sqrt{t-t_{1}}(t-1)} \underbrace{\left(Q_{2}-\frac{Q_{1}}{\sqrt{t-t_{2}}}\right)}_{G_{1}} d t
$$

where

$$
\begin{aligned}
G_{1} & =Q_{2}\left(1-\frac{\sqrt{1-t_{2}}}{\sqrt{t-t_{2}}}\right) \\
& =\frac{Q_{2}}{\sqrt{t-t_{2}}}\left(\sqrt{t-t_{2}}-\sqrt{1-t_{2}}\right) \\
& =\frac{Q_{2}(t-1)}{\sqrt{t-t_{2}}\left(\sqrt{t-t_{2}}+\sqrt{1-t_{2}}\right)}
\end{aligned}
$$

and thus

$$
\begin{aligned}
E_{s} & =Q_{2} \int_{1}^{\infty} \frac{d t}{\sqrt{t} \sqrt{t-t_{1}} \sqrt{t-t_{2}}\left(\sqrt{t-t_{2}}+\sqrt{1-t_{2}}\right)} \\
& =Q_{2} \int_{0}^{1} \frac{d t}{\sqrt{1-t_{1} t} \sqrt{1-t_{2} t}\left(\sqrt{t-t_{2} t}+\sqrt{t} \sqrt{1-t_{2}}\right)} .
\end{aligned}
$$

The field B_{0} at $t=t_{1}$ is (\dot{F} / \dot{z}). With V_{0} on pole,

$$
B_{0}=\frac{V_{0}}{W_{1}} \frac{Q_{2}}{Q_{1}} \sqrt{t_{2}-t_{1}}=\frac{V_{0}}{W_{1}} \frac{\sqrt{t_{2}-t_{1}}}{\sqrt{1-t_{2}}}=\frac{V_{0}}{D_{4}}
$$

where D_{4} is an old notation and

$$
D_{4}=W_{1} \frac{\sqrt{1-t_{2}}}{\sqrt{t_{2}-t_{1}}}
$$

For the second definition of K,

$$
K_{2}=2 \pi \frac{1}{A_{e}} \sqrt{\frac{2 \int_{0}^{\lambda_{u} / 4} A^{2} d z}{\lambda_{u} / 4}}
$$

We need $\int F^{2} d z$, thus,

$$
\int A^{2} d z=\int_{t_{1}}^{t_{2}} F^{2} \dot{z} d t=G_{2}
$$

Therefore, we have that

$$
G_{2}=\frac{Q_{1} Q_{2}^{2}}{t_{3}^{2}} V_{0}^{2} W_{1} \int_{t_{1}}^{t_{2}}\left(\ln \frac{t_{3}+\sqrt{1-t_{1} / t}}{t_{3}-\sqrt{1-t_{1} / t}}\right)^{2} \frac{d t}{\sqrt{t} \sqrt{t-t_{1}} \sqrt{t_{2}-t}(1-t)}
$$

$$
\frac{G_{2}}{\lambda_{u} / 4}=\frac{G_{2}}{W_{0}}=V_{0}^{2} \frac{W_{1}}{W_{0}} \frac{Q_{1} Q_{2}^{2}}{t_{3}^{2}} J
$$

where

$$
J=\int_{t_{1}}^{t_{2}}\left(\ln \frac{t_{3}+\sqrt{1-t_{1} / t}}{t_{3}-\sqrt{1-t_{1} / t}}\right)^{2} \frac{d t}{\sqrt{t} \sqrt{t-t_{1}} \sqrt{t_{2}-t}(1-t)},
$$

and thus we may summarize

$$
K_{2}=2 \pi V_{0} \frac{1}{A_{e}} \sqrt{\frac{2 W_{1} Q_{2}^{2} Q_{1}}{t_{3}^{2} W_{0}} J} .
$$

Program NPOLE1.BAS

```
PRINT:PRINT DATE$;" ";TIME$;". NPOLE1"
'GOTO BYPASS
PRINT "Determines parameter values and evaluates flux into midplane (Em) and"
PRINT "pole (Ep) of ID, and excess flux coefficient for side of pole (Es)."
PRINT "K1,K2,K3 are obtained by multiplying the printed values by the scalar"
PRINT "potential of pole in Tcm. K1 is for maximum deflection angle, K2 for"
PRINT "trajectory length effect, and K3 for B0*period. D4=VO/BO for V0=1."
REM--List of P1() elements:0>W01~(-2),1>T1,2>T2,3>T3,5>Q1,6>Q2,9>Function ID
BYPASS:
DEFINT J:DEFDBL A-Z
PI=4*ATN(1):A1$="##.###"~-~ ":TAP=0
A2\$=" Em Ep Ki K2 K3
A3$=" HO=##.## WO=##.## W1=##.##"
DIM P1(0:9),GX(1:4),GW(1:4)
SHARED PI,GX(),GW(),P1(),A1$
REM--GX,GH=(normalized) abscissas; P1=parameters for Gauss integrator
DATA .1834346425,.3626837834,.5255324099,.3137066459
DATA .7966664774,.2223810345,.9602898565,.1012285363
FOR J1=1 TO 4:READ GX(J1),GW(J1):NEXT J1:REH--Abscissas, weights for Gauss
REM
'C10=1:C20=1
PRINT:PRINT TAB(TAP);:PRINT A2$
DO
AGAIN:
INPUT;"HO, WO, \(>\) H1=", HOO,W00,W10:REM--INPUT unnormalized 1/2gap, period/4, IF HOO>O THEN HO=HOO:REM--pole to symmetry line distance, stored temporarily
IF WOO>O THEN WO=WOO:REM--in HOO,WOO,W1O, then in HO,WO,W1(=not-normalized).
IF W10>0 THEN W1=W10:REM--H01,W01=normalized with W1, used in program.
IF HOO=0 AND WOO=0 AND W1O=0 THEN END
IF WO<W1 THEN PRINT TAB(20);:PRINT "WO must be larger than W1!":GOTO AGAIN
PRINT TAB(24);:PRINT USING A3$;HO;WO;W1
н01=H0/W1:W01=WO/W1:P1(0)=1/(WO1*W01):DC1=.1:DC2=.1
GOSUB SOLVIT
PRINT TAB(TAP);:PRINT USING A1$;EM;EP;ES;K1;K2;K3;D4
LOOP
SOLVIT:
C11=C10 + DC1:C21=C20:C12=C10:C22=C20 + DC2
CALL EVAL (C10, C20, S10,S20):S10=S10-H01:S20=S20-w01:S00=ABS (S10) +ABS (S20)
CALL EVAL(C11,C21,S11,S21):S11=S11-H01:S21=S21-स01:S01=ABS(S11)+ABS(S21)
CALL EVAL (C12,C22,S12,S22) :S12=S12-H01:S22=S22-H01:S02=ABS(S12)+ABS(S22)
```

DO

REM--REARR puts "rorst" set into last column, to be discarded later GOSUB REARR

N1=1/((S11-S10)*(S22-S20)-(S12-S10)*(S21-S20)): REH--Start of 2D secant $\mathrm{D} 1=\mathrm{N} 1 *(\mathrm{~S} 20 * \mathrm{~S} 12-\mathrm{S} 10 * \mathrm{~S} 22): \mathrm{D} 2=\mathrm{N} 1 *(\mathrm{~S} 10 * \mathrm{~S} 21-\mathrm{S} 20 * \mathrm{~S} 11):$ REM--equation solver DC1 $=($ C11-C10) *D1 $+(C 12-C 10) * D 2: D C 2=(C 21-C 20) * D 1+(C 22-C 20) * D 2$

C12=C11: C22=C21:C11=C10:C21=C20:S12=S11:S22=S21:S11=S10:S21=S20
S02=S01:S01=S00:C10=C10+DC1:C20=C20+DC2:REM--Recommended new parameters
CALL EVAL (C10, C20,S10,S20):S10=S10-H01:S20=S20-W01:S00=ABS (S10) +ABS (S20)
LDOP UNTIL SOO<. 001
$\mathrm{P} 1(9)=3$: $\operatorname{CALL} \operatorname{SGAUSSINT8}(0,1, \mathrm{G} 2,-.001): \mathrm{Q} 2=\mathrm{P} 1(6): \mathrm{T} 1=\mathrm{P} 1(1): \mathrm{T} 2=\mathrm{P} 1(2): \mathrm{T} 3=\mathrm{P} 1(3)$
$\mathrm{Q} 1=\mathrm{P} 1(5): \mathrm{ES}=\mathrm{Q} 2 * \mathrm{G} 2: \mathrm{EP}=\mathrm{Q} 2 / \mathrm{T} 3 * \mathrm{LOG}((1+\mathrm{T} 3) /(1-\mathrm{T} 3)): \mathrm{D} 4=\mathrm{W} 1 * \mathrm{SQR}((1-\mathrm{T} 2) /(\mathrm{T} 2-\mathrm{T} 1))$
$\mathrm{EM}=\mathrm{Q} 2 / \mathrm{T} 3 * \mathrm{LOG}(2 /(1-\mathrm{SQR}(1-\mathrm{T} 1 / \mathrm{T} 2) / \mathrm{T} 3)-1): \mathrm{K} 1=2 * \mathrm{PI} * \mathrm{EM} * .934: \mathrm{K} 3=4 * \mathrm{HO} / \mathrm{D} 4 * .934$
P1 (9) $=4$: CALL SGAUSSINT8 ($-1,1, \mathrm{~K} 2,-.001$) : K2 $=2 * \mathrm{PI} * \mathrm{Q} 2 / \mathrm{P} 1(3) * \mathrm{SQR}(2 * \mathrm{Q} 1 * 3 * \mathrm{~K} 2 / \mathrm{W01}) * .934$
RETURN

REARR:
IF S00>S01 THEN GOSUB SW01
IF S01>S02 THEN GOSUB S $\$ 12$
RETURN

SWO1:
SWAP S00,S01:SWAP S10,S11:SWAP S20,S21:SWAP C10,C11:SWAP C20,C21:RETURN SW12:
SWAP S01,S02:SWAP S11,S12:SWAP S21,S22:SWAP C11,C12:SWAP C21,C22:RETURN

SUB EVAL(C1,C2,S1,S2):REM--Calculates H01, W01 for set of parameters C1,C2>T1,T2
T1=P1 (0)*RANG (C1):T2=P1 (0) +(1-P1 (0))*RANG(C2)
$\mathrm{T} 3=\mathrm{SQR}(1-\mathrm{T} 1): \mathrm{P} 1(1)=\mathrm{T} 1: \mathrm{P} 1(2)=\mathrm{T} 2: \mathrm{P} 1(3)=\mathrm{T} 3$
$\mathrm{Q} 2=\mathrm{T} 3 / \mathrm{PI}: \mathrm{Q} 1=\mathrm{Q} 2 * \mathrm{SQR}(1-\mathrm{T} 2): \mathrm{P} 1(5)=\mathrm{Q} 1: \mathrm{P} 1(6)=\mathrm{Q} 2$
P1 (9) $=1$: CALL SGAUSSINT8($-1,1, \mathrm{G} 2,-.001$): S1=3*Q1*G2
P1 (9) $=2$: CALL SGAUSSINT8 ($-1,1, \mathrm{G} 2,-.001$) : S2=3*Q1*G2
END SUB

SUB SGAUSSINT8(XO,X3,G2,DG):REM-Gauss integrator, aith interval segmentation IF DG>0 THEN E1=DG:E2=0 ELSE E1=0:E2=-DG:REM-FFor DG>/<0,DG=absol./reI. error CALL GAUSSINT8(X0,X3,G2):J1=1:J4=16:REM--J4=largest \# subdiv.
DO
G1=G2:G2=0:J1=2*J1:DX=(X3-X0)/J1:REM--G1/G2=last/next computed integral
IF J1>J4 THEN PRINT " Not converged":END
FOR J2=0 TO J1-1
CALL GAUSSINT8(XO+J2*DX,X0+(J2+1)*DX,G3)

NEXT J2
LOOP UNTIL ABS(G2-G1)<E1+E2*ABS(G2) OR J1>J4
END SUB

```
SUB GAUSSINT8(X1,X2,G2):REM---m---m----Integrator; G2=value of integral
X0=.5*(X2+X1):X3=X0-X1:G2=0
ON P1(9) GOTO INTEGRAND1,INTEGRAND2,INTEGRAND3,INTEGRAND4
INTEGRAND1:
FOR J1=1 TO 4
    DX=GX(J1)*X3:G2=G2+GH(J1)*(GCT1(X0+DX)+GCT1(X0-DX))
NEXT J1:G2=G2*X3
EXIT SUB
INTEGRAND2:
FOR J1=1 TO 4
    DX=GX(J1)*X3:G2=G2+GW(J1)*(GCT2(XO+DX) +GCT2(XO-DX))
NEXT J1:G2=G2*X3
EXIT SUB
INTEGRAND3:
FOR J1=1 TO 4
    DK=GX(J1)*X3:G2=G2+GW(J1)*(GCT3(X0+DX)+GCT3(XO-DX))
NEXT J1:G2=G2*X3
EXIT SUB
INTEGRAND4:
FOR J1=1 TO 4
    DX=GX(J1)*X3:G2=G2+GW(J1)*(GCT4(XO+DX)+GCT4(XO-DX))
NEXT J1:G2=G2*X3
END SUB
FUNCTION GCT1(X):REM-------------_First of functions to be integrated.
TT=P1(1)*(2+X*(3-X*X))/4:GCT1=1/SQR((P1 (2)-TT)*(4-X*X))/(1-TT)
END FUNCTION
FUNCTION GCT2(X)
TT=((P1(2)+P1(1))*2+(P1(2)-P1(1))*X*(3-X*X))/4
GCT2=1/SQR(TT*(4-X*X))/(1-TT)
END FUNCTION
FUNCTION GCT3(X)
S1=SQR(1-P1(2)*X):GCT3=1/SQR(1-P1(1)*X)/(S1*(S1+SQR(X*(1-P1(2)))))
END FUNCTION
FUNCTION GCT4(X)
TT=((P1(2)+P1(1))*2+(P1(2)-P1(1))*X*(3-X*X))/4:T4=SQR(1-P1(1)/TT)/P1(3)
GCT4=(LOG((1+T4)/(1-T4)))}-2/(1-TT)/SQR(TT*(4-X*X))
END FUNCTIOR
```

```
FUNCTION RANG(X):REH-_-__-_-_-_-_-_-_-_-_-_-_-_-_
RANG =1/(1+EXP(X))
END FUNCTION
DEF FNPOLE (X)=((X+1)*LOG(X+1)-(X-1)*LOG(X-1))/PI
```


Program Results

```
06-28-1993 10:14:02 NPOLE1
```

Determines parameter values and evaluates flux into midplane (Em) and pole (Ep) of ID, and excess flux coefficient for side of pole (Es). K1,K2,K3 are obtained by multiplying the printed values by the scalar potential of pole in Tcm. K1 is for maximum deflection angle, K2 for trajectory length effect, and $K 3$ for BO*period. $D 4=V O / B O$ for $V 0=1$.

Error of Flux Calculation for Finite Pole Width with Excess Flux Coefficient

Figure 1.

$$
\dot{z}=-\frac{\sqrt{t^{2}-1}}{{\sqrt{t^{2}-a^{2}}}^{3}}
$$

We have

$$
h_{0}=\int_{0}^{\infty} \frac{\sqrt{1+t^{2}}}{{\sqrt{a^{2}+t^{2}}}^{3}} d t . \quad \text { and } \quad h_{1}=\int_{1}^{\infty} \frac{\sqrt{1-t^{2}}}{{\sqrt{t^{2}-a^{2}}}^{3}} d t
$$

We introduce

$$
\begin{gathered}
\sqrt{a^{2}+t^{2}}=\frac{1}{u}, \quad t=\sqrt{\frac{1}{u^{2}}-a^{2}}=\frac{\sqrt{1-a^{2} u^{2}}}{u} \\
d t=-\frac{\frac{a^{2} u^{2}}{\sqrt{1-a^{2} u^{2}}}+\sqrt{1-a^{2} u^{2}}}{u^{2}} d u=-\frac{1}{u^{2} \sqrt{1-a^{2} u^{2}}} d u \\
1+t^{2}=1-a^{2}+\frac{1}{u^{2}}=b^{2}+\frac{1}{u^{2}}, \quad b^{2}=1-a^{2}
\end{gathered}
$$

we therefore have

$$
h_{0}=-\frac{1}{a} \int_{0}^{1 / a} \frac{\sqrt{1+b^{2} u^{2}}}{\sqrt{1-a^{2} u^{2}}} d u
$$

And given $a u=\sin \varphi$, and $d u=\frac{\cos \varphi d \varphi}{a}$,

$$
\begin{aligned}
h_{0} & =-\frac{1}{a} \int_{0}^{\pi / 2} \sqrt{1+\frac{b^{2}}{a^{2}} \sin ^{2} \varphi} d \varphi \\
& =-\frac{1}{a} \int_{0}^{\pi / 2} \sqrt{1+\frac{b^{2}}{a^{2}}-\frac{b^{2}}{a^{2}} \cos ^{2} \varphi} d \varphi \\
& =-\frac{1}{a^{2}} \int_{0}^{\pi / 2} \sqrt{1-b^{2} \cos ^{2} \varphi} d \varphi \\
& =-\frac{1}{a^{2}} E\left(b^{2}\right) .
\end{aligned}
$$

For $t=\frac{1}{u}, d t=-\frac{d u}{u^{2}}$, and $u=\sin \alpha$

$$
\begin{aligned}
h_{1} & =-\int_{0}^{1} \frac{\sqrt{1 / u^{2}-1}}{\sqrt{1 / u^{2}-a^{2}}} \frac{d u}{u^{2}} \\
& =-\int_{0}^{1} \frac{\sqrt{1-u^{2}}}{{\sqrt{1-a^{2} u^{2}}}^{3}} d u \\
& =-\int_{0}^{\pi / 2} \frac{\cos ^{2} \alpha d \alpha}{\sqrt{1-a^{2} \sin ^{2} \alpha}}
\end{aligned}
$$

From Jahnke and Emde ${ }^{1}$:

$$
h_{1}=-\frac{K\left(a^{2}\right)-E\left(a^{2}\right)}{a^{2}}
$$

and therefore

$$
\frac{h_{1}}{h_{0}}=\frac{K\left(a^{2}\right)-E\left(a^{2}\right)}{E\left(1-a^{2}\right)}
$$

[^8]

Figure 2.

$$
\begin{gathered}
\dot{F}=-\frac{2 a}{t^{2}-a^{2}}=\frac{1}{t+a}-\frac{1}{t-a} \\
\pi F=\ln \frac{t+a}{t-a}=\ln \frac{1+a / t}{1-a / t}
\end{gathered}
$$

The flux into the poleface is

$$
A(1)-A(\infty)=A_{\text {ideal }}=\frac{1}{\pi} \ln \frac{1+a}{1-a}
$$

Comparing this flux to the homogeneous flux and the excess flux for the end of a semi-infinite pole with half-gap $=h_{0}$, we have

$$
\begin{aligned}
A_{\text {approx }} & =\frac{h_{1}}{h_{0}}+\frac{1}{\pi}(2-\ln 4) \\
& =\frac{K\left(a^{2}\right)-E\left(a^{2}\right)}{E\left(1-a^{2}\right)}+.195 .
\end{aligned}
$$

Therefore we have

$$
G\left(\frac{h_{1}}{h_{0}}\right)=\frac{A_{\text {approx }}-A_{\text {ideal }}}{A_{\text {ideal }}}=\frac{A_{\text {approx }}}{A_{\text {ideal }}}-1=\frac{\frac{h_{1}}{h_{0}}+\frac{1}{\pi}(2-\ln 4)}{\frac{1}{\pi} \ln \frac{1+a}{1-a}}-1 .
$$

Program EXCFLTST.BAS

CLS
DEFDBL A-Z
PRINT DATE \$;" ";TIME\$;" EXCFLTST"
REM--Error of flux calculation for finite width pole with excess flux
REM--coefficient. IMPUT parameter = 1/2-width of pole / 1/2-gap.
PI=4*ATN(1):A1\$="dA=\#\#.\#\#\#-~-- $\mathrm{dA} / \mathrm{A}=\# \# . \# \# \#^{-\cdots-\cdots} \mathrm{dX} / \mathrm{H} 1=\# \# . \# \# \#^{-\cdots-n}$
$E 1=(2-L O G(4)) / P I: X 2=1: D Y=1 E-6$
DIM P1 (0:2)
DO
INPUT;"H1/HO=", \mathbf{H}
$\mathrm{X} 1=.9 * \mathrm{X} 2: \mathrm{P} 1(0)=\mathrm{H} 0:$ REM-G1=2/(1+EXP $(\mathrm{PI} * \mathrm{HO} 0+2)): E 1=2 / \mathrm{PI} *(1-\mathrm{G} 1-L O G(2-\mathrm{G} 1))$
CALL SECANTS (X1,X2,DY,Y2,P1())
$A 1=1 / \operatorname{SQR}(1+\operatorname{EXP}(X 2)): A 0=L O G((1+A 1) /(1-A 1)) / P I: A E=H 0+E 1$
PRINT TAB(15);:PRINT USING A1\$;AE-AO;AE/AO-1; (AE-AO)/H0
LOOP

SUB SECANTS (X1,X2,DY,Y2,P1())
CALL FCTY($\mathrm{X} 1, \mathrm{Y} 1, \mathrm{P} 1())$: CALL $\operatorname{FCTY}(\mathrm{X} 2, Y 2, \mathrm{P} 1())$
IF ABS (Y1)<ABS (Y2) THEN SHAP Y1,Y2:SHAP X1,X2
J1\%=0
DO
$D X=Y 2 *(X 1-X 2) /(Y 2-Y 1)$
$\mathrm{X} 1=\mathrm{X} 2: \mathrm{Y} 1=\mathrm{Y} 2: \mathrm{X} 2=\mathrm{X} 1+\mathrm{DX}: J 1 \%=\mathrm{J} 1 \%+1$
CALL FCTY(X2,Y2,P1())
LOOP UNTIL ABS (Y2)<DY OR J1\%=15
IF $\mathrm{J} 1 \%=15$ THEN PRINT "NOT COAVERGED"
END SUB

SUB FCTY(X1,Y1,P1())
$A 2=1 /(1+E X P(X 1))$
Y1=(ELLK (A2)-ELLE(A2))/ELLE(1-A2)-P1(0)
END SUB

FUNCTION ELLK (X1)
$\mathrm{X}=1-\mathrm{X} 1: \mathrm{S} 1=.01451196212 * \mathrm{X}+.03742563713: \mathrm{S} 1=\mathrm{S} 1 * \mathrm{~K}+.03590092383$
$\mathrm{S} 1=\mathrm{S} 1 * \mathrm{X}+.09666344259: \mathrm{S} 1=\mathrm{S} 1 * \mathrm{X}+1.38629436112: \mathrm{S} 2=.00441787012 * \mathrm{X}+.03328355346$
S2=S2*X+.06880248576:S2=S2*X+.12498593597:S2=S2*X+.5
ELLK=S1-S2*LOG(X)
END FUNCTION

FUNCTION ELLE(X1)

$\mathrm{X}=1-\mathrm{X} 1: \mathrm{S} 1=.01736506451 * \mathrm{X}+.04757383546: \mathrm{S} 1=\mathrm{S} 1 * \mathrm{X}+.0626060122$
S1=S1*X+. $44325141463: S 2=X * .00526449639+.04069697526$
S2=S2*X+. 09200180037:S2=S2*X+. 2499836831
ELLE $=X * S 1+1-X * S 2 * L O G(X)$
END FUNCTION

Program Results

06-16-1993 09:09:24 EXCFLTST
$\mathrm{H} 1 / \mathrm{H} 2=.1 \mathrm{dA}=4.832 \mathrm{E}-02 \mathrm{dA} / \mathrm{A}=1.956 \mathrm{E}-01 \mathrm{dX} / \mathrm{H} 1=4.832 \mathrm{E}-01$
$\mathrm{H} 1 / \mathrm{H} 2=.2 \mathrm{dA}=2.240 \mathrm{E}-02 \mathrm{dA} / \mathrm{A}=6.022 \mathrm{E}-02 \mathrm{dX} / \mathrm{H} 1=1.123 \mathrm{E}-01$
$\mathrm{H} 1 / \mathrm{H} 2=.3 \mathrm{dA}=1.129 \mathrm{E}-02 \mathrm{dA} / \mathrm{A}=2.331 \mathrm{E}-02 \mathrm{dX} / \mathrm{H} 1=3.762 \mathrm{E}-02$
$\mathrm{H} 1 / \mathrm{H} 2=.4 \mathrm{dA}=5.848 \mathrm{E}-03 \mathrm{dA} / \mathrm{A}=9.920 \mathrm{E}-03 \mathrm{dX} / \mathrm{H} 1=1.462 \mathrm{E}-02$
H1/H2=.5 $\mathrm{dA}=3.074 \mathrm{E}-03 \mathrm{dA} / \mathrm{A}=4.441 \mathrm{E}-03 \mathrm{dX} / \mathrm{H} 1=6.149 \mathrm{E}-03$
H1/H2=.6 $\quad \mathrm{dA}=1.627 \mathrm{E}-03 \mathrm{dA} / \mathrm{A}=2.050 \mathrm{E}-03 \quad \mathrm{dX} / \mathrm{H} 1=2.712 \mathrm{E}-03$
$\mathrm{H} 1 / \mathrm{H} 2=.7 \quad \mathrm{dA}=8.645 \mathrm{E}-04 \quad \mathrm{dA} / \mathrm{A}=9.665 \mathrm{E}-04 \mathrm{dX} / \mathrm{H} 1=1.235 \mathrm{E}-03$
$\mathrm{H} 1 / \mathrm{H} 2=.8 \mathrm{dA}=4.602 \mathrm{E}-04 \mathrm{dA} / \mathrm{A}=4.626 \mathrm{E}-04 \mathrm{dX} / \mathrm{H} 1=5.752 \mathrm{E}-04$
Н1/H2=.9 $\mathrm{dA}=2.452 \mathrm{E}-04 \quad \mathrm{dA} / \mathrm{A}=2.239 \mathrm{E}-04 \mathrm{dX} / \mathrm{H} 1=2.725 \mathrm{E}-04$
H1/H2=1 $\mathrm{dA}=1.307 \mathrm{E}-04 \mathrm{dA} / \mathrm{A}=1.094 \mathrm{E}-04 \mathrm{dX} / \mathrm{H} 1=1.307 \mathrm{E}-04$
H1/H2 $=2 \quad \mathrm{dA}=3.008 \mathrm{E}-07 \mathrm{dA} / \mathrm{A}=1.370 \mathrm{E}-07 \mathrm{dX} / \mathrm{H} 1=1.504 \mathrm{E}-07$

Excess Flux Into Pole and Flux Into Side of Gm40

Figure 1.

The conformal map is described by

$$
\pi \dot{z}=\frac{\sqrt{t}(a-1)^{2}}{(t-1)(t-a)^{2}}
$$

To determine the value a that produces the desired D, we use $t=a+\tau,|\tau| \ll a$. Expanding in τ gives

$$
\pi \frac{d z}{d \tau}=\frac{(a-1)^{2} \sqrt{a}\left(1+\frac{\tau}{2 a}\right)}{(a-1)\left(1+\frac{\tau}{a-1}\right)} \cdot \frac{1}{\tau^{2}}
$$

Expanding more, and then integrating over the half-circle around $t=a$, we get

$$
\begin{aligned}
D & =-(a-1) \sqrt{a}\left(\frac{1}{2 a}-\frac{1}{a-1}\right) \\
& =\sqrt{a} \cdot \frac{a+1}{2 a} \\
& =\frac{1}{2}\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right) .
\end{aligned}
$$

By substitution and integration, we have

$$
\frac{\pi z}{(a-1)^{2}}=\frac{\partial}{\partial a} \int \frac{\sqrt{t} d t}{(t-1)(t-a)}=\frac{\partial}{\partial a} J
$$

April, 1993. Note 0131u-w.
where, for $t=W^{2}$ and $d t=2 W d W$,

$$
\begin{aligned}
J & =\int \frac{2 t d W}{(t-1)(t-a)} \\
& =\int \frac{2}{a-1}\left(\frac{a}{t-a}-\frac{1}{t-1}\right) d W \\
& =\frac{1}{a-1} \int\left(\sqrt{a}\left(\frac{1}{W-\sqrt{a}}-\frac{1}{W+\sqrt{a}}\right)-\left(\frac{1}{W-1}-\frac{1}{W+1}\right)\right) d W \\
& =\frac{1}{a-1}\left(\sqrt{a} \ln \frac{\sqrt{a}-W}{\sqrt{a}+W}+\ln \frac{1+W}{1-W}\right):
\end{aligned}
$$

Further, we have that

$$
\begin{gathered}
\sqrt{a} \frac{\partial}{\partial a} \ln \frac{\sqrt{a}-W}{\sqrt{a}+W}=\frac{1}{2}\left(\frac{1}{\sqrt{a}-W}-\frac{1}{\sqrt{a}+W}\right)=\frac{W}{a-t} \\
\left(\frac{1}{\sqrt{a}-1 / \sqrt{a}}\right)^{\prime}=-\frac{1}{2 a} \cdot \frac{\sqrt{a}+1 / \sqrt{a}}{(\sqrt{a}-1 / \sqrt{a})^{2}}=-\frac{D}{(a-1)^{2}} \\
\left(\frac{1}{a-1}\right)^{\prime}=-\frac{1}{(a-1)^{2}}
\end{gathered}
$$

Thus,

$$
J^{\prime}=-\frac{1}{(a-1)^{2}}\left(\ln \frac{1+W}{1-W}+D \ln \frac{\sqrt{a}-W}{\sqrt{a}+W}\right)+\left(\frac{1}{a-1} \cdot \frac{W}{a-t}\right)
$$

and therefore,

$$
\pi z=(a-1) \frac{W}{a-t}+D \ln \frac{\sqrt{a}+W}{\sqrt{a}-W}-\ln \frac{1+W}{1-W}
$$

Further, for

$$
\begin{gathered}
\pi \dot{F}=-\frac{a-1}{(t-1)(t-a)}=\frac{1}{t-1}-\frac{1}{t-a} \\
\pi F=\ln \frac{1-t}{1-t / a} .
\end{gathered}
$$

The flux into the side of the pole, for $-\infty \leq t \leq 0$, is

$$
A_{S}=\frac{1}{\pi} \ln (a)
$$

We describe the excess flux into the poleface by

$$
\begin{gathered}
\Delta A_{P}=F(0)-F(1-\varepsilon)-(z(0)-z(1-\varepsilon)) \text { follows } \varepsilon \rightarrow 0 \\
\pi \Delta A_{P}=\ln \frac{1-1 / a}{\varepsilon}+\left(1+D \ln \frac{\sqrt{a}+1}{\sqrt{a}-1}-\ln \frac{2}{\varepsilon / 2}\right) \\
\frac{a-1}{\varepsilon a} \frac{\varepsilon}{4}=\frac{a-1}{4 a} \\
\Delta A_{P}=\frac{1}{\pi}\left(1+\ln \frac{a-1}{4 a}+D \ln \frac{\sqrt{a}+1}{\sqrt{a}-1}\right) .
\end{gathered}
$$

The definition of ΔA_{P} means that the flux into the pole surface is the same as the uniform flux into a pole whose width is increased, on both sides, by the product of the half-gap and the expression for ΔA_{P}. The definition of A_{S} means that the total flux into each side of the pole equals the product of the scalar potential of the pole and the expression for A_{S}.
From our expression for D , and $a-2 D \sqrt{a}+1=0$, we have

$$
\sqrt{a}=D+\sqrt{D^{2}-1}
$$

We may now eliminate a from A_{S} and ΔA_{P}. Thus,

$$
A_{S}=\frac{2}{\pi} \ln \left(D+\sqrt{D^{2}-1}\right)
$$

and further,

$$
\begin{gathered}
1 / \sqrt{a}=D-\sqrt{D^{2}-1} \\
\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{D+1+\sqrt{D^{2}-1}}{D-1+\sqrt{D^{2}-1}}=\frac{\sqrt{D+1}}{\sqrt{D-1}} \cdot \frac{\sqrt{D+1}+\sqrt{D-1}}{\sqrt{D-1}+\sqrt{D+1}}=\sqrt{\frac{D+1}{D-1}} \\
\frac{a-1}{4 a}=\frac{\sqrt{a}-\sqrt{1 / a}}{4 \sqrt{a}}=\frac{\sqrt{D^{2}-1}}{2\left(D+\sqrt{D^{2}-1}\right)}=\frac{1}{2\left(1+1 / \sqrt{1-1 / D^{2}}\right)} \\
\triangle A_{P}=\frac{1}{\pi}\left(1+\frac{D}{2} \ln \frac{D+1}{D-1}-\ln \left(2\left(1+\frac{D}{\sqrt{D^{2}-1}}\right)\right)\right) .
\end{gathered}
$$

Figure 1.

Status characterized by status vector $v=\binom{V}{\Phi}$, where V is the scalar potential with respect to the midplane, and Φ is the flux transported to the right. Going "downstream", V and Φ change because of the $\int H d s$ "loss" in iron (and due to small gaps), and because of flux going to the midplane. Over a short distance,

$$
\begin{equation*}
\frac{d \Phi}{d x}=-V \cdot \varepsilon \tag{1}
\end{equation*}
$$

with ε to 0 th approximation (detailed later in this note) is given by

$$
\begin{equation*}
\varepsilon=\frac{W}{h} \tag{2}
\end{equation*}
$$

with h having the value of the half-gap, and W being the width over which the flux "escapes" to the midplane.

$$
\begin{equation*}
\frac{d V}{d x}=-\Phi \cdot k_{2} \tag{3}
\end{equation*}
$$

April, 1993. Note 0129u-w.
with k_{2} in 0 th approximation (also detailed later) given by

$$
\begin{equation*}
k_{2}=\frac{1}{a \mu}=\gamma / a \tag{4}
\end{equation*}
$$

where a is the cross-section area of the flux "duct", and μ is the permeability. The voltage drop due to small gaps perpendicular to the flux flow will be added later. Within the section with constants k_{2} and ε, we get

$$
\begin{equation*}
V^{\prime \prime}=-k_{2} \Phi^{\prime}=V k^{2} \quad \text { with } \quad k^{2}=\varepsilon k_{2} . \tag{5}
\end{equation*}
$$

The solution within the uniform section of length x is

$$
\begin{gather*}
V=\alpha C+\beta S \text { with } C=\cosh k x \text { and } S=\sinh k x \\
\Phi=-V^{\prime} / k_{2}=-(\alpha S+\beta C) k / k_{2} \\
v(x)=\left(\begin{array}{cc}
C & S \\
-S k / k_{2} & -C k / k_{2}
\end{array}\right)\binom{\alpha}{\beta} \text { with }\binom{\alpha}{\beta}=\left(\begin{array}{cc}
1 & 0 \\
0 & -k_{2} / k
\end{array}\right) v(0), \\
v(x)=M \cdot v(0), \quad v=\binom{V}{\Phi} \text { and } M=\left(\begin{array}{cc}
C & -S k_{2} / k \\
-S k / k_{2} & C
\end{array}\right) \tag{6}
\end{gather*}
$$

By reversing the direction arrow of Φ, i.e., by re-defining the sign of Φ, the off-diagonal minus signs disappear. The sequence of sections with different properties are taken into account by multiplying their matrices. v remains unchanged when crossing the interface from one section to the next unless there is a (steering) coil, or a local field clamp, thus introducing an additive Δv when going through that interface.

It is clear that $1 / k$ is the important scaling distance that describes how transported flux decays.

Structure of Solution to Simple Problem.

Figure 2.

There are field clamps at each end, i.e. at point 0 and point 5. There are $\pm \Delta V$ coils at the interfaces between points 1 and 2, and between points 3 and 4. The status vectors $v_{0}=\binom{0}{\Phi_{0}}$ and $v_{5}=\binom{0}{\Phi_{5}}$ describe that the points 0 and 5 are located in the midplane, and that they contain the to-be-determined values Φ_{0} and Φ_{5} which represent the fluxes going to the midplane through the field clamps. Of similar interest are the Φ-components of v_{2} and v_{4}.
Given $\Delta v_{0}=\binom{\Delta v_{0}}{0}$, we describe the coil(s) by

$$
\begin{gather*}
v_{2}=M_{01} v_{0}+\Delta v_{0} \tag{7.1}\\
v_{4}=M_{23} v_{2}-\Delta v_{0}=M_{23} M_{01} v_{0}+\left(M_{23}-I\right) \Delta v_{0} \tag{7.2}
\end{gather*}
$$

where I is the unit matrix.

$$
\begin{equation*}
v_{5}=M_{45} v_{4}=\underbrace{M_{05}}_{a_{i k}} v_{0}+\underbrace{M_{45}\left(M_{23}-I\right)}_{b_{i k}} \Delta v_{0} \tag{7.3}
\end{equation*}
$$

where $a_{i k}$ and $b_{i k}$ are elements of these matrices, and thus

$$
\begin{gather*}
v_{5}=\Phi_{0}\binom{a_{12}}{a_{22}}+\binom{b_{11}}{b_{21}} \Delta V_{0}=\binom{0}{\Phi_{5}} . \\
\Phi_{0}=-\Delta V_{0} b_{11} / a_{12} \tag{7.4}\\
\Phi_{5}=\Phi_{0} a_{22}+\Delta V_{0} b_{21}=\Delta V_{0}\left(b_{21}-a_{22} b_{11} / a_{12}\right) \\
\Phi_{5}=\Delta V_{0}\left(a_{12} b_{21}-a_{22} b_{11}\right) / a_{12} \tag{7.5}
\end{gather*}
$$

With Φ_{0} and Φ_{5} now known, (7.1) and (7.2) give the flux produced by the coils in the section delimited by points 2 and 3 .

Details of k_{2}.

One has to be careful to use the correct value for μ. If the field associated with this flux is parallel to the pre-existing field, one has to use $\mu=\frac{d B}{d H}$. If it is perpendicular to the pre-existing flux, one must use $\mu=\frac{B}{H}$ which is the "normal μ ".

Now we must look at the effect of a thin gap over a large area. ΔV across that gap from flux Φ is gotten from $\Phi=\int \frac{\Delta V d a}{g}$ and thus $\Delta V=\frac{\Phi}{\int \frac{d a}{g}}$. If a gap-less length L of μ is associated with this gap, the total ΔV is given by

$$
\begin{gather*}
\Delta V=\Phi\left(\frac{1}{\int \frac{d a}{g}}+\gamma \frac{L}{A}\right)=\Phi L\left(\frac{\gamma}{a}+\frac{1 / L}{\int \frac{d g}{a}}\right), \\
k_{2}=\frac{\gamma}{a}+\frac{1 / L}{\int \frac{d a}{g}} . \tag{8}
\end{gather*}
$$

Details of ε.

Only the general approach and the results derived in a separate note are given here. There are three contributions to ε : flux from the top, from the sides, and from the poles facing the midplane.

Figures 3(a) and 3(b).

(c)

(d)

Figures 3(c) and 3(d).

To get the flux into the top per unit length in direction perpendicular to the paper plane, we use as a model the solid block that touches the midplane of Figure 3(b). For the flux into each side, we use the geometry of Figure 3(c) and calculate the flux into the side. If the side has "pole structure" we take it into account with an excess voltage drop coefficient approximation (if necessary). For flux from the poles to the midplane, we calculate the flux for the geometry of Figure 3(d), and we use
the excess flux coefficient for a solid block of Figure 3(c) to correct the width $2 W_{0}$ of the cross-section shown in Figure 3(a).

Results for the Geometry of Figure 3(d).

$$
\begin{equation*}
\varepsilon_{P}=\frac{\Phi(\lambda / 4)}{V_{0}} \frac{4}{\lambda}\left(W_{0}+\Delta W_{0}\right) 2 \tag{9.1}
\end{equation*}
$$

with $\frac{\Phi(\lambda / 4)}{V_{0}}$ calculated by POISSON or an analytical program.
We calculate ΔW_{0} from the geometry of Figure 3(c), with

$$
\begin{equation*}
\Delta W_{0}=h_{0} \frac{1}{\pi}\left(1+\frac{D}{2} \ln \left(\frac{D+1}{D-1}\right)-\ln \left(2\left(1+\frac{D}{\sqrt{D^{2}-1}}\right)\right)\right) \tag{9.2}
\end{equation*}
$$

The contribution from the flux into the top is

$$
\begin{equation*}
\varepsilon_{T}=\frac{2}{\pi} \ln \frac{1+a_{1}}{1-a_{1}} \tag{10.1}
\end{equation*}
$$

where a_{1} is determined from

$$
\begin{equation*}
\frac{h_{1}}{W_{0}}=\frac{E(b)-a_{1}^{2} K(b)}{E\left(a_{1}\right)-b^{2} K\left(a_{1}\right)} \tag{10.2}
\end{equation*}
$$

with $b^{2}=1-a_{1}^{2}$, and

$$
\begin{equation*}
E\left(a_{1}\right)=\int_{0}^{\pi / 2} \sqrt{1-a_{1}^{2} \sin ^{2} \varphi} d \varphi \quad \text { and } \quad K\left(a_{1}\right)=\int_{0}^{\pi / 2} \frac{d \varphi}{\sqrt{1-a_{1}^{2} \sin ^{2} \varphi}} \tag{10.3}
\end{equation*}
$$

The flux into the sides contributes

$$
\varepsilon_{S}=\frac{4}{\pi} \ln \left(D+\sqrt{D^{2}-1}\right)
$$

with D given by (9.2).
(11.1) assumes smooth sides, i.e., the excess potential drop is ignored. It should be noted that the area a in (8) is smaller than the cross-section shown in Figure 3(a), the latter includes the poles, while the former does not.

We make here further clarifications on units. If we were to deal with a uniform field over a width W of a flat pole, at distance h_{0} from the midplane, ε would be exactly $\varepsilon=\frac{W}{H}$. That is, $\frac{d \Phi}{d x}$ and V have the same dimensions, meaning that either $\mu_{0}=4 \pi \cdot 10^{-7}$ is incorporated in the vector potential V, or μ_{0} is left out of the definition of Φ. The meaning of ε is the flux per unit length in the axial direction of the structure on potential V, divided by V.
ε_{S} with excess potential drop is given by

$$
\begin{equation*}
\varepsilon_{S}=\frac{4}{\pi} \ln \left(D_{1}+\sqrt{D_{1}^{2}-1}\right) \tag{11.2}
\end{equation*}
$$

with

$$
\begin{equation*}
D_{1}=\frac{h_{1}+\frac{2}{\pi} \Delta L}{h_{0}+\frac{2}{\pi} \Delta L} \tag{11.3}
\end{equation*}
$$

Figure 4.

$$
\begin{equation*}
\alpha=\frac{\lambda / 4}{h_{3}} \quad \text { and } \quad \Delta L=\frac{h_{3}}{\pi}((\alpha+1) \ln (1+1 / \alpha)+(\alpha-1) \ln (1-1 / \alpha)) \tag{11.4}
\end{equation*}
$$

The effect of ΔL will be very small under most circumstances. The excess flux
potential drop is too small to be of concern for ε_{T}.

3D Scalar Potential for Saturation-Caused Fields in the Insertion Device

This entails the same approach as for the case of $\mu=\infty$, except that the condition $\partial V / \partial x=0$ at $y=h$ is to be dropped:

$$
\begin{aligned}
V & =\sum \cos n k_{z} z \cdot g_{n}(x, y) \\
\nabla^{2} V & =0 \Longrightarrow \nabla^{2} g_{n}=n^{2} k_{z}^{2} g_{n}
\end{aligned}
$$

We introduce $n k_{z} x=u$, and $n k_{z} y=v$:

$$
\begin{equation*}
\nabla_{u, v}^{2} g=g . \tag{1}
\end{equation*}
$$

We construct $g(u, v)$ that has the following properties: odd in $y, g(-v)=-g(v)$, and gives field approximating $\cosh \varepsilon u-1$ for $y=0 . \varepsilon$ is arbitrary, real or imaginary, and the field equals 0 for $u=0$ when letting $\varepsilon \rightarrow 0$ at end.
We try $g=\cosh \varepsilon u \sinh a v$. To satisfy (1):

$$
\varepsilon^{2}+a^{2}=1 \text { and thus } a=\sqrt{1-\varepsilon^{2}}
$$

has to hold. We add a function of v, such that g_{v}^{\prime} is proportional to $\cosh \varepsilon u-1$ for $v=0$. The only odd function of v that will satisfy this requirement and also satisfy (1) is $-a \sinh v$, thus

$$
\begin{equation*}
g=\cosh \varepsilon u \sinh a v-a \sinh v \tag{2}
\end{equation*}
$$

One can use the superposition of such functions with different ε, but this would probably not be practical.
The expansion for $\varepsilon \rightarrow 0$ is

$$
\begin{equation*}
g=\frac{\varepsilon^{2}}{2}\left(u^{2} \sinh v-v \cosh v+\sinh v\right) \tag{3}
\end{equation*}
$$

For $v=0$, we obtain the expected sextupole field:

$$
\begin{equation*}
g_{v}^{\prime}(u, 0)=\frac{\varepsilon^{2}}{2} u^{2} \tag{4}
\end{equation*}
$$

At the pole, where $v_{h}=n k_{z} h$,

$$
\begin{equation*}
g_{u}^{\prime}\left(u, v_{h}\right)=\frac{\varepsilon^{2}}{2} 2 u \sinh v_{h} \tag{5}
\end{equation*}
$$

It is this field in the x-direction that is responsible for the sextupole field in the midplane.

February, 1992. Note 0125u-w.
(5) allows us to make an estimate of the saturation effects in the midplane during the design phase. Thus,

$$
\begin{equation*}
\frac{g_{v}^{\prime}(u, 0)}{g_{u}^{\prime}\left(u, v_{h}\right)}=\frac{u}{2 \sinh v_{h}}=\frac{n k_{z} x}{2 \sinh n k_{z} h}=\frac{x}{2 h} \cdot \frac{n k_{z} h}{\sinh n k_{z} h} . \tag{6}
\end{equation*}
$$

It is interesting to note that every additional expansion of (2) in ε^{2} leads to a new solution to (1) describing the fields in the midplane to the highest orders $\sim x^{4}, x^{6}$, etc.
To check on (3), its expansion in k_{z} up to the 3 rd order terms in $\{u, v\}$ gives, as expected,

$$
\begin{align*}
g & =\frac{\varepsilon^{2}}{2}\left(u^{2} v-v\left(1+\frac{v^{2}}{2}-\left(1+\frac{v^{2}}{6}\right)\right)\right) \\
& =\frac{\varepsilon^{2}}{2}\left(u^{2} v-\frac{v^{3}}{3}\right) \\
& =\frac{\varepsilon^{2}}{6} \Im(u+i v)^{3} . \tag{7}
\end{align*}
$$

Scalar Potential for 3D Insertion Device Fields

In the 2 D case,

$$
\begin{equation*}
V=\sum_{n=\text { odd }} b_{n} \cos n k_{z} z \cdot \sinh n k_{z} y \quad \text { with } \quad k_{z}=\frac{2 \pi}{\lambda} \tag{1}
\end{equation*}
$$

In order to simplify matters, we drop the sum, and re-introduce it at the end.
The effects of lateral ends are equally periodic in z, thus $n k_{z} \Rightarrow k_{z}$, and

$$
\begin{equation*}
V_{L E}=\cos k_{z} z \cdot g(x, y) \tag{2}
\end{equation*}
$$

Where $g(x, y)$ is valid only in the vacuum region of the $\{x, y\}$ space.
Further, we have that

$$
\begin{equation*}
\nabla^{2} V=0 \quad \Longrightarrow \quad \nabla^{2} g=k_{z}^{2} g \tag{3}
\end{equation*}
$$

where g is the Fourier expansion coefficient as a function of x, y,
At the pole surface, for integer $\mu, z=\mu \lambda / 2$ and $y=h=$ half gap, $B_{x}=B_{y}=0$. We expand g in a Fourier series in y. We have that $g \sim \sin m k_{y} y$ for $k_{y}=\pi / h$, and

$$
g=\sum a_{m} \sin m k_{y} y \cdot \cosh k_{m} x
$$

with $k_{m}^{2}=k_{z}^{2}+m^{2} k_{y}^{2}$. We use $a_{m}=b_{0} b_{m} / \cosh k_{m} W$, where W is half the pole width, and we expect b_{m} to be only weakly dependent on W.

$$
\begin{cases}V=\sum_{n=\mathrm{odd}} b_{n_{0}} \cos n k_{z} z \cdot\left(\sinh n k_{z} y+g_{n}\right), \tag{4}\\ g_{n}=\sum_{m=1} \frac{b_{n m} \sin m k_{y} y \cdot \cosh k_{n m} x}{\cosh k_{n m} W}, & \text { with } k_{z}=2 \pi / \lambda, k_{y}=\pi / h \\ k_{n m}^{2}=n^{2} k_{z}^{2}+m^{2} k_{y}^{2}, & \text { with } \frac{k_{z}}{k_{y}}=\frac{2 h}{\lambda}=\frac{\text { gap }}{\lambda} \\ k_{n m}^{2}=m^{2} k_{y}^{2}\left(1+\frac{n^{2}}{m^{2}}\left(\frac{k_{z}}{k_{y}}\right)^{2}\right), & \end{cases}
$$

Under most circumstances, $\frac{k_{z}}{k_{y}} \leq .5$. For $n=1, k_{n m} \approx m k_{y}$.

February, 1992. Note 0124u-w.

In the region of interest, only the case of $m=1$ is of importance. That is, the dominant term is

$$
\begin{equation*}
g_{1}=\frac{b_{11} \sin k_{y} y \cdot \cosh k_{11} x}{\cosh k_{11} W} \tag{5}
\end{equation*}
$$

We may now proceed to conclude that

$$
\begin{equation*}
-H_{y}=k_{z} \sum n b_{n_{0}} \cos n k_{z} z\left(\cosh n k_{z} y+\sum b_{n m} \frac{m k_{y}}{n k_{z}} \cdot \frac{\cos m k_{y} y \cdot \cosh k_{n m} x}{\cosh k_{n m} W}\right) \tag{6}
\end{equation*}
$$

From (6), we expect $b_{n m}<0$, and $\frac{m k_{y}}{n k_{z}}\left|b_{n m}\right|$ to be in the order of 1 , but probably less than 1.

Suggestions for Magnetic Measurements.

Make all measurements as function of z, filter out random errors, and then do the harmonic analysis by measuring the quantities derived from $\sinh n k_{z} y+g_{n}$. To measure field components, measure B_{y} at $y=0$ for a number of values of x close enough to the lateral edge to get values of $b_{n 1}$ and $b_{n 2}$. Then measurements of B_{x} close to the lateral ends are made, at $y \simeq h / 2$, to check the validity of $V(x, y, z)$. If agreement is reached, an investigatation of whether $b_{n m}$ are more easily obtained from B_{x} measurements is to be done. To verify the model, compare the measurements at individual points, without the harmonic analysis, to the model calculations.
After sufficient measurements, make a table that lists the $b_{n m}$ coefficients as functions of two dimensionless products (i.e. h / λ and W / h), and possibly find a practical formula to represent the data. A possible complication may result from saturation in the iron which may dominate the behavior of the field as a function of x.
Examination of experimental data shows that decay of field errors as one moves away from the lateral edge of the insertion device can be much slower than this description indicates. A possible cause of this may be H_{x} at pole surface caused by saturation.
(11.1) assumes smooth sides, i.e., the excess potential drop is ignored. It should be noted that the area a in (8) is smaller than the cross-section shown in Figure 3(a), the latter includes the poles, while the former does not.

We make here further clarifications on units. If we were to deal with a uniform field over a width W of a flat pole, at distance h_{0} from the midplane, ε would be exactly $\varepsilon=\frac{W}{H}$. That is, $\frac{d \Phi}{d x}$ and V have the same dimensions, meaning that either $\mu_{0}=4 \pi \cdot 10^{-7}$ is incorporated in the vector potential V, or μ_{0} is left out of the definition of Φ. The meaning of ε is the flux per unit length in the axial direction of the structure on potential V, divided by V.
ε_{S} with excess potential drop is given by

$$
\begin{equation*}
\varepsilon_{S}=\frac{4}{\pi} \ln \left(D_{1}+\sqrt{D_{1}^{2}-1}\right) \tag{11.2}
\end{equation*}
$$

with

$$
\begin{equation*}
D_{1}=\frac{h_{1}+\frac{2}{\pi} \Delta L}{h_{0}+\frac{2}{\pi} \Delta L} \tag{11.3}
\end{equation*}
$$

Figure 4.

$$
\begin{equation*}
\alpha=\frac{\lambda / 4}{h_{3}} \quad \text { and } \quad \Delta L=\frac{h_{3}}{\pi}((\alpha+1) \ln (1+1 / \alpha)+(\alpha-1) \ln (1-1 / \alpha)) \tag{11.4}
\end{equation*}
$$

The effect of ΔL will be very small under most circumstances. The excess flux
potential drop is too small to be of concern for ε_{T}.

3D Scalar Potential for Saturation-Caused Fields in the Insertion Device

This entails the same approach as for the case of $\mu=\infty$, except that the condition $\partial V / \partial x=0$ at $y=h$ is to be dropped:

$$
\begin{gathered}
V=\sum \cos n k_{z} z \cdot g_{n}(x, y) \\
\nabla^{2} V=0 \quad \Longrightarrow \quad \nabla^{2} g_{n}=n^{2} k_{z}^{2} g_{n}
\end{gathered}
$$

We introduce $n k_{z} x=u$, and $n k_{z} y=v$:

$$
\begin{equation*}
\nabla_{u, v}^{2} g=g \tag{1}
\end{equation*}
$$

We construct $g(u, v)$ that has the following properties: odd in $y, g(-v)=-g(v)$, and gives field approximating $\cosh \varepsilon u-1$ for $y=0 . \varepsilon$ is arbitrary, real or imaginary, and the field equals 0 for $u=0$ when letting $\varepsilon \rightarrow 0$ at end.
We try $g=\cosh \varepsilon u \sinh a v$. To satisfy (1):

$$
\varepsilon^{2}+a^{2}=1 \text { and thus } a=\sqrt{1-\varepsilon^{2}}
$$

has to hold. We add a function of v, such that g_{v}^{\prime} is proportional to $\cosh \varepsilon u-1$ for $v=0$. The only odd function of v that will satisfy this requirement and also satisfy (1) is $-a \sinh v$, thus

$$
\begin{equation*}
g=\cosh \varepsilon u \sinh a v-a \sinh v . \tag{2}
\end{equation*}
$$

One can use the superposition of such functions with different ε, but this would probably not be practical.
The expansion for $\varepsilon \rightarrow 0$ is

$$
\begin{equation*}
g=\frac{\varepsilon^{2}}{2}\left(u^{2} \sinh v-v \cosh v+\sinh v\right) . \tag{3}
\end{equation*}
$$

For $v=0$, we obtain the expected sextupole field:

$$
\begin{equation*}
g_{v}^{\prime}(u, 0)=\frac{\varepsilon^{2}}{2} u^{2} \tag{4}
\end{equation*}
$$

At the pole, where $v_{h}=n k_{z} h$,

$$
\begin{equation*}
g_{u}^{\prime}\left(u, v_{h}\right)=\frac{\varepsilon^{2}}{2} 2 u \sinh v_{h}, \tag{5}
\end{equation*}
$$

It is this field in the x-direction that is responsible for the sextupole field in the midplane.

February, 1992. Note 0125u-w.
(5) allows us to make an estimate of the saturation effects in the midplane during the design phase. Thus,

$$
\begin{equation*}
\frac{g_{v}^{\prime}(u, 0)}{g_{u}^{\prime}\left(u, v_{h}\right)}=\frac{u}{2 \sinh v_{h}}=\frac{n k_{z} x}{2 \sinh n k_{z} h}=\frac{x}{2 h} \cdot \frac{n k_{z} h}{\sinh n k_{z} h} \tag{6}
\end{equation*}
$$

It is interesting to note that every additional expansion of (2) in ε^{2} leads to a new solution to (1) describing the fields in the midplane to the highest orders $\sim x^{4}, x^{6}$, etc.
To check on (3), its expansion in k_{z} up to the 3rd order terms in $\{u, v\}$ gives, as expected,

$$
\begin{align*}
g & =\frac{\varepsilon^{2}}{2}\left(u^{2} v-v\left(1+\frac{v^{2}}{2}-\left(1+\frac{v^{2}}{6}\right)\right)\right) \\
& =\frac{\varepsilon^{2}}{2}\left(u^{2} v-\frac{v^{3}}{3}\right) \\
& =\frac{\varepsilon^{2}}{6} \Im(u+i v)^{3} . \tag{7}
\end{align*}
$$

Scalar Potential for 3D Insertion Device Fields

In the 2D case,

$$
\begin{equation*}
V=\sum_{n=\text { odd }} b_{n} \cos n k_{z} z \cdot \sinh n k_{z} y \quad \text { with } \quad k_{z}=\frac{2 \pi}{\lambda} \tag{1}
\end{equation*}
$$

In order to simplify matters, we drop the sum, and re-introduce it at the end.
The effects of lateral ends are equally periodic in z, thus $n k_{z} \Rightarrow k_{z}$, and

$$
\begin{equation*}
V_{L E}=\cos k_{z} z \cdot g(x, y) \tag{2}
\end{equation*}
$$

Where $g(x, y)$ is valid only in the vacuum region of the $\{x, y\}$ space.
Further, we have that

$$
\begin{equation*}
\nabla^{2} V=0 \quad \Longrightarrow \quad \nabla^{2} g=k_{z}^{2} g \tag{3}
\end{equation*}
$$

where g is the Fourier expansion coefficient as a function of x, y,
At the pole surface, for integer $\mu, z=\mu \lambda / 2$ and $y=h=$ half gap, $B_{x}=B_{y}=0$. We expand g in a Fourier series in y. We have that $g \sim \sin m k_{y} y$ for $k_{y}=\pi / h$, and

$$
g=\sum a_{m} \sin m k_{y} y \cdot \cosh k_{m} x
$$

with $k_{m}^{2}=k_{z}^{2}+m^{2} k_{y}^{2}$. We use $a_{m}=b_{0} b_{m} / \cosh k_{m} W$, where W is half the pole width, and we expect b_{m} to be only weakly dependent on W.

$$
\begin{cases}V=\sum_{n=\text { odd }} b_{n_{0}} \cos n k_{z} z \cdot\left(\sinh n k_{z} y+g_{n}\right), \tag{4}\\ g_{n}=\sum_{m=1} \frac{b_{n m} \sin m k_{y} y \cdot \cosh k_{n m} x}{\cosh k_{n m} W}, & \text { with } k_{z}=2 \pi / \lambda, k_{y}=\pi / h \\ k_{n m}^{2}=n^{2} k_{z}^{2}+m^{2} k_{y}^{2}, & \text { with } \frac{k_{z}}{k_{y}}=\frac{2 h}{\lambda}=\frac{\text { gap }}{\lambda} \\ k_{n m}^{2}=m^{2} k_{y}^{2}\left(1+\frac{n^{2}}{m^{2}}\left(\frac{k_{z}}{k_{y}}\right)^{2}\right), & \end{cases}
$$

Under most circumstances, $\frac{k_{z}}{k_{y}} \leq .5$. For $n=1, k_{n m} \approx m k_{y}$.

February, 1992. Note 0124u-w.

In the region of interest, only the case of $m=1$ is of importance. That is, the dominant term is

$$
\begin{equation*}
g_{1}=\frac{b_{11} \sin k_{y} y \cdot \cosh k_{11} x}{\cosh k_{11} W} \tag{5}
\end{equation*}
$$

We may now proceed to conclude that

$$
\begin{equation*}
-H_{y}=k_{z} \sum n b_{n_{0}} \cos n k_{z} z\left(\cosh n k_{z} y+\sum b_{n m} \frac{m k_{y}}{n k_{z}} \cdot \frac{\cos m k_{y} y \cdot \cosh k_{n m} x}{\cosh k_{n m} W}\right) \tag{6}
\end{equation*}
$$

From (6), we expect $b_{n m}<0$, and $\frac{m k_{y}}{n k_{z}}\left|b_{n m}\right|$ to be in the order of 1 , but probably less than 1.

Suggestions for Magnetic Measurements.

Make all measurements as function of z, filter out random errors, and then do the harmonic analysis by measuring the quantities derived from $\sinh n k_{z} y+g_{n}$. To measure field components, measure B_{y} at $y=0$ for a number of values of x close enough to the lateral edge to get values of $b_{n 1}$ and $b_{n 2}$. Then measurements of B_{x} close to the lateral ends are made, at $y \simeq h / 2$, to check the validity of $V(x, y, z)$. If agreement is reached, an investigatation of whether $b_{n m}$ are more easily obtained from B_{x} measurements is to be done. To verify the model, compare the measurements at individual points, without the harmonic analysis, to the model calculations.
After sufficient measurements, make a table that lists the $b_{n m}$ coefficients as functions of two dimensionless products (i.e. h / λ and W / h), and possibly find a practical formula to represent the data. A possible complication may result from saturation in the iron which may dominate the behavior of the field as a function of x.

Examination of experimental data shows that decay of field errors as one moves away from the lateral edge of the insertion device can be much slower than this description indicates. A possible cause of this may be H_{x} at pole surface caused by saturation.

Gradient Measurement in Insertion Device

The beam is in the z direction. The midplane is the $\{x, z\}$ plane. We use a vibrating coil to measure $\partial B_{y} / \partial x$.

As a general mechanical design principle, make the wanted resonance frequency and its harmonics different from the resonance frequencies of other vibrating modes.

We want to measure $\partial B_{y} / \partial x$. We move a B_{y}-coil in the x direction that is "long" in z and short in x. The problem arises that this motion may excite vibration in the y direction, adding a $\partial B_{y} / \partial y$ signal. A better way to collect the same information is to measure $\partial B_{x} / \partial y$, by vibrating a B_{x}-coil in the y direction such that it is "long" in z and short in y. Possible contamination due to $\partial B_{x} / \partial z$ drops out in the Fourier analysis in z.

Undulator Trajectory and Radiation

We begin with the following definitions:

$$
\begin{gathered}
\dot{\mathbf{r}} \gamma m=-e\left(\mathbf{e}_{x} \dot{x}+\mathbf{e}_{y} \dot{y}+\mathbf{e}_{z} \dot{z}\right) \times \mathrm{e}_{y} B, \\
\bar{x} \gamma m=e \dot{z} B=e \dot{z} A_{z}^{\prime} \\
\dot{x} \gamma m=\epsilon A(z), \\
d t \beta c=d s=d z \sqrt{1+x^{\prime 2}}, \quad \dot{x}=x^{\prime} \frac{\beta c}{\sqrt{1+x^{\prime 2}}}, \\
A=B_{0} \int \cos k z d z=\frac{B_{0}}{k} \sin k z \\
\frac{x^{\prime}}{\sqrt{1+x^{\prime 2}}}= \\
\varepsilon \sin k z, \quad \varepsilon=\frac{B_{0} / k}{\beta \gamma m c / e}=\frac{K}{\gamma} \\
\frac{1}{x^{\prime 2}}+1=\frac{1}{\varepsilon^{2} \sin ^{2} k z}, \quad x^{\prime}=\frac{e s}{\sqrt{1-\varepsilon^{2} \sin ^{2} k z}}
\end{gathered}
$$

Thus,

$$
J=\int \dot{x} e^{i \varphi} d t
$$

where

$$
\begin{gathered}
\varphi=\omega\left(t-\frac{z}{c}\right)=\frac{\omega}{\beta c}(\beta c t-\beta z)=\frac{\omega}{\beta c} \int\left(\sqrt{1+x^{\prime 2}}-\beta\right) d z \\
1+x^{\prime 2}=\frac{1}{1-\varepsilon^{2} \sin ^{2} k z^{2}} \\
\beta=\sqrt{1-\frac{1}{\gamma^{2}}} \simeq 1-\frac{1}{2 \gamma^{2}}
\end{gathered}
$$

and furthermore,

$$
\sqrt{1+x^{\prime 2}}-\beta=1+\frac{\varepsilon^{2} \sin ^{2} k z}{2}-1+\frac{1}{2 \gamma^{2}}=\frac{1}{2 \gamma^{2}}\left(1+\varepsilon^{2} \gamma^{2} \sin ^{2} k z\right)
$$

and

$$
\varphi=\frac{\omega}{2 \beta c \gamma^{2}} \int\left(1+K^{2} \sin ^{2} k z\right) d z=\frac{\omega}{2 \beta c \gamma^{2}} \int\left(1+\frac{K^{2}}{2}-\frac{K^{2}}{2} \cos 2 k z\right) d z
$$

where, for $\beta \approx 1$,

$$
\varphi=\frac{\omega}{2 c \gamma^{2}}\left(1+\frac{K^{2}}{2}\right) z-\frac{\omega}{2 c \gamma^{2}} \frac{K^{2}}{2} \frac{\sin 2 k z}{2 k}
$$

Therefore,

$$
\begin{gathered}
J=\int x^{\prime} d z \cdot e^{i \varphi}, \quad \text { with } \frac{\omega}{c}=k_{L} \\
J=\frac{\varepsilon}{2 i} \int e^{i\left(\frac{k_{J}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)-k\right) z-i\left(\frac{k_{L}}{2 \gamma^{2}} \frac{K^{2}}{2} \frac{\sin 2 k z}{2 k}\right)} d z
\end{gathered}
$$

where

$$
\begin{gathered}
\Delta k=\left(\frac{k_{L}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)-k\right) \\
e^{i u \sin x}=\sum J_{n}(u) e^{i n x}, \quad \text { with } \quad u=\frac{k_{L} K^{2}}{8 \gamma^{2} k} \quad \text { and } \quad x=k z
\end{gathered}
$$

Thus,

$$
J=\frac{\varepsilon}{2 \dot{i}} \int e^{i(\Delta k z-2 n k z)} J_{n}(u) d z
$$

Further, from

$$
\frac{k_{L}\left(1+K^{2} / 2\right)}{2 \gamma^{2}}-(2 n+1) k=0
$$

and solving for $\frac{k_{L}}{k}$, we have

$$
u=\frac{(n+1 / 2) K^{2} / 2}{1+K^{2} / 2}
$$

Mathematical Representation of Undulator and Wiggler Fields

Undulator and wiggler fields that are not uniform in the transverse direction are usually derived from

$$
\begin{equation*}
V=V \cosh k_{1} x \sinh k_{2} y \cos z \quad \text { with } \quad k_{1}^{2}+k_{2}^{2}=k^{2} \tag{1}
\end{equation*}
$$

Starting with $\nabla^{2} V$ in cylindrical co-ordinates, we have

$$
r^{2} \nabla^{2} V=\left(r^{2} \frac{\partial^{2}}{\partial r^{2}}+r \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial \varphi^{2}}+r^{2} \frac{\partial^{2}}{\partial z^{2}}\right) V=0
$$

Assuming, without loss of generality, midplane symmetry, we write

$$
\begin{equation*}
V=\sum F_{n} \sin n \varphi \cos k z \tag{2.1}
\end{equation*}
$$

thus getting

$$
\begin{equation*}
\left(r^{2} \frac{\partial^{2}}{\partial r^{2}}+r \frac{\partial}{\partial r}-n^{2}-k^{2} r^{2}\right) F_{n}=0 \tag{3}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
F_{n}=a_{n} I_{n}(k r) \tag{2.2}
\end{equation*}
$$

An interesting consequence is that whether one uses (1) or (2), one would get the same fields and pole shapes for a sufficiently small $k r$.

$$
\begin{equation*}
\sum a_{n} I_{n}(k r) \sin n \varphi=V_{0} \cosh \left(k_{1} r \cos \varphi\right) \sinh \left(k_{2} r \sin \varphi\right) \tag{4}
\end{equation*}
$$

and, in particular, this means that

$$
\begin{equation*}
a_{n} I_{n}(k r) \pi=V_{0} \int_{0}^{2 \pi} \cosh \left(k_{1} r \cos \varphi\right) \sinh \left(k_{2} r \sin \varphi\right) \sin n \varphi d \varphi \tag{5}
\end{equation*}
$$

This must hold in particular for $k r \ll 1$, i.e. by comparing the lowest order term in r and executing the trivial integrations, one gets a_{n} which then leads to an extremely interesting integral representation of $I_{n}(k r)$.

Publications of Klaus Halbach

(October 1994)

1. E. Baldinger, K. Halbach: "Berechnung der Zählversluste von Untersetzern nach der Theorie von Jost," Helv. Phys. Acta 24, 315 (1951).
2. K. Halbach: "Berechnung linearer, realisierbarer Netzwerke zur Erzielung optimaler Signa1/Rauschverhältnisse," Helv. Phys. Acta 26, 65 (1953).
3. F. Alder, K. Halbach: "Das magnetische Kernmoment von Cr53," Helv. Phys. Acta 26, 426 (1953).
4. K. Halbach: "Ueber eine neue Methode zur Messung von Relaxationszeiten und Åber den Spin von Cr53," Helv. Phys. Acta 27, 259 (1954).
5. K. Halbach: "Modellunabhängige Beschreibung von Modulationseffekten bei der Kerninduktion," Helv. Phys. Acta 29, 37 (1956).
6. K. Halbach: "Modulation-Effect Corrections for Moments of Magnetic Resonance Line Shapes," Phys. Rev. 119, 1230 (1960).
7. K. Halbach, R. W. Layman: "Production of a Hot Rotating Plasma," Phys. Fluids 5, 1482 (1962).
8. W. B. Kunkel, W. R. Baker, A. Bratenahl, K. Halbach: "Boundary Effects in Rotating Plasma Experiments," UCRL-10399; Phys. Fluids 6, 699 (1963).
9. K. Halbach, W. R. Baker: "Plasma Gun Aspects of an E \times B System," UCRL-10208; Phys. Fluids 7, 562 (1964).
10. K. Halbach: "Matrix Representation of Gaussian Optics," Am. J. Phys. 32, 90 (1964).
11. K. Halbach, D. B. Hopkins: "Operation of the Homopolar Gun II Coil System," Proceedings of the Symposium on Engineering Problems of Controlled Thermonuclear Research (1966).
12. K. Halbach: "A Program for Inversion of System Analysis and Its Application to the Design of Magnets," Proceedings of the International Conference on Magnet Technology (1967), p. 47.
13. R. M. Main, K. Halbach, P. Kennedy, R. Yourd, A. Watanabe, D. Kolody: "High Gradient Magnetic Drift Tube Quadrupoles," Proceedings of the 1968 Proton Linear Accelerator Conference, p. 52.
14. K. Halbach: "Application of Conformal Mapping to Evaluation and Design of Magnets Containing Iron with Nonlinear B(H) Characteristics," Nucl. Instrum. Methods 64, 278 (1968).
15. K. Halbach: "Calculation of the Stray Field of Magnets with POISSON," Nucl. Instrum. Methads 66, 154 (1968).
16. K. Halbach: "First Order Perturbation Effects in Iron Dominated Two Dimensional Symmetric Multipoles," Nucl. Instrum. Methods 74, 147 (1969).
17. K. Halbach, R. Yourd: Tables and Graphs of First Order Perturbation Effects in Iron Dominated TwoDimensional Symmetrical Multipoles, UCRL-18916, May 1969, 30 pp.
18. K. Halbach: "Fields and First Order Perturbation Effects in Two Dimensional Conductor Dominated Magnets," Nucl. Instrum. Methods 78, 185 (1970).
19. K. Halbach, O. A. Anderson, D. Fuss: "Systematic Shaping of $|B|$ on Flux Surfaces in Axisymmetric Toroidal Systems," Plasma Phys. 12, 207 (1970).
20. K. Halbach: "Effect of Drift Tube Tolerances on the Electric Field Distribution Along the Length of an Alvarez Cavity," Proceedings of the Proton Linear Accelerator Conference (1970).
21. K. Halbach: "Field Correction Windings for Iron Magnets," Nucl. Instrum. Methods 107, 529 (1973).
22. K. Halbach: "Some Eddy Current Effects in Solid Core Magnets," Nucl. Instrum. Methods 107, 529 (1973).
23. K. Halbach: "A Magnetic Field Clamp with Beneficial Saturation Effects," Nucl. Instrum. Methods 119, 327 (1974).
24. K. Halbach: "Rapid Measurement of the EFB of Homogeneous Field Magnets," Nucl. Instrum. Methods 119, 329 (1974).
25. W. S. Cooper, K. Halbach, S. B. Magyary: "Computer Aided Extractor Design," Proceedings 2, Symposium on Ion Sources and Formation of Ion Beams, Berkeley, CA (1974).
26. K. Halbach: "Design Considerations for a Lumped Solenoid," Proceedings of the 1975 PEP Summer Study, Berkeley, CA (1975); LBL-4270.
27. K. Halbach: Effect of Variable Measurement Coil Displacement on the Determination of the Harmonic Content of a Multipole, SLAC, PEP-0208, February 1976, 8 pp.
28. F. Lobkowicz, U. Becker, K. Berkelman, Michael A. Green, E. Groves, K. Halbach, J. A. Kadyk, N. Mistry, A. Sessoms, M. Strovink: "A General Users Magnet Design," Proceedings of the 1975 PEP Summer Study, Berkeley, CA (1975), pp. 46-75.
29. K. Halbach: Analysis of Some Errors in the Experimental Determination of the Harmonic Content of Multipole Magnets, SLAC, PEP-0209 (February 1976), 13 pp.
30. H. D. Ferguson, J. E. Spencer, K. Halbach: "A General Ion-Optical Correction Element," Nucl. Instrum. Methods 134 (1976).
31. K. Halbach: Mathematical Models and Algorithms for the Computer Program 'WOLF' (1975); LBL-4444.
32. A. Abdel-Gawad, A. Hardt, S. Martin, J. Reich, K. L. Brown, K. Halbach: "Design Procedures for the Julich QQDDQ High Resolution Spectrometer," Proceedings 7, International Cyclotron Conference, Zurich (1975).
33. H. Ferguson, J. Spencer, K. Halbach: "A General Ion Optical Element," Nucl. Instrum. Methods 137, 409 (1976).
34. K. Halbach: "A Simple Class of Beam Transport Systems with Optically Axisymmetric Transfer Properties," Nucl. Instrum. Methods 136, 441 (1976).
35. K. Halbach, R. Holsinger: "SUPERFISH-A Computer Program for Evaluation of RF Cavities with Cylindrical Symmetry," Particle Accelerators 7, 217 (1976).
36. K. Halbach, R. Holsinger, W. Jule, D. Swenson: "Properties of the Cylindrical RF Cavity Evaluation Code SUPERFISH," Proceedings of the Proton Linear Accelerator Conference, Chalk River (1976).
37. K. Halbach: Coil Tolerance Effects in PEP Dipole, SLAC, PEP-PTM-090 (February 1977).
38. K. Halbach: "Reply to the Comment by P. W. Hawkes on My Paper: A Simple Class of Beam Transport Systems with Optically Axisymmetric Transfer Properties," Nucl. Instrum. Methods 144, 339 (1977).
39. Zebelman, W. Meyer, K. Halbach, A. Poskanzer, R. Sextro, G. Gabor, D.A. Landis: "A Time Zero Detector Utilizing Isochronous Transport of Secondary Electrons," Nucl. Instrum. Methods 141, 439 (1977).
40. A. Colleraine, D. Doll, M. Holland, J. Kamperschroer, K. Berkner, K. Halbach, L. Resnick, A. Cole: "Parametric Study of the D3 Neutral Beam Injection System," Proceedings of 1Oth Symposium on Fusion Technology, Padua (1978).
41. R. Reimers, J. Peterson, R. Avery, K. Halbach, M. Kaviany, A. Lake, R. Main, D. Nelson, R. Nissen, J. Singh: "Magnets in the PEP Injection Line," Proceedings of the 1979 Particle Accelerator Conference.
42. R. Main, J. Tanabe, K. Halbach: "Measurements and Correction of the PEP Interaction Region Quadrupole Magnets," Proceedings of the 1979 Particle Accelerator Conference.
43. R. Avery, T. Chan, K. Halbach, R. Main, J. Tanabe: "PEP Insertion Quadrupole Design Features," Proceedings of the 1979 Particle Accelerator Conference.
44. D.H. Nelson, M. I. Green, K. Halbach, E. Hoyer: "Magnetic Measurements for Tuning and Operating a Hybrid Wiggler," J. Phys. (Paris) 45 (1984).
45. E. Hoyer, T. Chan, J.W.G. Chin, K. Halbach, K.-J. Kim, H. Winick, J. Yang: "The Beam Line VI RECSteel Hybrid Wiggler for SSRL, IEEE Trans. Nucl. Sci. NS-30, 3118 (1983).
46. T. J. Orzechowski, M. C. Moebus, F. A. Penko, D. Prosnitz and D. Rogers (LLNL); C. S. Chavis, K. Halbach, D. B. Hopkins, R. W. Kuenning, A. C. Paul, A. M. Sessler, R. M. Yamamoto, and J. S. Wurtele (LBL): "The Status of the Lawrence Berkeley Laboratory and Lawrence Livermore National Laboratory Free Electron Laser (FEL)," presented at the 4th Workshop on FEL Devices (1983).
47. K.-J. Kim, J. J. Bisognano, A. A. Garren, K. Halbach, J. M. Peterson, A. M. Sessler, J. S. Wurtele (LBL); E. T. Scharlemann (LLNL): "A Design of a High Gain FEL-Storage Ring System," Proceedings of the International Workshop on Coherent and Collective Properties in the Interaction of Relativistic Electrons and Electromagnetic Radiation, Milan, Italy, September 13-16, 1984.
48. K.-J. Kim, J. J. Bisognano, A. A. Garren, K. Halbach, J. M. Peterson: "Issues in Storage Ring Design for Operation of High Gain FELs, Proceedings of the International Workshop on Coherent and Collective Properties in the Interaction of Relativistic Electrons and Electromagnetic Radiation, Milan, Italy, September 13-16, 1984; Nucl. Instrum. Methods A239, 54 (1985).
49. J. M. Peterson, J. J. Bisognano; A. A. Garren, K. Halbach, K.-J. Kim, and R. C. Sah: "A Storage-Fing FEL for the VUV," Proceedings of the 1984 Free Electron Laser Conference, Castelgandolfo, Italy, September 1984.
50. K.-J. Kim, K. Halbach, and D. Attwood: "Coherent VUV and Soft X-ray Radiation from Undulators in Modern Storage Rings," Laser Techniques in the Extreme UV, AIP Conference Proc., No. 119 (1984), p. 267.
51. D. Attwood, K. Halbach, and K.-J. Kim: "Partially Coherent X-rays," Proceedings of the Workshop on VUV and X-Ray Sources, National Research Council, November 9, 1984.
52. G. E. Fischer, M. Anderson, R. Byers, K. Halbach: "SLC Arc Transport System-Magnet Design and Construction," Proceedings of the 1985 Particle Accelerator Conference, Vancouver, B.C., Canada, May 13-16, 1985; SLAC-PUB-3612.
53. K. Halbach: "Permanent Magnets for Production and Use of High Energy Particle Beams," Proceedings of the 8th International Workshop on Rare-Earth Magnets and their Applications, Dayton, OH, May 6-8, 1985; LBL-19285.
54. K. Halbach: "Application of Permanent Magnets in Accelerators and Electron Storage Rings," J. Appl. Physics 57, Part IIA, 3605-3608 (1985).
55. K. Halbach, B. Feinberg, M. I. Green, R. MacGill, J. Milburn, J. Tanabe: "Hybrid Rare Earth Quadrupole Drift Tube Magnets," Proceedings of the 1985 Particle Accelerator Conference, Vancouver, B.C., Canada, May 13-16, 1985; LBL-18960.
56. K. Halbach, E. Hoyer, S. Marks, D. Plate, D. Shuman: "CSEM-Steel Hybrid Wiggler/Undulator Magnetic Field Studies," Proceedings of the 1985 Particle Accelerator Conference, Vancouver, B.C., Canada, May 13-16, 1985 ; LBL-19584.
57. D. Attwood, K. Halbach, K. J. Kim: "Tunable Coherent X-rays," Science 228, 1265-1272 (1985).
58. D. Attwood, K. J. Kim, K. Halbach, M. R. Howells: "Undulators as a Primary Source of Coherent X-rays," Proceedings of the International Conference on Insertion Devices for Synchrotron Sources, SPIE 582, 10 (1985); LBL-20569.
59. K. Halbach: "Some New Ideas About Undulators," Proceedings of the First International Conference on Insertion Devices for Synchrotron Radiation Sources, SPIE 582, 68 (1985).
60. K. G. Tirsell, T. C. Brown, P. J. Ebert, W. C. Dickinson, E. M. Lent, E. Hoyer, K. Halbach, S. Marks, D. Plate, D. Shuman, R. Tatchyn: "Development of a NdFe-Steel Hybrid Wiggler for SSRL," SPIE 582, 177 (1985).
61. K. Halbach: "Strong Rare Earth Cobalt Quadrupoles, Proceedings of the 1979 Particle Accelerator Conference.
62. R. Holsinger, K. Halbach: "A New Generation of Samarium Cobalt Quadrupole Magnets for Particle Beam Focusing Applications," Proceedings of 4th International Conference on Rare Earth Cobalt Magnets and Their Applications (1979).
63. K. Halbach: "Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material," Nucl. Instrum. Methods 169, 1 (1980).
64. K. Halbach: "Physical and Optical Properties of Rare Earth Cobalt Permanent Magnets," Nucl. Instrum. Methods 187, 109 (1981).
65. K. Halbach, J. Chin, E. Hoyer, H. Winick, R. Cronin, J. Yang, Y. Zambor: "A Permanent Magnet Undulator for SPEAR," Proceedings of the 1981 Particle Accelerator Conference, IEEE Trans. Nucl. Sci. NS-28, 3136 (1981).
66. K. Halbach: "Design of Focussing and Guide Structures for Charged Particle Beams Using Rare Earth Cobalt Permanent Magnets," Proceedings of the 5th International Conference on Rare Earth Cobalt Permanent Magnets and Their Applications (1981).
67. H. Winick, G. Brown, K. Halbach, J. Harris: "Wiggler and Undulator Magnets," Phys. Today 34, 50 (1981).
68. R. L. Gluckstern, R.F. Holsinger, K. Halbach. G. Minerbo, "ULTRAFISH—Generalization of SUPERFISH to $\mathrm{m}>1$," Proceedings of 1981 Linear Accelerator Conference, p. 102.
69. B. Feinberg, G. Brown. K. Halbach, W. B. Kunkel: "A Method for Improving the Quality of the Magnetic Field in a Solenoid," Nucl. Instrum. Methods 203, 81 (1982).
70. K. Halbach: "Perturbation Effects in Segmented Rare Earth Cobalt Multipole Magnets," Nucl. Instrum. Methods 198, 213 (1982).
71. K. Halbach: "Conceptual Design of a Permanent Quadrupole Magnet with Adjustable Strength," Nucl. Instrum. Methods 206, 353 (1983).
72. K. Halbach: "Permanent Magnet Undulators, Journal de Physique, Colloque Cl, supplement au no. 2, Tome 44, p. Cl-211 (1983).
73. T. J. Orzechowski, D. Prosnitz, K. Halbach, R. Kuenning, A. Paul, D. Hopkins, A. Sessler, G. Stover, J. Tanabe, J. Wurtele: "A High Gain Free Electron Laser at ETA," UCRL-88705, National Conference on High Power Microwave Technology, Harry Diamond Labs (1983).
74. H. Winick, H. Wiedemann, I. Lindau, K. Hodgson, K. Halbach, J. Cerino, A. Bienenstock, R. Bachrach: "An All Wiggler and Undulator Synchrotron Radiation Source," IEEE Trans. Nucl. Sci. NS-30, 3097 (1983).
75. K. Halbach: "Permanent Multipole Magnets with Adjustable Strength," IEEE Trans. Nucl. Sci. NS-30, 3323 (1983).
76. S. A. Martin, A. Hardt, J. Meissburger, G. Berg, U. Hacker, W. Hurlimann, J. Romer, T. Sagefka, A. Retz, O. Schult, K. Brown, K. Halbach: "The QQDQ Magnet Spectrometer 'Big Karl'," Nucl. Instrum. Methods 214, 281 (1983).
77. C. Bahr, T. Chan, J. Chin, T. Elioff, K. Halbach, G. Harnett, E. Hoyer, D. Humphries, D. Hunt, K. Kim, T. Lauritzen, D. Lindle, D. Shirley, R. Tafelski, A. Thompson, LBL; S. Cramer, P. Eisenberger, R. Hewitt, J. Stohr, Exxon; R. Boyce, G. Brown, A. Golde, R. Gould, N. Hower, I. Lindau, H. Winick, J. Yang, SSRL; J Harris, B. Scott, SLAC: "A New Wiggler Beam Line for SSRL," Nucl. Instrum. Methods 208, 117 (1983).
78. E. Hoyer, T. Chan, J. Chin, K. Halbach, K.-J. Kim, H. Winick, J. Yang: "The REC Steel Hybrid Wiggler for SSRL," IEEE Trans. Nucl. Sci. NS-30, 3118 (1983).
79. G. Brown, K. Halbach, J. Harris, H. Winick: "Wiggler and Undulator Magnets-A Review," Nucl. Instrum. Methods 208, 65 (1983).
80. A. Jackson, J. Bisognano, S. Chattopadhyay, M. Cornacchia, A. Garren, K. Halbach, K. J. Kim, H. Lancaster, J. Peterson, M. S. Zisman, C. Pellegrini, G. Vignola: "Optimization of the Parameters of a Storage Ring for a High Power XUV Free Electron Laser," SPIE 582, 131 (1985):
81. K.-J. Kim, J. Bisognano, S. Chattopadhyay, M. Comacchia, A. A. Garren, K. Halbach, A. Jackson, H. Lancaster, J. Peterson, M. S. Zisman, C. Pellegrini, and G. Vignola: "Storage Ring Design for a Short Wavelength FEL," IEEE Trans. Nucl. Sci. 32, 3377-3379 (1985).
82. M. Cornacchia, J. Bisognano, S. Chattopadhyay, A. Garren, K. Halbach, A. Jackson, K.-J. Kim, H. Lancaster, J. Peterson, M. S. Zisman, C. Pellegrini, G. Vignola: "Design Concepts of a Storage Ring for a High Power XUV Free Electron Laser," Nucl. Instrum. Methods A250, 57 (1986).
83. J. Bisognano, S. Chattopadhyay, M. Cornacchia, A. Garren, A. Jackson, K. Halbach, K.-J. Kim, H. Lancaster, J. Peterson, M. S. Zisman, C. Pellegrini, G. Vignola: "Feasibility Study of a Storage Ring for a High Power XUV Free Electron Laser," Particle Accelerators 18, 223 (1986); LBL-19771.
84. K. Halbach: "Concepts for Insertion Devices that will Produce High-Quality Synchrotron Radiation," Nucl. Instrum. Methods A246, 77 (1986); LBL-20174.
85. K. Halbach: "Some Concepts to Improve the Performance of DC Electromagnetic Wigglers," Nucl. Instrum. Methods A250, 115 (1986); LBL-20502.
86. K. Halbach: "Desirable Excitation Patterns for Tapered Wigglers," Nucl. Instrum. Methods A250, 5 (1986); LBL-20564.
87. K. Halbach: "Magnet Innovations for Linacs," 1986 Linear Accelerator Conference Proceedings, SLAC Report 303 (1986), p. 407.
88. K. Halbach: "Specialty Magnets," Physics of Particle Accelerators, AIP Conference Proceedings, No. 153 (1987), p. 1277; LBL-21945.
89. B. Feinberg, J. Tanabe, K. Halbach, G. Koehler, M.I. Green: "Adjustable Rare Earth Quadrupole Drift Tube Magnets," Proceedings of the 1987 IEEE Accelerator Conference, p. 1419.
90. K. Halbach: "Use of Permanent Magnets in Accelerator Technology: Present and Future," Proceedings of the Symposium on Permanent Magnet Materials, MRS Spring Meeting., Anaheim, CA, April 23-25, 1987.
91. E. Hoyer, K. Halbach, D. Humphries, S. Marks, D. Plate, D. Shuman (LBL); V. P. Karpenko, S. Kulkarni, K. G. Tirsell (LLNL): "The Beam Line X NdFe-Steel Hybrid Wiggler for SSRL," Proceedings of the 1987 IEEE Accelerator Conference, p. 1508.
92. K. Halbach: "Description of Beam Position Monitor Signals with Harmonic Functions and Their Taylor Series Expansions," Nucl. Instrum, Methods A260, 14-32, 1987; LBL-22840.
93. G. A. Deis, A. R. Harvey, C. D. Parkison, D. Prosnitz, J. Rego, E. T. Scharlemann (LLNL); K. Halbach (LBL): "A Long Electromagnetic Wiggler or the Paladin Free-Electron Laser Experiments," Proceedings of the Tenth International Conference on Magnet Technology, September 23-26, 1987.
94. G. A. Deis, M. J. Burns, T. C. Christensen, F. E. Coffield, B. Kulke, D. Prosnitz, E. T. Scharlemann (LLNL); K. Halbach (LBL): "Electromagnetic Wiggler Technology Development at the Lawrence Livermore National Laboratory," Proceedings of the Tenth International Conference on Magnet Technology, September 23-26, 1987.
95. M. J. Burns, G. A. Deis, R. H. Holmes, R. D. Van Maren (LLNL); K. Halbach (LBL): "Development of the Strong Electromagnet Wiggler," Proceedings of the Tenth International Conference on Magnet Technology, September 23-26, 1987.
96. T. C. Christensen, M. J. Burns, G. A. Deis, C. V. Parkison, D. Prosnitz (LLNL); K. Halbach (LBL): "Development of a Laced Electromagnetic Wiggler," Proceedings of the Tenth International Conference on Magnet Technology, September 23-26, 1987.
97. K. Halbach: "Consequences of Tolerances in Undulators," Proceedings of the Workshop on Scientific and Technological Applications of Synchrotron Radiation, Miramare, Trieste, Italy, May 14-15, 1987.
98. D. B. Hopkins, E. H. Hoyer, K. Halbach, A. M. Sessler, W. A. Barletta, R. A. Jong, L. L. Reginato, S. S. Yu, J. R. Bayless, R. B. Palmer: A FEL Power Source for a TeV Linear Collider, LBL-25936-mc, October 1988.
99. B. Feinberg, G. U. Behrsing, K. Halbach, J. S. Marks, M. E. Morrison, D. H. Nelson: "Laced Permanent Magnet Quadrupole Drift Tube Magnets, Proceedings of the IEEE Particle Accelerator Conference, Chicago, II, March 20-23, 1989; also, Proceedings of the Linear Accelerator Conference, Williamsburg, VA, October 2-7, 1988.
100. D. B. Hopkins, K. Halbach, E. H. Hoyer, A. M. Sessler, E. J. Sternbach: "Elements of a Realistic 17-GHz FEL/TBA Design," Proceedings of the 1989 Workshop on Advanced Accelerator Concepts, Lake Arrowhead, CA, January 9-13, 1989.
101. W. Hassenzahl, J. Chin, K. Halbach, E. Hoyer, D. Humphries, B. Kincaid, and R. Savoy: "Insertion Devices for the Advanced Light Source at LBL," Proceedings of the 1989 IEEE Particle Accelerator Conference, Chicago, IL, March 20-23, 1989.
102. M. Cornacchia, K. Halbach: "Study of Modified Sextupoles for Dynamic Aperture Improvement in Synchrotron Radiation Sources," SLAC-PUB-5096; Nucl. Instrum. Methods A290, 19 (1990).
103. E. Hoyer, J.Chin, K. Halbach, W. Hassenzahl, D. Humphries, B. Kincaid, H. Lancaster, D. Plate, and R. Savoy: "The U5.0 Undulator Design for the Advanced Light Source at LBL," Proceedings of the 6th National Conference on Synchrotron Radiation Instrumentation, Berkeley, CA, August 7-10, 1989.
104. R. Savoy, K. Halbach, W. Hassenzahl, E. Hoyer, D. Humphries, and B. Kincaid: "Calculation of Magnetic Error Fields in Hybrid Insertion Devices," Proceedings of the 6th National Conference on Synchrotron Radiation Instrumentation, Berkeley, CA, August 7-10, 1989; Nucl. Instrum. Methods A291, 408 (1990).
105. J. Tanabe, R. Avery, R. Caylor, M. I. Green, E. Hoyer, K. Halbach, S. Hernandez, D. Humphries, Y. Kajiyama, R. Keller, W. Low, S. Marks, J. Milburn, D. Yee: "Fabrication and Test of Prototype Ring Magnets for the ALS," Proceedings of the 1989 IEEE Particle Accelerator Conference, Chicago, IL, March 20-23, 1989.
106. K. Halbach: Insertion Device Design: 16 lectures presented from October 1988 to March 1989, LBL-V8811-1.1-16.
107. K. Halbach: "Understanding Modern Magnets through Conformal Mapping," Proceedings of the Bloch Symposium, Stanford, CA, October 27, 1989; International Journal of Modern Physics B 4, 1201 (1990); LBL-28395.
108. K. Halbach: Magnet Technology: 6 lectures presented from February to April 1990, LBL-V920-2.1-6.
109. K. Halbach: Summary of the 3-D Hybrid Theory, with some Applications to the Assessment of Perturbation Effects, ALS Note LSBL-034 (1990).
110. R. Savoy, K. Halbach: "Design Considerations for a Fast Modulator in a 'Crossed Undulator'," Proceedings of the IEEE 1991 Particle Accelerator Conference.
111. C. Pellegrini, D. Robin, D. Cline, J. Kolonko, C. Anderson, W. Barletta, A. Chargin, M. Cornacchia, G. Dalbacka, K. Halbach, E. Lueng, F. Kimball, D. Madura, L. Patterson: "A High Luminosity Superconducting Mini Collider for Phi Meson Production and Particle Beam Physics," Proceedings of the IEEE 1991 Particle Accelerator Conference.
112. E. Hoyer, J. Chin, K. Halbach, W. V. Hassenzah1, D. Humphries, B. Kincaid, H. lancaster, D. Plate: "The U5.0 Undulator for the ALS," Proceedings of the IEEE 1991 Particle Accelerator Conference.
113. M. Cornacchia, W. J. Corbett, K. Halbach: "Study of Modified Octupole Magnets for Landau Damping with Dynamic Aperture Preservation," Proceedings of the IEEE 1991 Particle Accelerator Conference.
114. E. Hoyer, J. Chin, K. Halbach, W. Hassenzahl, D. Humphries, B. Kincaid, H. Lancaster, D. Plate, R. Savoy: "The U5.0 Undulator Design for the Advanced Light Source at LBL," Nucl. Instrum. Methods A291, 383 (1990).
115. E. Hoyer, J. Chin, K. Halbach, W. V. Hassenzahl, D. Humphries, B. Kincaid, H. Lancaster, D. Plate: "ALS Insertion Devices," Proceedings of the Topical Conference on Vacuum Design of Synchrotron Light Sources (1990).
116. T. J. Orzechowski, J. L. Miller, J. T. Weir, Y. P. Chong, F. Chambers, G. A. Deis, A. C. Paul, D. Prosnitz, K. Halbach, J. Edighoffer: "Free-Electron Laser Results from the Advanced Test Accelerator," Proceedings of the 1988 Linear Accelerator Conference.
117. K. Halbach: "Integration of Beam Position Monitor Signals," Nucl. Instrum. Methods A297, 531 (1990).
118. M. I. Green, P. Barale, L. Callapp, M. Case-Fortier, D. Lerner, D. Nelson, R. Schermer, G. Skipper, D. Van Dyke, C. Cork, K. Halbach, et al.: "Magnetic Measurements at Lawrence Berkeley Laboratory," IEEE Trans. Magn. 28, 797 (1992).
119. M. A. Green, K.-J. Kim, P. J. Viccaro, E. Gluskin, K. Halbach, R. Savoy, R. Trzeciak: "Rapidly Modulated Variable Polarization Crossed Undulator Source," Rev. Sci. Instrum. 63, 336 (1992).
120. E. Hoyer, J. Chin, K. Halbach, W. V. Hassenzahl, D. Humphries, B. Kincaid, H. Lancaster, D. Plate: "The U5.0 Undulator for the Advanced Light Source," Rev. Sci. Instrum. 63, 359 (1992).
121. E. Blum, K. Halbach: "Performance of Electro Magnet and Permanent Magnet Quadrupoles with Iron Poles," Nucl. Instrum. Methods A320, 432 (1992).
122. C. Pellegrini, J. Rosenzweig, G. Travish, K. Bane, ... K. Halbach, et al.: "The SLAC Soft X-ray High Power FEL," Nucl. Instrum. Methods A341, 326 (1994).
123. R. D. Schlueter, K. Halbach: "Harmonics Suppression of Fields Arising from Vacuum Chamber Eddy Currents, with Applications to SSC Low Energy Booster Magnets," IEEE Trans. Magn. 30, 2130 (1994).
124. R. D. Schlueter, K. Halbach: "Skew Harmonics Suppression in Electro Magnets, with Applications to the Advanced Light Source Storage Ring Corrector Magnet Design," IEEE Trans. Magn. 30, 2126 (1994).
125. H. Winick, K. Bane, R. Boyce, J. Cobb, ... K. Halbach, et al.: "Short Wavelength FEL's Using the SLAC Linac," Nucl. Instrum. Methods A347, 199 (1994).

Technical Notes of Klaus Halbach

Database Title Year
Reference
0001 bpm "Notes on a beam position monitor 86
0002bpm Beam position error due to error in electric signals 86
0003bpm 2D pickup electrode design (square box) 86
$0004 \mathrm{bpm} \quad$ Position monitor signal for finite size beam 86
0005 bpm Justification for treating beam position monitors 2D and statically 86
0006 bpm 2D pickup electrode system design (diamond box) 86
$0007 \mathrm{bpm} \quad$ Moments $g_{m}=\int z^{m} \rho(x, y) d x d y$ of charge distributions, and 86 properties of Gaussian distribution
$0008 \mathrm{bpm} \quad$ Measurement of harmonic coefficients of beam pos. monitor model 86
$0009 \mathrm{bpm} \quad$ Harmonics for various mixing patterns of beam position detector 86 signals \& their use
0010bpm Algorithms for evaluation of fields from electrode in diamond duct 86
O011bpm Formula summary 86
0012bpm Specific design options; double electrode systems 86
0013bpm Length normalization, and desirable duct size 86
0014bpm $\quad F$ from dipole moment $q^{\prime}|\Delta z|$ on duct surface 86
$0015 \mathrm{bpm} \quad$ Actual integrated charge on electrode 86
0016bpm Map of duct with photon slot onto circular disk 86
0017 bpm Expansion coefficients of finite size round electrodes flush in 2D 86 duct
0018bpm Reciprocity theorem for current \rightarrow pickup loop 86
$0019 \mathrm{bpm} \quad$ Outline for calculation of integrated harmonics along an axis that is 86 skewed relative to axis of finite length multipole
0020 bpm Algorithm for calculation of beam position from measurements 86
0021 bpm $W=\int_{-\infty}^{+\infty} V(z) d z$ from finite length electrode in 2D geometry 86
0022bpm Exact, complete proofs of reciprocity theorems for electrostatic and 86 magnetostatic beam monitors
0023bpm Design objectives to be achieved by electrode placements in duct 86
0024bpm Performance requirements for BPM signal processing system 86
0025bpm Details about model time domain transfer functions for BPM signal 86process
0026bpm Farler method to design single and double integrator 86
0027bpm Design of wide flat top $F(u)$ 86
0028bpm Some thoughts on integrators 86
0029bpm Possible problems, and fixes, associated with charges induced on 86 magnetic pick up "loop"
$0030 \mathrm{bpm} \quad$ Generalization of $\mathrm{j}_{B} \leftrightarrow \varphi_{\text {coil }}$ reciprocity for coil with finite 86conductor cross section, and some interesting applications
0031bpm Listings of old BPM program 87
0032bpm Formulas for new integrator programs 87
$0033 \mathrm{bpm} \quad$ Initial work on $F(u)=u^{2} e^{-u}+a \alpha^{2} u^{2} e^{-\alpha u}$ with $F^{n}=0$ for $n=m$, 86 $m+1, m+2, \ldots$
0034bpm Magnetostatic and electrostatic F-mixing formulas 87
$0035 \mathrm{bpm} \quad$ Solution to Dirichlet problem in unit circle 87
$0036 \mathrm{bpm} \quad$ Copy of $2 / 86$ note on flux into cylindric pole 86
$0037 \mathrm{bpm} \quad$ BPM models for C_{n} measurement 87
0038 bpm Difficulties to get p2 with 4 sensor system as proposed for ATA, 87 ALS
$0039 \mathrm{bpm} \quad G$'s to 3 rd order for $p_{2}=a e^{2 i \alpha}$ 87
0040 bpm Eddy current integrator for BPM 87
$0041 \mathrm{bpm} \quad$ Properties of duct \leftrightarrow circular disk maps 87
$0042 \mathrm{bpm} \quad$ Expansion coefficients of $\tan _{z}, \tanh _{z}$ 87
0043bpm Normalization of POISSON runs for mapping information 87
0044bpm Expansion coefficients of finite size round electrodes flush in 2D 87duct, \#2
$0045 \mathrm{bpm} \quad$ Effect of perturbation in z-boundary on translation matrix 87
0046bpm Equivalent circuit for eddy current disk or cylinder, to serve as 87integrator
$0047 \mathrm{bpm} \quad$ Solution to problems in circular disk 87
0048bpm Centroid determination during injection into storage ring 87
0049bpm INTEGR 3 87
0050bpm TRANSL 1 87
0051 bpm References from Paul Concus 87
0052 bpm Damping of electomagnetic wave between two parallel plates 87
0053bpm Newton's method in 2D for BPM signal reduction 87
0054bpm BPM in Gml duct 87
$0055 \mathrm{bpm} \quad$ Choice of a_{2} in $y=-a_{2} x^{2}+a_{4} x^{4}$ 87
0056bpm Electromagnetic waves between two parallel plates 87
$0057 \mathrm{bpm} \quad$ EM waves in (general) cylindrical wave guides 87
0058 bpm Expansion coefficients for round electrode in infinitely long duct 87
0059 bpm 2D reciprocity relations for MS pickup 88
0060 bpm Index for 2D reciprocity relations for MS pickup 88
0061bpm Inductance of round conductor in round SC pipe \& next to SC plane 88
0062bpm Multipole expansion of field produced by circular electrode in 89 circular duct
0063 bpm Proof that for reciprocity potential in BPM duct 89
$G(x, y, s)=\left(\frac{\partial}{\partial x^{2}}+\frac{\partial}{\partial y^{2}}\right) \int V_{3}(x+s z, y, z) d z \neq 0$ for $s \neq 0$
0064 bpm Uniqueness of beam position from BPM signals 93
$0065 \mathrm{bpm} \quad$ BPM data reduction program BPM5 93
0066bpm Proper signs of coefficients for $F(z)$ for electrostatic BPM 93
$0067 \mathrm{bpm} \quad$ Uniqueness of beam location from BPM signals 93
$0068 \mathrm{bpm} \quad$ BPM designed to measure p_{2} 93
$0069 \mathrm{bpm} \quad$ BPM in parallel plate duct, without harmonic expansion 93
0070bpm BPM in parallel plate duct, with harmonic expansion 93
0071bpm Map of interior of Gm 1 onto circular unit disk for BPM creation 93
0001 csem Description of REC material in magnetic circuit 78
0002csem Analytical fields for 4-pole with 2 REC blocks in 45 d sector 78
0003 csem REC quadrupole with continuously changing M direction 78
0004 csem Permanent REC multipole with continuously changing 78 magnetization direction
$0005 \mathrm{csem} \quad$ Properties of REC magnetic buckets with geometry invariant against 78 rotation by $2 \pi / M$
0006 csem Ideas about manufacturing procedures for REC quads 78
$0007 \mathrm{csem} \quad$ Production of solenoidal fields with REC 78
$0008 \mathrm{csem} \quad$ Properties of REC multipole buckets (includes easy axis rotation 78 theorem)
0009 csem Reduction of REC material in "my" REC quadrupoles by replacing 78part of it with$\mu=\infty$ steel
0010 csem Magnetization of hexagon and triangle for quadrupole production 78
0011 csem Tuning parameters for 16-piece REC quad 78
0012csem Multipiece REC quad: design and tolerances 78
O013csem Multipiece REC multipole 78
O014csem Efficiency of REC use in continuous quadrupole 78
$0015 \mathrm{csem} \quad$ Multipiece quad with Ron-shaped pieces 78
0016 csem Properties of Ron-shaped poles 78
0017csem Recommended geometry for PIGMI quads 78
0018csem Memo to Swenson, Farrell, Knapp 78
$0019 \mathrm{csem} \quad$ Quad from magnetized REC circular rods of given size 78
0020csem Magnetic fields produced by some REC configurations 78
0021csem Different method to drive fields for continuous REC multipoles and 78 optimum design
0022csem Segmented REC multipole in $\mu=\infty$ shell 78
0023 csem Linear array of REC magnets as plasma bucket wall (with bucket 78 physics)
0024 csem Data for Ron's 16-piece quad, and general REC price information 78
0025 csem Elimination of first allowed harmonic in multipiece REC multipoles 78
0026 csem REC quad with circular rods 79
0027 csem Various methods to calculate fields produced by REC pieces 79
0028 csem Fields produced by rectangular charge sheet 79
0029csem Nomogram for wiggler design 79
0030csem Helical wiggler performance evaluation 79
0031csem Continuous helical REC wiggler; Fourier expansion of \mathbf{H}_{c} 79
0032csem Helical wiggler fields, with all Fourier components 82
0033csem Fourier decomposition of \mathbf{H}_{c} in segmented helical multipoles 82
0034csem Continuous helical multipole magnet 79
0035csem Rough comparison between REC wiggler and REC wiggler with 79 steel pole
$0036 \mathrm{csem} \quad$ REC in circular $\mu=\infty$ shell 79
0037csem Fringe fields at the ends of REC multipoles (general properties) 79
0038csem A possible REC undulator for SSRL 79
0039csem Periodic solenoidal fields with continuous REC easy axis 79 orientation
0040csem Optimum easy axis orientation of REC to produce solenoidal field 79 $\approx \sin k z_{0}$
$0041 \mathrm{csem} \quad$ REC dipole with $\mu=\infty$ steel 79
$0042 \mathrm{csem} \quad$ Field on axis produced by REC rings with fixed easy axis 79
0043csem List of problems to be done for prod of solenoidal fields with pure 79REC structures
$0044 \mathrm{csem} \quad$ Finite REC structure (for solenoidal fields) with $H_{z, \text { center }}=\mathrm{Max}$ 79 with given r_{1}
0045csem Optimization of field at center of single cylindrical REC shell 79
0046csem Perturbation effects in segmented REC multipoles 79
$0047 \mathrm{csem} \quad$ Numbered equations of my REC multipole paper 79
$0048 \mathrm{csem} \quad$ Fields on axis of $1 / 0$ long filamentary helix 79
0049csem Fringe fields of REC undulator in direction perp beam: primitive 79 model
0050 csem Forces between 2 halves of linear undulator 79
0051csem Stray field from continuous REC undulator in direction perp beam 79
0052csem Quadrupole fringe field calculations 79
0053csem Fringe field at the end of quadrupole, with num. evaluation and 79 Apple program
0054csem Fourier decomposition of \mathbf{H}_{c} 79
0055 csem Fringe field at entrance and exit end of continuous linear 2D array of 79
REC
0056csem Fringe field at entrance and exit end of continuous linear 2D array of 79
REC with Fourier transformation
0057 csem Summary of fields outside segmented REC quad 79
$0058 \mathrm{csem} \quad$ Segmented REC quad with 8 trapezoidal and eight rectangular 79 blocks
0059 csem Harmonics produced by rectangular REC block 80
0060 csem Summary for undulator fringe field perpendicular to beam 80
$0061 \mathrm{csem} \quad$ Periodic linear array to give maximum B_{y} at $z_{0}=n \lambda$ 80
0062csem Upper limit of magnetic field achievable with REC and steel 80 undulator
0063 csem Strength of REC quad assembled from rectangular pieces 80
0064 csem Fields produced by REC magnets, and displaced and/or rotated 80
REC magnets
$0065 \mathrm{csem} \quad$ REC inside circular shell with $\mu=\infty$, and quadrupole with shell 81
0066csem REC dipole with steel 81
$0067 \mathrm{csem} \quad$ Quad fields produced by 2 concentric REC quads rotated against 81 each other
0068csem Change of force on circular REC cylinder when displaced in 81 external magnetic field
0069csem Field from axially magnetized circular REC cylinder 81
0070 csem Radial bearing test stand 81
0071 csem 2D REC quad assembled from circular disks 81
0072csem Inexpensive REC quad for linear collider 80
0073 csem REC multipole magnet assembled from rectangular pieces 81
0074csem REC quad with elliptical aperture 80
0075 csem Force and torque on REC in 2D 81
0076csem Earnshaw's theorem for non-permeable material 81
0077 csem Analysis and optimization of steel and REC double magnet 81
0078 csem Design of strong REC and steel quadrupole 81
0079csem Optimization of a REC block in a REC and steel dipole magnet 81
0080csem REC and steel wiggler performance limitations 81
0081csem $\quad K$ in formulas for wiggler and undulator radiation 81
0082csem Conversion between coordinate system used in iron and REC 81 perturbation papers and conventional measurement coordinate system
0083csem EFB of REC quad next to steel plate 81
0084csem REC and steel quadrupole design 82
0085csem Different methods for understanding, or design, of REC magnets 82
0086csem CTR multi-aperture magnet MAM 82
0087csem A new method to design REC and steel (hybrid) magnets 82
0088 csem Fields produced by a REC helical undulator (summary) 82
0089 csem Fields produced by coils with rectangular cross section (ELF \#51) 82
0090 csem Formulas for REC-steel (hybrid) dipole corner: excess flux and 82 flux from REC
0091csem Excess flux in Gm2 82
0092csem Excess flux in Gm3 corner 3 $3 \pi / 4$ corner 82
0093 csem Excess flux in Gm 3 corner with arbitrary angle 82
0094 csem Excess flux in Gm 5 corner with arbitrary angle 82
0095 csem Flux deficiency of Gm 6 corner with arbitrary angle 82
$0096 \mathrm{csem} \quad$ Flux deficiency of 90° inside comer 82
0097csem Summary of formulas for calculation of excess flux and flux 82 deficiencies at corners
0098csem Hybrid dipole formulae 82
0099 csem Incorporation of finite $\mu-1$ of REC into hybrid design 82
0100 csem Flux deposition by magnetic charge between two parallel plates 82(3D)
0101csem HFIX notes (old) 81
0102csem . 3D quad fringe field note (old) 81
0103csem Hybrid wiggler/undulator optimization - notes 81
0104csem Hybrid wiggler design information 82
$0105 \mathrm{csem} \quad$ Fraction of magnetic charge deposited on steel plate 82
0106 csem Harmonics produced by a rectangular block 82
0107csem Excess flux into "open end" of steel of hybrid dipole/wiggler 82
0108csem Excess flux into Gm7 82
0109csem Analytical hybrid wiggler model 82
0110csem Ideas and program to develop a variable strength hybrid quadrupole 82 and dipole
0111 csem Conjecture about charge deposited (in V-Q model) by dipole 82
0112csem Charge deposition on 3D steel surfaces of V-Q model by magnetic 82 charge and dipole
0113 csem Force, torque on rotatable ring in VSHQ 82
0114 csem A simple method to correct harmonics of segmented quad with 82 trapezoidal pieces
0115csem A method to correct excitation errors of poles of adjustable strength 82quads
0116 csem Comment on notation in notes in this file 82
0117csem "Proper" design of $\mu=\infty$ periodic wiggler pole 82
0118 csem Flux-potential matrix for hybrid quad 82
0119 csem Correction of excitation errors in variable hybrid quad 82
0120csem Gm8 corner fields, potentials 82
0121csem Permanent REC (or ferrite) dipole with all REC touching steel (for 82
H.W.)
0122csem Hybrid quad design numbers (1) 82
$0123 \mathrm{csem} \quad H y b r i d$ quad design formulae and program (2) 82
$0124 \mathrm{csem} \quad$ Program for design (analysis) of adjustable hybrid quad, with prog 82 and sample
0125csem Splitting of VSHQ-excitation into midplane - symmetric and 82antisymmetric part
0126 csem Optimization of REC in corner of dipole 82
0127csem Methods to avoid or correct skew quad component in variable 82 strength hybrid quad
0128csem Fields in Gm9, especially "exponential decay" 82
0129 csem Box CSEM dipole magnet 82
0130csem Thoughts on determining and then correcting field errors caused by 82
CSEM tolerances
0131csem Magnetic field between 45° line and points on a straight side of pole, 82with CSEM touching pole
0132csem VSHQ issues, problems, solutions 82
0133csem Force, torque, to rotate ring in VSHQ 82
0134csem Temperature compensation of hybrid permanent magnet 82
0135csem Pattern of harmonics produced by direct and indirect error fields in 82 VSHQ
0136csem Excitation of exponentially decaying fields by I, Q 82
0137 csem VSHQ implementation ideas 82
$0138 \mathrm{csem} \quad$ Excitation variation, and $B_{\max }$ at outer boundary of poles, of VSHQ 82
$0139 \mathrm{csem} \quad \bar{B}, \overline{B_{x}^{\prime}}$ between 45° line and points on straight side of pole, with 82CSEM (easy-axis perpendicular to x-axis) touching side of pole
0140csem HDIP printout rotation 82
0141csem $1 / 8$ box hybrid dipole magnet - with program and sample run 82
0142csem Stored energy in CSEM 82
0143 csem Flux distribution symmetry theorem 82
0144 csem Design of hybrid wiggler pole for "perfect" cosine field 83
$0146 c s e m \quad$ Equivalent circuit analysis of hybrid wiggler with midplane 83symmetry
0147 csem List of work by Nestle 83
0148csem LBL hybrid wiggler members 83
0149csem Effectiveness of CSEM in "unused corner" of 2D box magnet, and 83in a 3D magnet
$0150 \mathrm{csem} \quad$ Behavior of $F, F d z, F^{\prime}$ in vicinity of a corner 83
0151csem Optimization of PM wiggler for max intensity of light received by 83 small receiver at λ
0152csem Thoughts and comments to wiggler optimization 83
0153 csem Optimization of PM wiggler for max light into receiver small in 83 bend plane and integrating in dir. perp bendplane
0154csem Variation of undulator λ, K with gap for fixed K, λ 83
0155 csem 3 D off axis pot. and fields for $1 / 0$ periodic array of dipole rings 83
0156 csem 3D fields on axis from dipole ring magnet 83
0157 csem 3 D off axis potential from 3D on axis potential for ring dipole 83
$0158 \mathrm{csem} \quad$ Necessary r_{1} of ring dipole to get given field quality in 2D 83
$0159 \mathrm{csem} \quad$ Matrix representation of ladder network with coupling across 2 82rungs
0160csem Correction of hybrid dipole field strength by changing gap 82
0161csem Execution of dipole with anomalously small overhang 82
0162csem Suggestions for execution of stack design for low overhang dipole 82
$0163 \mathrm{csem} \quad$ Triplett, with $k_{1}=k_{2}, \varphi_{1}=\varphi_{2}$, hard edge, with given $L, \overline{1 / f}$ 82
0164 csem Design of $\cos 2 \varphi$ quadrupole 82
0165 csem Hard edge solenoid as objective, and comparison of mass with that 82 of hard edge triplett
0166csem Steering magnet 82
0167csem Linear model of outer pole circle of VSHQ, to calculate strength 82range, field on pole surface, torque, field in CSEM for split-ringstrength adjuster
0168csem Suitability of matrix, from harmonics pattern from 3 sources, for 82inversion
0169csem Excess flux in Gm10 82
0170csem Representation of gap between CSEM and steel on sloping side of 82 VSHQ, for use in POISSON-tolerance run
0171 csem Summary of excess flux formulae 82
0172csem Extraction of absolute tolerances of VSHQ from POISSON runs 82
0173 csem Fraction of charge deposited on several surfaces on $V=0$ 82
0174csem "DNA-Project" (Vachette) 82
$0175 \mathrm{csem} \quad$ Investigation of possible geometries for dipoles and quadrupoles 82
suitable as elements of an e-storage ring
0176csem Reprints left at Orsay 82
0177csem Use of HD1P2, VHYBQ6, 7; LEFF 82
0178csem Optimum operating point of CSEM 83
0179csem Effectiveness of CSEM in "unused" corner of 2D box magnet, and 83 in a 3D magnet
0180csem Calculation of $\int_{-\infty}^{0} \frac{V(x) d x}{V_{0}}$ for Gm11 83
0181csem Calculation of $\int_{-\infty}^{0} \frac{V(x) d x}{V_{0}}$ for Gm11 (more concise) 84
0182csem Excess flux into corner in Gm12 83
0183csem Excess flux into Gm13 83
0184csem Conceptual design procedure for hybrid wiggler with superimposed 83 "uniform" field
0185csem Charge deposition in wiggler excited as a dipole 83
$0186 \mathrm{csem} \quad$ Excess flux in Gm14 and Gm15 83
0187 csem Hybrid undulator with superimposed quadrupole field 83
0188csem Practical approximations for flux deposition from charge sheet in 83Gm16
0189csem SC transf. of Gm17, and excess flux, for POLE 83
0190csem Design procedure for a hybrid-hybrid wiggler (ELF \#93) 84
0191csem 2D hybrid-hybrid design formulae (ELF \#94) 84
0192csem Hybrid wiggler with 1/0-thin pole 84
0193csem $\quad H^{*}$ and F produced by trapezoidal block of CSEM 84
0194csem Calculation of H^{*} and F produced by "polygonal" block of CSEM 84
0195csem Measurement of magnetic properties of trapezoidal block of CSEM 84 for multiple magnet
0196csem Estimate of Leff of hybrid quad without field clamp 84
0197csem Minimization of excitation errors in hybrid quads 84
0198csem $\int B^{2} d x$-deficiency in midplane of Gm8 84
0199csem Design of CSEM damping wiggler - (for DW1 program) 84
0200csem Summary of excess flux formulae and copies 82
0201csem Calculation of gradient off axis from gradient on axis 84
0202csem Formulae for optimization of volume of ring magnet to produce 84 given field
0203csem Program for development of balloon magnet 84
0204csem Program and printout of optimum dipole ring magnet for given field 84
0205csem Tolerances that lead to field errors in hybrid U/W 84
0206csem "Simple flux" into conical surfaces in cyl. geometry 84
0207csem Ring-magnet design program LA1 84
0208csem Antisymmetric Undulator to make vertically polarized or circularly 84 polarized light
0209csem Hybrid pole width optimization (neomax) 84
0210csem CSEM "no center piece" septum magnet 84
0211 csem Thoughts on the design of antisymmetric hybrid W/U 84
0212csem Antisymmetric hybrid W/U analysis/design 84
0213csem HDIP5 84
0214 csem Field produced by rectangular charge sheet (87 -Zylin note) 82
0215 csem $\int V d x$ in Gm18 corner 84
0216 csem Representation of hybrid W / U by ladder network 84
$0217 \mathrm{csem} \quad V, A$ in Gm 19 85
$0218 \mathrm{csem} \quad \mathrm{SC}$ transformation and fields in Gm20 85
0219csem Scheme to achieve cancellation of net flux into beam region of U 85 due to change gap
0220csem Flux load on V-bus due to statistical fluctuations in CSEM flux 85 deposition on poles
0221csem Direct flux to midplane due to half-gap change of one pole 85
0222csem Flux deposition on $V=$ constant surface from magnetic charges, 85 with anisotropic medium
0223csem Even vs. odd number of poles in U/W 85
0224csem New approximation for flux deposition from charge sheets in Gm16 85
0225csem Explicit expansion of fields for $x \rightarrow \infty$ in Gm16 85
0226csem Charge deposition from coil on pole in 2D 85
0227csem An apparent paradox associated with charge deposition from coil on 85 pole in 3D
0228 csem "Excess" flux at inside corner of Gm3 83
0229csem Flux into end of hybrid quad 84
0230csem End flux in VHBQ (for HQ1) 84
0231csem VHBQ end flux formulas for comp. progr. 84
0232csem 2D hybrid U/W that is equivalent to helical hybrid U/W 85
0233csem "Flux" seen by straight trajectory under one CSEM block pair in 85 pure CSEM undulator
0234csem Measurement of properties of CSEM block to be used in CSEM- 85 iron circuit
0235csem Fields in Gm16 85
0236csem Ideal helical U/W fields 85
0237 csem Lin. hybrid U that is equivalent to helical hybrid U (details) 85
0238csem Pure CSEM dipole fields 85
0239csem Antisymmetric hybrid undulator 84
0240csem Performance limit of antisymmetric helical U 85
0241csem EM vibrator for Earth Sciences project 85
0242csem $\quad A=\int B \cdot B_{r} \cdot \frac{d a}{V_{o}\left|B_{r}\right|}$ for some geometries between two circular 85 cylinders
0243csem Excitation for helical U/W 85
0244csem Flux equation for helical U 85
0245csem Helical U/W excitation patterns 85
0246 csem Effect of finite slice thickness in helical U/W 85
$0247 \mathrm{csem} \quad \overline{1 / y}$ for Gm 21 85
0248 csem Optimization of flux into circular cylinder next to $1 / 0$ plane 85
$0249 \mathrm{csem} \quad V$-bus with varying circular cross-section 85
0250csem Flux density in PM assisted V-bus for hybrid quadrupole 85
$0251 \mathrm{csem} \int V d s / V_{0}$ in field of circular cylinder next to infinite plane 85
0252csem Correlation functions associated with $(1 / \cosh x),(x / \cosh x)$ 85
0253 csem Fourier transforms of $(1 / \cosh x),(x / \cosh x)$ 85
0254 csem $\quad V$-surface to orient homogeneously a block of CSEM 85
$0255 \mathrm{csem} \quad V$-surfaces for homogeneous orientation of 2D CSEM ellipse 85
$0256 \mathrm{csem} \quad V$-surfaces for homogeneous orientation of 2D CSEM circle 85
0257csem Formulas for calculation of flux induced on surfaces by CSEM in 86Gm16 geometry
0258csem Microtron magnet (for Louis A) (M/C1) 86
0259 csem e trapping with PM in ALS pump (ALS1) 86
0260csem Laterally long pure CSEM "quadrupole" 86
0261 csem Field on $t=$ constant line in Gm16 (HW4) 86
0262csem Harmonics for CSEM ring with $\alpha=m \psi$, but externally centered 86
0263csem Multiple aperture hybrid quadrupole system 86
$0264 \mathrm{csem} \quad$ Bmax in pole of hybrid quad 86
0265 csem HIFQ1 86
0266csem Field inside homogeneously magnetized CSEM rotational ellipsoid 86
$0267 \mathrm{csem} \quad$ PM assisted electromagnets \rightarrow laced em 86
0268csem Field lines in Gm22 86
0269csem Program for expansion of F in Gm16, and $\int V(y) d y, \int V(x) d x$ 86
0270 csem Hybrid buckets 86
0271csem Design of bucket system (Physics) 86
0272csem Thoughts on CSEM and iron solenoid magnet for Ed Rowe 86
0273 csem Excess voltage in Gm16 86
0274 csem Excess voltage in Gm16 (see work of $10 / 86$ note) 88
0275csem Ideas on producing strong solenoidal fields with a hybrid CSEM 86system (for Aladdin user)
0276 csem Execution of strong hybrid solenoid design 86
0277csem Excitation of cylindrical box magnet/hybrid solenoid 86
0278csem CSEM ring dipole assembled with square blocks 86
0279 csem Analysis of low field performance of PM assisted em 86
0280csem HQ1, $B_{\text {max }}$ for HQ1 86
0281csem Laud quad 86
0282csem $V=$ constant surfaces inside CSEM multipole ($n \geq 2$) 87
0283csem Solenoid fields from CSEM cylinder, axially magnetized (for Ian 87 Brown)
0284csem Stan Ruby's problem 87
0285csem New version of bitter map for Gm17 88
0286csem An important theorem, and a new map for Gm17 87
0287 csem Manageable integrals for map of Gm17 88
$0288 \mathrm{csem} \quad F_{01}$ and F_{12} for small n for Gm 5 88
0289csem $\int B^{\prime} d z$ for CSEM quad with conical ends 88
0290csem Some excess flux geometries that are very easily analyzed 88
0291csem Fields, flux, etc. in 2D hybrid wiggler with 0 thickness poles 88
0292csem Calculation of flux entering $\mu=\infty$ surfaces 88
0293csem ΔB^{*} due to displacement of rectangular 2D CSEM block in vacuum 88
0294csem Use of 2D excess flux formulae in cylindrical geometry and for 3D 88 edges
0295csem Excess flux into pole in Gm34 88
0296 csem Excess flux into Gm35 88
0297csem Preliminary design of hybrid orange spectrometer 88
0298 csem Orange spectrometer ray tracing in midplane 88
0299csem Excess flux in Gm2 88
0300csem Efficiency of use of CSEM in Ian B.'s magnet 88
0301csem Hybrid U/W design in dipole geometry 88
0302csem Excess flux in Gm36 88
0303csem Excess flux coefficients/calculation for the end of hybrid multipoles 88
0304csem $\quad H^{*}$ at edge of CSEM block, with recipe for $\Im \ln \frac{z-z_{2}}{z-z_{1}}$ 88
0305csem Laced cylindrical electromagnet 88
0306csem Continuously laced cylindrical magnet 88
0307csem Ian Brown's cylindrical hybrid 88
0308csem Weber/Vrakking magnet 88
0309csem Some points that help to visualize/calculate the force between coil(s) 88 and block(s) of CSEM
0310csem Determination of b for mapping of Gm 1 onto Gm 37 88
0311csem Tuning block efficiency 89
0312csem Maximum achievable field in hybrid (CSEM and iron) quadrupole 89
0313csem Further work on hybrid quadrupole performance 89
0314csem Shorting ring in hybrid quadrupole 89
0315 csem Flux between cylinder next to infinite plane, and that plane 89
0316 csem Proper placement of CSEM in adjustable hybrid quadrupole 90
0317 csem Cylindrical magnetic bucket system with 1 "must" hole 90
0318csem Direct flux from round block of CSEM with $B_{r}=$ constant, in 90 general, and in Gm38
0319 csem \quad Ellipse with μ_{1} inside medium with μ_{2} 90
0320csem Effect of hole through yoke of spectrometer on field in business 90 region
0321csem Generalization of flux calculation with reciprocity theorem 90
0322csem $\int B_{y} \cos k x d x$ from individual (error free) CSEM blocks in iron- 90 free $M^{\prime}=4$ insertion device
0323 csem Steering and displacement of electron beam from individual (error 90 free) CSEM blocks in iron-free $M^{\prime}=4$ insertion device
0324 csem Summary of steering, displacement, and $\int B_{y} \cos k z d z$ 90
0325csem Shaped bucket pole 90
0326csem Excess flux coefficient for Gm39 90
0327csem Excitation of hybrid quadrupole 90
0328 csem Excess flux on 0-thickness pole 91
0329csem Torque and force on uniformly magnetized CSEM cylinder in \mathbf{H} 91
0330csem Periodic pole structure SC map 91
0331csem Excess flux formulae for Gm30 89
0332csem Summary of excess flux formulae for $\mathrm{Gm} 3, \mathrm{Gm} 18$, and 89 G0208cm30
0333csem Flux induced by rectangular and horizontal CSEM block between 91 three circles
0334csem Cyclotrino magnet 91
0335csem $\quad H^{*}$ at end of CSEM block 93
0336csem Integral for excess flux calculation 93
0337csem Comments and background for EXCESFL 93
0338csem Fields from charge sheet in $x y$-plane at $z=0$ 93
0001ctr Field perturbation of homogeneous field by sphere 76
0002ctr $2 K=\int \frac{B\left(B_{o}-B\right)}{B_{o}^{2}} d z$ for Gm24 76
0003 ctr $2 K=\int \frac{B\left(B_{o}-B\right)}{B_{o}^{2}} d z$ for $G \mathrm{~m} 42$ 76
0004 ctr Flux and EFB for corner magnet (Gm24) 76
0005 ctr At least one focus for any hard edge magnet 76
0006ctr First order optics for swap magnet without space charge 76
$0007 \mathrm{ctr} \quad$ First order matrices for bending magnet 76
$0008 \mathrm{ctr} \quad$ Bend magnet with two EFBs parallel to each other 76
$0009 \mathrm{ctr} \quad$ Some optical properties of reflection sweep magnet 76
0010ctr Extrapolated penetration for exponential field 76
O011ctr Achromatization condition for displacement in reflection magnet 76
$0012 \mathrm{ctr} \quad$ Continuation of 0011 ctr 78
$0013 \mathrm{ctr} \quad$ Two-step field distribution to give minimum of extrapolated 76penetration
0014ctr Results of transmission magnet and various notes 77
$0015 \mathrm{ctr} \quad$ How to deal with multiple beams in bendplane 76
$0016 \mathrm{ctr} \quad$ Space charge effects on a straight line in phase space 76
$0017 \mathrm{ctr} \quad$ Effects of constant E on phase space point 76
0018ctr Space charge effects in band beam 76
$0019 \mathrm{ctr} \quad$ Scraping of beam at walls parallel to the midplane (two versions) 76
$0020 \mathrm{ctr} \quad$ Minimum spot size and maximum density in bend magnet 76
0021ctr Production of second half of reflection matrix 76
0022ctr Analytical bend plane matrix properties 76
0023 ctr Actual numbers for power deposition normalization 76
$0024 \mathrm{ctr} \quad$ First order matrix in bend plane for $B_{z}(x, y)=B(y)$ 76
0025ctr Matrix perpendicular to bendplane (two versions) 77
0026ctr Trajectories in strip magnet III 76
0027ctr Trajectories in strip magnet II (Reference trajectory in midplane) 76
0028ctr Trajectories in strip magnet I 76
0029ctr Fluxes in Gm25 for three stacked dipoles 77
0030ctr Three stacked dipoles with three power supplies 77
0031ctr Summary of optics formulae 77
0032ctr Eddy currents effects from cylinder excited by multipole field 77
0033ctr Conducting cylinder in time dependent homogenous field 77 perpendicular to axis
0034ctr Eddy currents in cylinder in time dependent field parallel to axis 77
0035 ctr Strip magnet orientation 77
0036 ctr Power density perpendicular to reference trajectory 77
0037ctr New method to calculate power densities, including Gaussian 77distributions
0038ctr Eddy currents in ferromagnetic spherical shells and balls 77
0039ctr Summary of eddy currents formulae 77
0040ctr Transmission through two apertures 77
0041ctr $C=B A$ 77
0042ctr Aperture projection for curved source and drift I 77
0043ctr Aperture projection for curved source and drift II 77
0044 ctr Aperture projection 77
0045 ctr Transmission through two half apertures 77
0046 ctr Transmission through apertures with general m_{11} and m_{12} 77
0047ctr General aperture projection 77
0048 ctr Flux exclusion from Gm1 77
0049 ctr Superconducting circular pipe in multipole field 77
0050 ctr Thoughts on eddy current problem 77
0051 ctr A potentially useful conformal transformation 77
0052ctr Superconducting and $\mu=\infty$ elliptical pipe 77
0053 ctr Approximation to S-C transform of outside of Gml to outside of 77
Gm37
0054ctr Eddy current distribution in a special box 77
0055 ctr Phase space transform 77
0056 ctr Field perturbation by superconducting box 77
0057 ctr Shielding bar optimization results 78
0058ctr Steel grid with maximum pumping 77
$0059 \mathrm{ctr} \quad$ Aperture projection for curved source and drift space, and 77application
0060 ctr Absolute duct protection program 77
0061ctr Projection of general duct into starting phase space, for general 77 transform matrix
0062ctr Eddy current fields from $D 3$, neutral beam boxes (and other notes) 77
0063 ctr Pressure distribution in neutralizer tube 77
$0064 \mathrm{ctr} \quad$ Properties of molecular flow in general duct 78
0065 ctr Probability treatment of molecular flow in general duct 77
0066ctr Optimization of flow role through neutralizer 78
0067ctr Chevron transmission coefficient 78
0068ctr Transmission of fields through shielding bars 78
0069ctr Field penetration through shielding bars 78
0070ctr Duct with changing cross-section A and circumference U 78
0071ctr Temperature rise in insertion device, two layer structure 77
0072ctr Transmission numbers through duct, with absolute protection 77
0073ctr Angular distribution for 2D flow, if 3D distribution follows 77 Lambert's law (Original and Corrected version)
0074ctr Absolute protection of tilted duct 78
0075 ctr What is $\frac{d^{2} T}{\partial m_{11}^{2}}$ for $m_{11}=\partial$ 78
0076ctr Transmission through aperture with general m_{11}, m_{12}, for $T 159$ 78
0077ctr Simple representation of "streaming" into duct 78
0078ctr Behavior of eddy current caused power dissipation 78
0079ctr Eddy current power dissipation in thin walled, infinitely long 78cylinder with field parallel and perpendicular to axis
0080ctr Eddy current - energy deposition 78
0081ctr Eddy current - energy deposition 78
0082ctr Working formulas for eddy current energy deposition 78
0083 ctr Power density perpendicular beam 78
0084ctr Extreme location of full energy 78
0085 ctr Eddy current energy deposition in whale bone pipe structure 78
0086ctr TI59 program for shielding bar calculations 78
0087ctr Pressure changes due to change of conductance or pumping speed 78
0088ctr Summary of formulas of interest for 2D-shielding 78
0089 ctr Two shielding problems 78
0090ctr Magnetic field inside eddy current shielded box 78
0091ctr Loss of beam on poleface 78
0092ctr Feasibility of decreasing power density at calorimeter at the expense 78 of some transmission loss at symmetric collimator down, by choosing appropriate focal point
0093ctr Calorimeter power density and collimator transmission versus FP 78
0094ctr Calorimeter power density and collimator transmission versus FP 78 for various z_{00}^{\prime}
0095ctr Absolute duct protection geometry in vertical direction 78
0096ctr Ellipse made of superconductor, or steel, or both 78
0097 ctr Cylindrical shielding with conductors, steel, conducting steel 78
0098ctr Tapered shielding finger system with maximum conductance 78
0099ctr Realistic $\mu=\infty$ finger shielding factor 78
0100 ctr Shielding of inside of Gm40 against dipole field 78
0101ctr T-measurement in plate 78
0102ctr A useful procedure for measurement of total power in an isolated 78ion species on D3 injector beam dump
$0103 \mathrm{ctr} \quad$ Point on inclined plate where power density is independent (to 1st 78order) of z_{00}^{o}
0104ctr Thermistor location procedure 78
0105ctr Temperature rise in solid insertion device plate 76
0106ctr Temperature distribution on ion dump resulting from non-uniform 78 energy deposition
0107 ctr Summary of T159 runs to determine best location for thermistor 79 array on beam dump
$0108 \mathrm{ctr} \quad$ Aperture projection program for $T I 59$ 79
0109 ctr Effect of collimator on power density in beam dump 79
0110ctr Beam dump sensors problem 79
0111ctr Insertion device power density on axis perpendicular to beam for 80 ZEPHYR
0001u-w Analysis of bus system 85
0002u-w Analysis of undulator with V-busses 85
0003u-w Formulas for new POLE/HH progr. 85
0004u-w Summary of formulas for new POLE/HH progr. 85
0005u-w Optimization of wiggler coil area 85
0006u-w Flux into pole Gm23 from end of CSEM block 85
0007u-w Design of pole of EM wiggler with rectangular coil 85
0008u-w 2nd optimization of EM wiggler pole shape 85
0009u-w Trajectory displacement due to a single pole (above and below 85 midplane), and \pm pairs of poles, of an iron wiggler array
0010u-w Design of wiggler taper adjustment system that avoids trajectory 85 displacement
0011u-w Trajectory displacement due to γ-change in wiggler consistency of 1 85 -2 1 modules
0012u-w $\quad \int_{-\infty}^{+\infty} B(z) z^{2} d z$ for $B(-z)=B(z)$ from ELF wiggler 85
0013u-w Steering strategy for ATA wiggler: definition of problem 85
0014u-w Summary of work on displacement in EM w, and methods to avoid 85 it (chronologically)
0015u-w Translation of excitation patterns in EM W/U into CSEM needed for 85excitation of hybrid U / W
0016u-w Recent work talk, 3/26/85 85
0017u-w Error of pattern 1-2 3-4 3-2 1 85
0018u-w Detailed formulae for design of tapered EM U/W (with no focusing) 85 that gives no deflection and displacement
0019u-w Formulas for design of tapered W/U: asymmetric derivation 85
0020u-w Tapered W/U excitation with patterns encompassing an even or an 85 odd number of poles (displacement, but there are errors)
0021u-w Flux traversed by e when in flat region of U / W with iron poles 85
0022u-w Flux traversed by e in U/W with iron poles 85
0023u-w Parabolic wiggler profile with $\gamma=$ constant: comparison between 85continuous field amplitude change, \pm pole pairs with sameexcitation, and poles with individual excitation
0024u-w Achievable field in EM U with rectangular pole and coil 85
0025u-w Different formulation of achievable B in EM with straight pole and 85 coil
0026u-w Achievable field in EM U with shaped pole and rectangular coil 85
0027u-w Achievable field in EM U with shaped pole and two rectangular 85coils
0028u-w Achievable field in EM U with shaped pole and coil that fills all 85non-iron space between poles
0029u-w Achievable field in CSEM assisted EM U with rectangular pole and 85 coil
0030u-w Notation in $8 / 85$ notes on EM U with straight shaped poles, and 85 computer runs
0031u-w Vertical steering due to horizontal displacement of Ted poles 85
0032u-w Effect of steering in the presence of focusing 85
0033u-w Calculation of flux associated with horizontal steering 85
0034u-w Displacement of electron beam in flat part of undulator/wiggler for γ 85
= constant
0035u-w Excitation pattern for U/W with focusing 85
0036u-w Switching from U/W excitation pattern 1-2 1 to 1-3 3-1 85
0037u-w A possible reason for the increase of $\Delta B / B$ with g / λ in hybrid 85undulator/wiggler
0038u-w Overlapping area of straight line poles of SU 85
0039u-w Design formulas and progr. for (PM assisted) strong EM U/W 85
0040u-w Coil system to measure "non-zero-ness" of field integrals of Ted 85poles excited with flux $=0$ pattern
0041u-w Detailed flux analysis in pole of PM assisted em U/W 86
0042u-w OHFX 86
0043u-w Implementation of non-linear tapers with order 4 binomial 86 coefficients
0044u-w Quadrupole field produced by canted CSEM blocks in pure CSEM 86
U/W
0045u-w Propagation of perturbations along single string of hybrid U/W 86 poles
0046u-w Single string of hybrid undulator/wiggler poles with C_{1}, C_{2}, C_{3} 86
0047u-w Low energy resonance equ. for synchrotron/FEL radiation 86
0048u-w Design of end of hybrid W/U without coil, Method 1 86
0049u-w Design of end of hybrid W/U without coil, Method 2 86
0050u-w Design of end of hybrid W/U without coil, Method 3 86
0051u-w Steering in hybrid U/W due to easy axis error 86
0052u-w Flux from Paladin CSEM blocks to midplane 86
0053u-w Steering/displacement correction strategy \#1 86
0054u-w Steering correction systems 86
0055u-w Mathematical representation of U/W fields 86
0056u-w Explicit comparison between two different U/W with Ted poles 86
0057u-w Placement of CSEM in hybrid to get binomial order three potentials 86 on poles
0058u-w Analysis of flux into pole of prototype strong em U 86
0059u-w Comp. runs (by Bob Lown) for end correction of U with CSEM 87 alone
0060u-w Quad excited as dipole 87
0061u-w "Quadrupole" module excitation for production of helical undulator 87
field
0062u-w Fields in helical U consisting of quadrupole modules excited as 87 dipoles
0063u-w A simple, but better, model for the fields in modular helical 87 undulator, and the remitting harmonics

- 0064u-w Optimum deposition of CSEM in strong em U 87
0065u-w Peak field, range, that are achievable in Paladin-type U 87
0066u-w Modeling functions for V, excess flux in hybrid undulator pole 88
0067u-w W-end correction with coil 88
0068u-w W/U optics correction 88
0069u-w Hybrid U/W steering with coils on side 88
0070u-w Capacities between pole of hybrid W and midplane, and other poles 88
0071u-w EM W/U design (for Boscolo) 88
0072u-w Some general thoughts about 1st order optics - corrected W/U 88
0073u-w Calculation for 1st order lumped symm. systems [version 3] 88
0074u-w Calculation for 1st order lumped symm. systems [version 2] 88
0075u-w Calculation for 1st order lumped symm. systems [version 1] 88
0076u-w Execution of design of 1. order W/U compensation system, to 1st 88 order in wiggler focusing
$0077 \mathrm{u}-\mathrm{w} \quad$ Path length error in $1 \lambda_{\mu} \rightarrow$ phase shift 88
0078u-w Effect of small angle between two halves of U/W 88
0079u-w Capacity between ID poles, next to midplane, for poles filling all 89 available space
0080u-w Signal from 2d easy axis error measurement apparatus 89
0081u-w Propagation of field errors on 3-C ladder system 89
0082u-w Error in ID field integral caused by gap error of one pole and CSEM 89 orientation error close to midplane
0083u-w $\int B_{y} d z$ produced by easy axis orientation error of "short" CSEM 89blocks
0084u-w Steering caused by end-rotation 89
0085u-w Zero-steering insertion device entry system with one, and two, 89parameter
0086u-w Formulas for insertion device entry design, and one for design of 89end of $I D$
0087u-w Insertion device Parameter Calculation WH-RS-01 (Roland Savoy) 89
0088u-w Steering produced by two tuners and use to tune U 89
0089u-w Coil to measure steering in U/W 89
0090u-w Excitation of semi-infinite U in vicinity of an end, and flux into pole 890
0091u-w Decay eigenvalues for three-capacitor ladder array 89
0092u-w Steering in hybrid U from indirect fields 89
0093u-w Systematic classification of perturbations and tolerances in hybrid 89 ID
0094u-w Indirect flux contributions to displacement without steering 89
0095u-w Direct flux sources for generation of displacement without steering 89
0096u-w Excess coefficient for $\int \mathrm{F}^{2} d z$ on pole of Gm16 89
0097u-w Calculation of steering in hybrid insertion device from $\lambda / 2$ model 89 measurements
0098u-w 2D force and torque on CSEM rotators 89
0099u-w Effect of pole saturation in ID 89
$0100 \mathrm{u}-\mathrm{w} \quad$ Calculation of $\frac{B(g)}{B\left(g_{o}\right)}$ and $\frac{\Delta B(g)}{\Delta B\left(g_{o}\right)}$ 89
0101u-w U trajectory and radiation 90
0102u-w Femtosecond time resolution with a two undulator system 90
(discussed with S. Ruby and K. Halbach)
0103u-w Helical U with "quads" 87
0104u-w Geometry of central pole 90
0105u-w Asymmetric W 90
0106u-w $\quad C_{0}^{\prime} / C_{2}^{\prime}$ as function of gap for small gaps 90
0107u-w Flux split and excess potential drop in Gm16 90
0108u-w Design of hybrid asymmetric (Goulon) wiggler 90
0109u-w Entry into Goulon-W 90
0110u-w Entry into Goulon-W 90
0111u-w Entry into Goulon-W 90
0112u-w Displacement-free iron free undulator for $M^{\prime}=4$ 90
0113u-w Decay cond. for Goulon-W 90
0114u-w Line integrals over fields produced by line changes 90
0115u-w Steering from a round finite length block of CSEM 90
0116u-w Displacement from around finite length block of CSEM 90
0117u-w Steering without displacement with 2 round blocks of CSEM 90
0118u-w . Coil system to measure steering between field free region at end of 92
ID, and periodic part of ID
0119u-w Steering with flooding pole 0 92
0120u-w Gradient measurement in ID 92
0121u-w Displacement-free entry system for " 2 -wire" helical U 90
0122u-w Procedure to correct ends of ID 90
0123u-w Determination of B_{r} / H_{c} of CSEM with Helmholtz coil 91
0124u-w Scalar potential for 3D ID fields 92
0125u-w 3D scalar potential for saturation caused fields in DD, Vers. 2 92
0126u-w 3D scalar potential for saturation caused fields in ID, Vers. 1 92
0127u-w Direct flux from CSEM corrector in ID 92
0128u-w "Impedance" for hybrid ID 92
0129u-w Flux transport along axial direction of EM wiggler 93
0130u-w Flux into top of rectangular block on $V=1$ 93
0131u-w Excess flux into pole, and flux into side of Gm40 93
0132u-w Effects of excess potential drop on flux into side of pole 93
0133u-w Error of flux calculation for finite pole width with excess flux 93 coefficient
0134u-w NPOLE 93
0135u-w Wiggler parameter K definitions 93
0136u-w Simple analytical model for fields from one pole of hybrid ID 93
0137 u -w $\quad \rho, A_{0} / B_{1}$ for hybrid insertion device 93
0138u-w Connection between undulator field errors and optical phase 93
0139u-w Comparison of first and second order contributions of error fields to 93 phase shift
0140u-w Normalization factors ε_{1} and ε_{2} for comparison of first order to 93 second order phase shifts, with analytical model for $b(z)$
0141u-w Least square fit of $f(z)$ with a $+b z$ in $0 \leq z \leq 1$ 93
0142u-w Magnetic measurement and data reduction to identify some specific 93 (undesirable) error field consequences (Talk ANL)
0143u-w Field integrals for iron-free ID 93
0144u-w Scalar Potential for 3D Fields in "Business Region" of insertion 92 device with finite width poles
0145u-w Consequences of Field Perturbations in D 92
0001 misc Solenoid lens, different derivation 67
0002misc Solenoid lens, solenoid field on axis 67
0003misc Multipole shielding 67
0004misc Velocity selector 67
0005 misc Homopolar ion source 67
0006 misc Matrix describing 2nd order effects to 2nd order, in one dimension 66
0007misc "Resonances" in r and z directions, without coupling
0008misc Beam optics in periodic machine, with no acceleration 67
$0009 \mathrm{misc} \quad$ Weak focusing 67
$0010 \mathrm{misc} \quad$ Phase space matching of ellipses and parallelograms (2D phase 71 space only)
0011 misc Matching of two beam ellipses with single lens 71
0012misc Description and some simple properties of phase space 71 parallelograms
0013misc Doublett optimization 71
0014misc Transmission of periodic sequence of quadrupoles 71
$0015 \mathrm{misc} \quad$ Bad method 71
0016 misc \quad Gas filled magnetic spectrometer 71
0017misc Velocity selector 71
0018misc Homogeneous field velocity separator with fringe fields to first 71 order
0019misc Strong focusing vel. separator to first order (only strong focus 71 modification)
0020misc Phase space matrix, and achromatic spot size 71
0021 misc "Optimum" dispersive system 71
$0022 \mathrm{misc} \quad$ Optimized dispersive system 71
0023misc Polynomial $a_{0} x+a_{1} x^{2}+a_{2} x^{3}=y$ having same y value for 71
$x_{1}=1, x_{2}=\frac{1+c}{2}, x_{3}=c$
0024 misc Vel. spectrometer 71
0025 misc Vel. spectrometer 71
0026misc Twister, achromatic 71
0027 misc Achromatic twister 71
0028 misc Twister condition 71
0029 misc Easy to design twister with periodic system 71
0030misc Four quadrupole twister 70
0031misc Impossibility to make any twister (i.e. it does not have to have a 71 simple drift space) with symmetrical system having only four magnets
0032misc Impossibility to make symmetrical twister with 4 thin lenses 71
0033misc First order twister-theory 70
0034misc Achromatic spot size in both planes 71
0035 misc Solenoid to first order 71
0036misc Long, periodic, symmetric, beam transport line 71
0037 misc Elimination of singularities of integrand at ends of integration 69 interval
0038misc Linear least squares with erroneous matrix 71
0039misc Fierz's planet orbits 71
0040misc HAT-detector 72
0041 misc "Stiff catenary" = "axially stressed beam" 72
$0042 \mathrm{misc} \quad$ Network to give $1+\mu$ plot (Gm33) 72
0043misc "Harmonic polynomials" for V in cylindrical geometry 70
0044misc Exact " $\lambda / 4$ plate" from two plates 72
0045 misc Integrator drift 72
0046misc "Buffed" doublett 73
0047misc Beam bending 73
0048 misc Vibrating beam, right end free, left end clamped 73
0049misc Different method to derive formula for curvature of a mapped curve 73
0050misc Change of curvature along tangent 75
0051 misc Heat conduction in cylindrical shells 73
$0052 \mathrm{misc} \quad$ Foil thickness measurement with specular reflection measurements 72
0053misc Dimensional analysis of space charge flow 73
0054 misc \quad Bending angle for particle in φ-independent field 73
$0055 \mathrm{misc} \quad \varepsilon_{1}$ and ε_{2} relaxation 73
0056 misc Optimum overrelaxation factor 73
$0057 \mathrm{misc} \quad \Delta$-properties 74
0058 misc \quad Optimization of ε for linearized P_{e}-cycle 74
0059 misc Difference equations from variational principle, specifically for 74 geoth. transform with $\mathrm{k}^{2} \mathrm{~V}$ term
0060 misc Determination of dominant eigenvalues and associated quantities 74
0061 misc $\quad \int V^{n} d v$ over tetrahedron, for $V=$ linear function of x, y, z 74
0062 misc $\quad \int \pi v_{v}^{n \nu} d a$ over triangle for $v_{\nu}=$ linear function of x, y 74
0063 misc Current deposition in POISSON 74
0064 misc Explicit expressions for geothermal difference equations 73
0065 misc Kerr cell apodizer 74
0066 misc Potential distribution for 2D elst. lens 74
0067 misc 2D and cylindrical elst. lens 74
0068 misc .Increase of convergence rate of sums with integration 74
0069 misc Determination of width of distribution function with slit 74
0070 misc $\quad \int_{1}^{2} W^{* N-n} W^{n} d W$ 74
0071misc Young overrelaxation 71
$0072 \mathrm{misc} \quad$ Push-pull effect from two parameters with nearly identical effects 74
0073misc Input impedence of "bridged" op-amplifier 74
0074 misc Minimization of $\int y^{2}(x) d x, y=$ joined straight lines in equidistant 75 x-intervals (re-creation of 1966 work)
0075misc Fast conventional Fourier series 75
0076 misc Evaluation of polynomial with real coefficients, but complex 75 argument
0077 misc Simpler derivation of evaluation of polynomial of z 76
$0078 \mathrm{misc} \quad$ Analytical $F(z)$ in upper half-plane from $F(x)$ 75
0079 misc Analytical $F(z)$ in upper half-plane from $A(x) ; V(x)$ (new version) 75
$0080 \mathrm{misc} \quad$ Propagation of sound in layered structure 75
0081misc Equation of motion in S-C-mapped geometry 75
0082misc Two-plane imaging with doublett 75
$0083 \mathrm{misc} \quad$ Phase space detected by detector of width $2 x_{0}$ 74
0084misc Periodic doublett system for beam transport over long distances 75
0085misc Representation of matrix by ideal lens and 2 drift spaces 75
$0086 \mathrm{misc} \quad$ Hippi modification $=$ design of strong focusing bending magnet 75
0087 misc Estimate of necessary aperture for Hippi-beam transport 75
0088 misc Proof that necessary aperture for infinite periodic beam transport 75system does not necessarily represent an upper limit for aperture ofphase space matching system for same beam
0089 misc Buffed doubletts, distributed and lumped elements as cell for 75 periodic system
$0090 \mathrm{misc} \quad$ Graphical representation of transform. of phase space ellipse 75 through drift space and thin lens
0091misc Computation and graphical representation of transformation of 75
phase space matrix through drift space and thin lens (from Steffer)
0092misc PEP-interaction region solenoid compensation schemes 75
0093 misc Properties of total H -system that has pure drift matrix 75
0094 misc $\mathrm{M}_{x}=\mathrm{M}_{y}$ system 75
0095 misc Beam transport system with axisymmetric transfer matrices 75
0096misc 2 identical systems, but with opposite polarities, in series 76
$0097 \mathrm{misc} \quad$ Triplett telescope (thin lenses) 75
0098 misc Optimization of $n=1$, two compensated coil system for harmonic 75 analysis
0099 misc Effect of field errors on observation in detector plane 75
$0100 \mathrm{misc} \quad$ Analytical continuation of $1 /(z-a)$ with N-term Taylor series 75
0101 misc Schwarz's formula, with z_{0} inside or outside circle 75
0102 misc Some thoughts on analytical continuation for measurement 75 evaluation
0103misc Coil structure adjustment of 2D magnetic measurements 75
0104misc Trajectories in some bending magnets 75
$0105 \mathrm{misc} \quad$ Location of minimum aperture of 2D beam 75
0106misc 2D parallel duct as a virtual leak 75
$0107 \mathrm{misc} \quad$ Properties of tape wound coil geometry 75
0108misc Parabola extremum finder and equation solver 75
0109misc Lawson's ring 75
$0110 \mathrm{misc} \quad$ Simple method to determine location of focal plane of optical system 75
0111misc Retroreflecting optical system 75
$0112 \mathrm{misc} \quad$ Search routine for maximum finder 76
0113 misc An interesting data analysis and error analysis problem 76
0114 misc 3 ways to calculate Fourier coefficients 76
0115 misc Trajectory with air resistance; slightly different approach 77
0116 misc Trajectory with air resistance 76
0117 misc Eriter Maclanrim formula derivation 76
0118misc Expansions in y_{o} 76
0119 misc Trajectory with curvature concept 76
$0120 \mathrm{misc} \quad$ Particle trajectories in $\mathbf{E}+\mathbf{B}$ field with $E_{\varphi}=0, B_{\varphi}=0$ with 76Lagrange function
0121 misc \quad Particle trajectories in $\mathbf{E}+\mathbf{B}$ field with $E_{\varphi}=0, B_{\varphi}=0$ with 76equation of motion
0122misc Particle trajectories in $\mathbf{E}+\mathbf{B}$ field with $E_{z}=0 ; B_{z}=0$ 76
0123 misc 1 st order "radial" particle trajectory in electric field 76
$0124 \mathrm{misc} \quad$ Coefficients of polynomial after factoring one or two roots (Horner) 76
$0125 \mathrm{misc} \quad$ More sophisticated model for integration of $x^{\prime \prime} 2 v+x^{\prime} v^{\prime}+a x v^{\prime \prime}=0$ 76
0126 misc Expansion of solution of $-2 U y^{\prime \prime}=\left(1+y^{2}\right)\left(U_{x}^{\prime} y^{\prime}-U_{y}^{\prime}\right)$ about 76 starting point
0127misc Self-consistent potential and field in Gm1-mesh 76
0128misc Momentum-derivative of matrix elements of magnetic beam 76 transport system
0129 misc Chromaticity of axisymmetry condition of "my" 4-pole system 76
0130misc Hydrodynamic lift 76
0131misc Numbers, and their application, for symmetrical air foil NACA 760009
0132mise \quad Numerical integration of $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$ 76
0133misc Lorentz transformation of plane e.m. wave 77
0134misc S-C-transform of Gm1 77
0135misc POISSON potentials for one string of points between equi 77potentials
0136misc Two different ways to evaluate Fourier coefficients from data 77
0137 misc Lines of equal phase shift in source for point detector (for B. 77 Billard)
0138misc Coordinate transformation caused by reflections in multiple 2D 77 mirror system
0139misc Coordinate transformation caused by reflections off mirrors and 77 transmission through interfaces between different media
0140 misc A new method for matrix inversion 78
0141 misc A property of 3D trajectories in 2D magnetic field 78
0142 misc Mathematics of Moirce patterns 78
$0143 \mathrm{misc} \quad 1$ st order optics with $\Delta p / p$ and ΔL 79
0144 misc Additional considerations about 1st order optics with $\Delta p / p$ and ΔL 79
0145 misc Algorithm for computation of Taylor series coefficients of 79$F(z)=\left(\sum{ }_{0}^{N} A_{n} z^{n}\right)^{m}$
0146 misc Energy in CM system of two colliding particles 79
0147misc Local interpolation with continuous function and first derivative 79
0148misc "Reverse" parabola equ. solver, and generalization 79
0149misc Path length aberration for strip magnet 79
0150misc Phase space matrix; diff. equ. for envelope, with acceleration and 79 space charge
0151misc Reference trajectory and first order matrices in linear undulator 79
$0152 \mathrm{misc} \quad$ Minimum beam size in system described by 79
$M=\left(\begin{array}{cc}\cos \varphi & \sin \varphi / k \\ -k \sin \varphi & \cos \varphi\end{array}\right)$
0153misc Fourier series/transform facts, for FFT use 79
0154 misc EFB of dipole to produce desired beam spot location 80
0155 misc Power density produced on target by scanning 80
0156misc Scanner optics 80
0157 misc Combination of scanning dipole with quadrupole to correct 80 chromatic aberration of center trajectory
0158misc Scanning properties of hard edge strip magnet 80
0159 misc \quad Scanning caused by hard edge magnet with circular pole 80
0160misc Exact equ. of motion in 2D multipole field 77
0161misc Ray tracing in oriented wedge dipole-quadrupole (Ray's quad) 80
0162misc 2D multipole transmitter 80
0163misc Strip transmission magnet for given deflection of two given in 80 species
0164misc Beam dump with arbitrary orientation 80
$0165 \mathrm{misc} \quad$ Application of Bernoulli's equ. to water pipe system 80
0166misc Trajectory displacement because of soft edge, composed to hard 80 edge of magnet
0167 misc General midplane ray tracing with homog. fields, and straight and 80 circular boundaries
0168misc TRACE 80
0169misc Axisymmetric quadrupole quadruplett 80
0170 misc Aperture projection into starting phase space for lumped optical 80 system
0171misc Trajectory and first order matrix in bend plane of 2D magnet 80
0172misc Computation and properties of first order optics matrices 80
0173misc Ultrafish variables 81
0174 misc Envelope of $E_{\text {critical }}$ vs. θ curves 81
$0175 \mathrm{misc} \quad$ Space charge limit on focusing of round zero-emittance beam in 80 drift space
0176 misc Effect of exit impedance of duct on $\int p d x$ from outgassing 81
0177 misc Local interpolation with continuous function and its first N 81 derivatives
0178 misc $\quad 1$ st order optics of $E=$ constant deflector 81
$0179 \mathrm{misc} \quad$ Size of beam (of rhomboidal shape in phase space) in optical system 81
0180misc Design of TRW spectrometer magnet 81
0181misc Index and comments to notes sent to Phil Kidd (TRW) 81
0182misc Probabilistic treatment of "pencil standing on its tip" - problem 81
0183misc How long can a pencil stand on its tip? 81
0184misc Things that work, and do not work 81
0185 misc Adjustable strength axisymmetric permanent quadrupole system 81
0186 misc Axisymmetric negative drift: detailed design 81
0187misc An interesting property of symmetrical telescopes with power of -1 81
0188misc Finite length doubletts, tripletts 81
0189 misc Slow FFT with round-off error protection 81
0190misc Viscous gravity flow in pipe with constriction at end 81
0191misc Triplett matrix, for $k_{1}=k_{2}$, but $\varphi_{2} \neq \varphi_{1}$ 81
0192misc General symmetric triplett, $k_{1} \neq k_{2}$ and $\varphi_{2} \neq \varphi_{1}$ 81
0193misc Symmetric triplett, with $k_{1}=k_{2}$ and $\varphi_{2} \neq \varphi_{1}$, and D between 81 elements
0194misc Triplett with x and y FP's at same location 81
0195misc Triplett properties, disregarding different location of FP's in two 81 planes
0196misc Some numbers for final lens 81
0197misc Comparison of quadrupole (triplett) focusing with solenoid 81 focusing
0198 misc Doublett with $f_{x}=f_{y}$ and same FP location on one side 81
0199misc Corrective element in telescope to change target distance and to 81 compensate for temperature effects on f of objective
0200misc Analytical test problem for program that finds (matrix) solutions to 81$x^{\prime \prime}+K^{2}(z) x=0$
0201misc Extraction from SUPERFISH field line plot the location where 82movement of wall produces no resonance frequency change
0202misc Expansion of $y(x)$, defined by $y+y^{m}=x, m=$ even, for case $y(0)$ 82$=-1$
0203misc Taylor expansion of $y(x)$, defined by $y+a y^{m}=x$, for case $y(0) \neq 0$82
0204misc $y+a y^{m}=x$; expansion of $y(x)$ in Taylor series in x, for case 82 $y(0)=0$
0205misc Removal of singularities from the ends of integration intervals 82
0206misc First order matrix for particles in quad with superimposed 82 homogeneous solenoid field
0207 misc Swing optics central trajectory 82
0208misc Optimum synchr. light focusing 81
0209 misc Optics of meridional rays in solenoid (3rd order) 82
0210misc Stripping of H^{-}in B 82
0211misc Thermal analysis of 1D layered structure (THERM progr.) 83
0212misc Composite material for heat insulation 83
0213misc Duct projection, for Jack Petersen 83
0214misc At what photon energy shows wiggler spectrum structure 83
$0215 \mathrm{misc} \quad$ Transmission through grid for ions transported by gas flow and \mathbf{E} 83
$0216 \mathrm{misc} \quad$ Matching into a periodic system 78
0217 misc \quad Numerical evaluation of $F(z)=\ln \frac{z-z_{2}}{z-z_{1}}$ 84
0218misc Transformer "theory" 84
0219misc Synchrotron radiation from one electron (in W/U) 84
0220misc Synchrotron radiation from electron in U with field errors 84
0221misc Bendplane optics in wiggler with $B \approx 1+k x^{2}$ 84
0222misc Behavior of $n_{2}(x)$ in vicinity of sharp absorption edge 84
0223 misc Proof that $v_{g}<C$ where $\varepsilon_{1}=0$ for all $\varepsilon_{1}(W) \geq 0$ 84
0224 misc Focusing in planar undulator with curved poles 84
0225misc Trajectory of electron in wiggler/undulator with strong field in 84 midplane parallel to midplane
0226 misc Thoughts on effect of field errors in U on radiated spectrum 84
0227 misc Synchrotron radiation from sinusoidal trajectory in arbitrary 84 direction
0228misc Thermal noise from general passive linear electric system in thermal 84 equilibrium
$0229 \mathrm{misc} \quad 3 \mathrm{rd}$ order errors inside quadrupole 84
0230misc 2nd order kick at entrance of dipole 84
0231misc Lowest order nonlinear kick in fringe field region of multipole 84
0232misc $\quad I=\int_{a}^{b} \frac{f(t) d t}{\sqrt{t-a} \sqrt{b-t}}$ 84
0233misc $I=\int_{a}^{b} \frac{f(x) d x}{\sqrt{x-a} \sqrt{b-x}}$ 84
0234misc Some notes on electrical circuits 84
0235misc Shortest twilight 84
0236 misc Map of circular disk on "nearly" eliptical disk (W) 85
0237 misc \quad Weighted interpolation with $N=1$ parabolas and equidistant 85 intervals
0238misc Large γ electron buncher/debuncher 85
0239misc $K=\int_{0}^{\infty} e^{-z \cosh t} \cosh n t d t=K(z, n)$ 85
0240misc Satisfying an incomplete set of linear equations $M r=b$, and 86$\sum W_{n} r_{n}^{2}=\mathrm{Min}$.
0241misc $F_{2}=\int_{-\infty}^{+\infty} \frac{e^{-x^{2}}}{\left(x+z_{0}\right)} d x, \Im z_{0}>0$86
0242misc Multilayer mirrors 1) basics 86
0243misc Multilayer mirrors 2) periodic structures 86
0244misc Summary of multilayer design formulae and procedures 86
0245misc Some thoughts on design of multilayer mirrors 86
0246misc Jacobian $J=\left(\begin{array}{ll}u_{x}^{\prime} & v_{x}^{\prime} \\ u_{y}^{\prime} & v_{y}^{\prime}\end{array}\right)$ in complex notation 82
0247 misc Determination of circle that connects three points 86
0248misc Map of straight line segment z_{1}, z_{2} with $W=k z^{2}$ 86
0249misc Necessary condition for conformality 86
0250misc Reflection magnet with achromatic zero offset 86
0251 misc Location and size of waist in driftspace from $\beta_{2}, \beta_{1}, \Delta z$ 86
0252misc Achromatic spots 86
0253misc $\quad\left[J_{0}(\xi)-J_{1}(\xi)\right]^{2}$ 86
0254 misc $\quad\left[J_{0}(\xi)-J_{1}(\xi)\right]^{2}$ for $x=\frac{1 / 2}{1+2 / k^{2}} \leq \frac{1}{2}$ 86
0255 misc \quad Decay of error fields in (ideal) \leftarrow (not all is correct) symmetrical 86 iron dominated quad
0256misc Malcolm's mechanism, note \#1 87
0257 misc Mechanism for Malcolm H., note \#2 (on airplane from SFO to 87 JFK)
0258misc Synchrotron light phase shifter 87
0259 misc Trajectory in gradient magnet 88
0260 misc Least square fitting of function 88
0261misc Design of quadrupole system with $M_{x}+M_{y}=0$ 88
0262misc Twister condition (re-write of 1971 note, for SSRL) 88
0263 misc Twister condition 71
0264misc Letter-Herman/Heinz (some notes) 88
0265misc Expansion of Taylor series, raised to some power p, into a Taylor 88 series (for Bozoki)
0266 misc Inversion of a Taylor series, with recursion formulae 88
0267misc Analog integrator dynamics 89
0268 misc $F(x)=\int_{0}^{\pi} J_{0}(x \cos \varphi) d \varphi$ 89
0269 misc New bumps 89
0270misc $\quad I_{2}=\int_{0}^{+\infty} \frac{x^{2}}{\cosh x} d x$ 89
0271misc Chromaticity correction with sextupole 90
0272misc Simple proof for "amusing geometry theorem" 90
0273misc An amusing geometry theorem 90
0274misc Radiative energy loss by accelerated charge 90
0275misc Analysis of analog integrator 90
$0276 \mathrm{misc} \quad$ Analysis of analog integrator (Milan) 90
$0277 \mathrm{misc} \quad \beta$ function in unstructured focusing quadrupole 90
$0278 \mathrm{misc} \quad$ Dimensional analysis of trajectory of non-relativistic charged 92 particles in stationary electric and magnetic fields
0279misc Gravity drive "train" 92
0280misc Map of interior of unit circles with centers at $z=0, \omega=0$) 92
0281misc Simpler map of interior of circular disks onto each other 92
0282misc Map of circular unit circles onto each other, with given maps of two 93points on circumferences
0283misc Mathematical framework for production of achromatic spot, using 77only quadrupoles and/or solenoids
0284misc Production of achromatic spot with a beam transport system 77 consisting only of quadrupoles and solenoids
0285 misc Memo to participants of the discussion on linear beam transport 77 systems at LASL, November 3-4, 1977
0286misc Fringe fields ??
0287misc A simple derivation of the Lorentz transformation without talking 92 about light
0288misc General map of circular disks onto each other 92
0289misc Math for MATROPT (document, programs and assorted notes) 93
$0290 \mathrm{misc} \quad J=\int_{-\infty}^{+\infty}[F(x)-F(x-a)]^{2} d x$ 93
0291misc Multipole fields 67
0292misc Statistics 67
0293misc Statistics 67
0294misc Mother-Daughter Detection 67
0295misc Statistics for decay time measurements 67
0296 misc Application of generating function of two variables to specific 67 problem
0297misc Generating Function with several variables 67
0298 misc First order matrix-differential equation for relativistic particle 67
0299misc Field in twisted symmetrical multipole 69
0300 misc Beam optics for long, twisted quadrupole 67
0301misc $\quad I_{q}^{\prime \prime}$ calculations 67
0302misc Spline function 67
0303 misc Radial stability for constant guide field 67
0304misc Electron ring acceleration in guide field B_{z} with RF mode that has 67only $E_{\varphi} \mathrm{B}_{r}, B_{z}$ fields
0305misc Asymptotic injection 68
0306misc Space charge blow-up of beam 68
0307misc Dimensional analysis and partial differential equation 68
0308misc Heat conduction for septum 67
0309misc Compton scattering 68
0310misc Particle trajectory in B 68
0311misc Superinsulation 68
0312misc \quad Solutions $z^{2}-2 z b+1=0$ for complex b 69
0313misc Dependence of maximum of absorption signal after low frequency 69 demodulation on modulation amplitude
0314 misc Derivation of Lorentz transformation 70
0315 misc Space travel with constant acceleration in moving cycle 70
0316misc Correlation matrix and best weight matrix for past least square 70 evaluation of parameters
0001thry $\frac{1}{H x}$-expansion 65
0002thry Bump size test 65
0003thry Thoughts on elimination of 6 pole components resulting from 65 saturation
0004thry Thoughts on how to specify desired field 65
0005thry Sliding intersection between "centered ellipse" and "displaced" 66 hyperbola
0006thry Magnetic field energy calculations 66
0007thry Skin effect in Fe 66
0008thry Penetration of fields into iron (transients) 68
0009thry Curvature of field lines in a quadrupole 66
0010thry Absolutely necessary width of pole of magnet 66
0011thry Solid conducting sphere in homogeneous AC field 66
0012thry Effect of eddy currents in strap coils on field distribution in 66 omnitron synchrotron magnet
0013thry 4-pole field with added higher multipole components 66
0014thry 6-pole run as 4-pole 66
0015thry Rotating fields 66
0016thry Basic symmetries of magnets 66
0017thry Consequences of field symmetries for editing purposes 66
0018thry Fields at center and on center of pole tip in 3-pole case 66
0019thry Ideal quadrupole 66
0020thry Perfect 6-pole 67
0021thry Sheet current ellipse and $\mu=\infty$ shield for production of 67homogeneous field inside ellipse
0022thry Current filaments in circular $\mu=\infty$ iron shell with $r=r_{0}$ 67
0023thry Septum problem 67
0024thry Field perturbation in septum magnet 67
0025thry Errors from non-uniform current distribution in return path (near 68 yoke) of septum magnet
0026thry Numerical solution of algebraic equations 68
0027thry Measurement in 6-pole of second order contribution to signal 67 measured with pick up coil
0028thry Field perturbation produced by bump 68
0029thry Effective length of a magnet 68
0030thry Field produced by two superconducting current sheets 67
0031thry Magnetic field inside of ellipse with uniform j over its total area 68
0032thry Field energy for $\mathbf{B} \approx \mathbf{H}$ 68
0033thry Summary of formulas for energy, force and torque 67
0034thry General force formula for cylindrical geometry 68
0035thry Two-dimensional field produced by "odd"-shaped conductor with 68 constant current density
0036 thry Vector potential measured by bundle of wires with polygon as 68boundary
0037thry Pick up coil system for harmonic analysis with suppression of all 68 harmonics up to n
0038thry Experimental zero-field point determination in sextupole 68
0039thry The number of zero-field points in the aperture region of a multipole 68 magnet
0040thry Octupole component produced by a sextupole run as a quadrupole 68
0041thry Sextupole with one pair of poles having different excitation or 68different spacing
0042thry Better method to drive error fields produced by error excitation of 68 one pole of a symmetric 4-pole
0043thry Symmetrical 4-pole with only one pole excited 68
0044thry Amplitude and phase errors in harmonic analysis 68
0045thry Current distribution and power dissipation in conductors in two- 68dimensional fields
0046thry $\quad 1 / 4$ of Panofski quadrupole with non-constant current densities 68
0047thry $\quad 1 / 4$ of Panofski quadrupole with unequal current densities 68
0048thry $\quad 1 / 4$ of Panofski quadrupole 68
0049thry Application of trim to a cavity problem 68
0050thry Quadrupole with filaments to give sextupole 68
0051thry End of septum magnet 68
0052thry Field distribution in shielding plate (SLAC problem) 68
0053thry Multipole expansion of the sector potential in a circular aperture 68
0054thry Schwarz's formula 68
0055thry Calculation of fields, gradients and multipole coefficients by 68 contour integrals over circle
0056 thry Qualitative considerations concerning field corrections with special 68 coil windings and "chunks" of iron, using the 2D current flow or fluid flow analogue
0057thry More details about the "vane-skim" 68
0058thry Minimization of stray fields of magnet by optimizing "steel shield" 68
0059thry Fourier analysis of numerical data 68
0060thry Fields in Gm8 68
0061thry Combined skew 4-pole and normal 6-pole 68
0062 thry $\quad 12$-pole with straight slots for combined skew 4-pole - "normal" 6- 68 pole
0063thry Transformation of curvature under conformal map 68
0064thry Methods to eliminate or reduce long time dynamical drift of systems 68 ("creepy magnet")
0065thry Optimization of a function of more variables than number of 68 restraints plus one
0066thry Heating of kicker magnet "coils" 68
0067 thry Integrated multipole strengths for skew axis 68
0068thry Power with eddy currents in sheet 68
0069thry Optimization of coil slot for combined 6-pole and skew 4-pole 68
0070thry Multipole components with respect to displaced axis 68
0071thry Sensitivity of solution of linear equations to change of an individual 68 matrix element
0072thry Change of determinant for small changes of one element of the 68 matrix that describes a system that is least squares optimized with restraints and has least squares limitations on parameters
0073thry Allowable relative errors of the elements of matrices describing 68 system to be optimized
0074thry Error analysis for parameters obtained from least squares 68optimization with restraints and least squares bound on parameters
0075thry Efficient method to solve homogeneous system of linear diff. equ. 68 with const coefficients
0076thry Data analysis of stripping cross-section measurements 68
0077thry Corner saturation 69
0078thry Transmission of rotation angles through universal joint 69
0079thry Summary of integrator roles from Dec. 63 69
0080thry Fields in magnet with midplane symmetry in $r, \varphi z$ 69
0081thry 2D fields in slab (no iron or singularities) in region of description 69
0082thry Logarithmic spiral 69
0083thry $\quad \mathbf{B}$ and \mathbf{H} variation in direction of center of curvature of $V=$ constant 69 and $A=$ constant lines in 2D isotropic, homogeneous, nonlineariron
0084thry $\quad \mathbf{B}$ and \mathbf{H} variation in direction of center of curvature of $V=$ constant 69 and $r A \varphi=$ constant lines in cylindrical geometry for isotropic, homogeneous, nonlinear iron
0085thry Reduction of $B(H)$ measurements on torus 69
0086thry Capacitor stray field (for Bob Smith) 69
0087thry Power dissipation in tape wound quadrupoles 69
0088thry Field quality criterion 69
0089thry Field error criterion for non-circular aperture 70
0090thry Some general field relations expressed in complex form 69
0091thry Effective length of quadrupole 70
0092thry Comparison between $L_{1}=[B] / B_{0}$ and $L_{2}=2 \sqrt{3\left[x^{2} B\right] /[B]}$ for 70 several $B(x)$
0093thry Better formulation of effective length of 4-pole for first order optics 70
0094thry Force between HILAC quadrupoles 67
0095thry Total extinction lines produced by magneto-birefringent material 69between crossed polaroid jitters multipole magnet
0096thry Weights for calculating potential from potentials at surrounding 69 points if pot. satisfies Laplace's equation
0097thry Resistance of specific 2D sheet structure 70
0098thry Computation of upper and lower limits of impedances of 2D 70 structures with variational principle
0099thry Relation between H_{x} at pole face and H_{y} in midplane of magnet 69
0100thry Measurement of Fourier coefficients of field between two $\mu=\infty$ 69 plates
0101thry Calculation of Fourier coefficients of H^{*} 69
0102thry Representation of fields between two parallel plates of $\mu=\infty$ iron 69
0103thry General relationships of fields in linear, location independent, 70 anisotropic medium
0104thry Effect of nonlinearity of iron on the effect of small perturbations in 70
3D
0105thry \quad Scalar potential and pole face for $\mu=\infty$ bending magnet with 70 cylindrical symmetry, and given inhomogeneous field in midplane
0106thry Scalar potential and $\mu=\infty$ poleface for inhomogeneous field with 70midplane symmetry in cylindrical magnet with axis outside fieldregion
0107thry Scalar potential and $\mu=\infty$ poleface to get given inhomogeneous 70field with midplane symmetry in cylindrical magnet with axis faroutside of field region
0108thry Correct POISSON equation for cylindrical geometry 74
0109thry Effect of current sheet in midplane of windowframe magnet 70
0110thry Additional effective "force" length and "field" length of corners 70
0111thry $F(z)=\int_{0}^{z} \frac{\ln (1+t)}{t} d t$ 70
0112thry Orthogonal 2D analogue for 2D and cylindrical geometry magnetic 70 fields
0113thry Energy in magnetostatic field, and derivation of field equations from 70 variational principles
0114thry Derivation of TRIM equ's from variational principle 70
0115thry TRIM equ's for anisotropic medium 70
0116thry Evaluation of $b(H)$ curve from flux measurements on "washer"- 70shaped iron ring
0117thry Evaluation of $b(H)$ curve from flux measurements on "washer"- 71shaped ring (without Fourier transform)
0118thry Feeding of 4-poles 70
0119thry Eddy current loss in Fe for $\bar{H}=\bar{H}_{0} \cos \omega t$ with Pryntig reactor 74
0120thry Eddy current loss in Fe for $\bar{B} \approx \sin \omega t$ 71
0121thry Rise time of magnetic field and eddy current - energy deposition in 70 pulsed magnet (old version)
0122thry Power dissipation and " $\mu_{\text {eff" of }} \mathrm{Cu}$ conductor in pulsed magnet 71
0123 thry $\quad L^{-1}\left(\frac{e^{-\alpha \sqrt{p}}}{p^{3 / 2}}\right)$ 730124thry $\quad L^{-1}\left(\frac{e^{-\alpha \sqrt{p}}}{p^{5 / 2}}\right)$0125thry $\quad \mathcal{L}^{-1}\left(\frac{\operatorname{coth} y \cdot \sqrt{p}}{p^{3 / 2}}\right)$73
0126thry $\mathcal{L}^{-1}\left(\frac{\operatorname{coth} y \cdot \sqrt{p}}{p^{5 / 2}}\right)$ 73
0127thry Energy dissipation in vacuum vessel 71
0128thry Eddy current effects for ramp excitation (one pulse) 71
0129thry Important eddy current formulae 74
0130thry Eddy current effects in pulsed magnet 71
0131thry Eddy currents (does not take nonlinearity-induced apparent 70 anisotropy into account)
0132thry \quad Rotating E quadrupole and DC magnetic field as mass filler 71
0133thry RF $B_{a x}$ 71
0134thry Matrix for cylindrical lens for $\varphi(z)=\varphi_{0}+\frac{\varphi_{0}^{\prime} z}{1+k z}$ 71
0135thry Effect of gap above HT-conductor 71
0136thry Effect of horizontal gap on Ht-distribution produced by Ht-filament 71 (reformulation of $3 / 71$ notes)
0137thry Eddy current time constants in Fe -magnets 70
0138thry Beneficial effects of saturation in yoke-connected field clamp 71
0139thry Eddy currents for cylindrical geometry 72
0140thry Turn-on procedure of magnet to avoid "overdriving" $B(H)$ curve 71
0141thry $B(H)$ measurement with two rings; cancellation of contributions 71
$B^{\prime}, B^{\prime}, B^{\prime \prime \prime}$
0142thry Normal TRIM-equation 71
0143thry Simultaneous compensation of two time constants 71
0144thry Procedure to make small changes of field level in large magnet so 71 that inhomogenieties in gap decay as fast as possible, and to reach new field level in shortest time
0145thry Dynamical system to drive "loudspeaker" 71
0146thry Coating of steel with Cu to reduce eddy current losses 71
0147thry SLAC - bubble chamber eddy current problem 71
0148thry Power loss in coil in limit of "small" cross section 71
0149thry Eddy current power in the limit of "small" losses 71
0150thry Losses in "loudspeaker" coil (SLAC) 71
0151thry Qualitative considerations for SLAC bubble chamber - 71 "loudspeaker"
0152thry Numbers for bubble chamber "loudspeaker" 71
0153thry Convergence test (originally done spring 1970; notes lost; this 72 written in spring 1972)
0154thry Windowframe tolerances 71
0155thry Slit effect for $\mu=\infty$ 71
0156thry Purcell gap: necessary accuracy of field level in gap and allowable 71 $n=3$ in gap
0157thry Matrix method to calculate effect of Ht at one boundary of Purcell 71gap on field in working gap
0158thry Expansion of field from conductor in Gm24 geometry in $e^{k z}$ 71
0159thry Model for necessary height of slit 71
0160thry Slit, necessary height 71
0161thry $\quad B$ calculation in ellipse of different μ 72
0162thry $\quad B^{2}$ calculation for cylindrical POISSON, and differential equation 72
0163thry Effect of turns at ends of 4-pole (letter to Bohm) 70
0164thry Slot in windowframe: elimination of $e^{-\pi z}$ perturbation term for 72 $\mu=\infty$
0165 thry Slit in windowframe: compensation of $e^{-\pi z}$ perturbation with 73 geometry for $\mu=\infty$
0166thry Slot in windowframe: elimination of $e^{-\pi z}$ perturbation with filament 72 for $\mu=\infty$
0167thry Effective width of pole; original, working version 72
0168thry Operating point of naked permanent bar magnet 72
0169thry Symmetrical comer/curtain 72
0170thry $\frac{1}{E^{* 2}}$ 74
0171thry Square box with rounded box inside that has $|E|=$ constant on 72 surface
0172thry Field error criteria for non-circular aperture 70
0173thry $\quad \frac{B_{y}\left(B_{0}-B_{y}\right) d x}{2 h B_{0}^{2}}=K$ for Gm25 72
0174thry Execution of expansion of $\frac{B^{*}}{i}$ into exponentials 72
0175thry Best excitation of 8-pole to produce dipole 72
0176thry Best excitation of 8-pole to produce dipole 72
0177thry Best excitation of 12-pole to produce dipole 72
0178thry Production of $n=3$ or $n=4$ in 12-pole 74
0179thry Summary of harmonics produced by "abnormal" excitation of 74 perfect symmetrical multipole magnets
0180thry Field measurement with cylindrical coil 73
0181thry Pole face windings 73
0182thry Curvature of 3D $V=$ constant surface 73
0183thry One-pole shimming of dipole with $n=3$ component 73
0184thry Axial motion of particle in cylindrical magnet with $B_{z}=B_{0}=$ 73 constant, and $B_{r}=B^{\prime} r$
0185thry Reduction of bending length because of slit 73
0186thry Harmonics production by symmetrical cut at pole ends of 4-pole, 73
(a transcript of notes made during Dec 72-Feb 73)
0187thry Excitation loss for $\mu=\infty$ laminations with finite insulation thickness 73
0188thry Torque acting on ellipse with $\mu=\infty$ in homogeneous field 73
0189thry Single shim first and second order 73
0190thry First and second order shimming of H -magnet with slot 73
0191thry Coil position for 1st and 2nd order corrected fields 73
0192thry 1 st and 2nd order shimming with two filaments 73
0193thry Mapping of magnet with pole with slanted side 73
0194thry Jim Walter's lamination thickness 73
0195thry 2D eddy current distribution in lamination of anisotropic steel 73
0196thry $W=-i z^{2}$, map of circular pole of 4-pole 73
0197thry \quad Saturating yoke and poles in 4-pole 72
0198thry Analytical B-H curve description 73
0199thry Long coil to measure $\partial B_{y} / \partial y$ in 2D 73
0200thry Coil system to measure $\partial B_{z} / \partial z$ in 3D 73
0201thry Coil system to measure $\partial B_{z} / \partial x$ in 3D 73
0202thry Epics flux splitting 73
0203thry Properties of magnetic line integrals 74
0204thry Change of harmonic content of multipole due to change of width of 74
(all) poles
0205thry Pole shimming methods 74
0206thry Shimming with knife edge pole and filaments 74
0207thry Shimming of pole with filament at $t=-a$, strength m 74
0208thry Power in thick storage ring wall 74
0209thry Finite thickness current sheet on poleface (for HAT) 74
0210thry Eddy currents when driving magnet very hard into saturation 74
("charging" permanent magnet with coil)
0211thry Field modification in ideal quadrupole by round pipe, to first order 73
in $\mu-1$
0212thry Seminar on 8/10/73 at LASL 73
0213thry EFB - coil geometry - effect on EFB (done at LASL) 73
0214thry Torque on vane in homogeneous field 70
0215thry Ellipse in homogeneous field 70
0216thry Evaluation of first vane run 70
0217thry Position of vane in 2-vane correction system 70
0218thry Multipoles produced by radial displacement of Fe -plate between 70 poles of 4-pole
0219thry Parameter to correct field errors in assembled 4-poles 70
0220thry Force and torque calculations for vanes 70
0221thry Q^{2} distribution 70
0222thry Notes for measurements of 4-poles 70
0223thry LASL 4-poles 70
0224thry Arch's "new" field quality normalization 70
0225thry Achievable 4-pole quality 70
0226thry Conclusions for ESCAR coil system 74
0227thry Error analysis for dipole coil system 74
0228thry $\overline{z^{n}}$ over square 74
0229thry $\quad \sum z^{n}$ over line perpendicular to $z_{\text {center }}$ 74
0230thry Stray field outside field clamp 75
0231thry Effects of construction errors at the end of dipole magnets 75
0232thry Field coil to test pick-up coil 75
0233thry Quadrupole - pole width \leftrightarrow dipole overhang 75
0234thry Calibration of OAM 75
0235thry Harmonics in dipole fringe field 75
0236thry Harmonics to produce $B_{y} \approx x$ in midplane of quadrupole 75
0237thry Quadrupole with $B_{y} \approx x$ in midplane 75
0238thry Conventional dipole 75
0239thry Recreation of "integrated multipole strengths for skewed axis" 75
0240thry Eddy current energy deposition at yoke's edge 75
0241thry Possible solutions to 2D grid problem 75
0242thry Correct POISSON equation for cyl. geometry 74
0243thry Diff. equation for cyl. geometry - POISSON 75
0244thry $1 / 2$ - windowframe - sextupole 75
0245thry Windowframe sextupole with wedge-shaped coil 75
0246thry Windowframe sextupole with finite and constant thickness coil 75
0247thry Method to calculate 2D field outside convergence radius from 2D 75 harmonic measurements (recreation of notes from ~ early 75 that I cannot find)
0248thry Eddy current force between solenoid and thick Cu plate 75
0249thry "Octupus" fields 75
0250thry Penetration of high frequency fields into dipole 75
0251thry AC fields in windowframe magnet 75
0252thry Measurement of pure quadrupole with displaced coil rotating about 75 a skewed axis
0253thry 2D field in homogeneity \leftrightarrow curvature and displacement of field line 75
0254thry $|\Delta B|^{2}$ from allowed harmonics in symmetric quadrupole 76
0255thry Magnetization data for Texas A\&M magnet 76
0256thry Multipole production by pole asymmetry of 4-pole 76
0257thry Stored energy in permanent magnet assembly 76
0258thry Alternate way to excite quadrupole with filaments on pole to give 77sextupole
0259thry Production of $n=3$ in quadrupole with poleface filament 77
0260thry Production of sextupole field in quadrupole with current sheet on 77 pole surface
0261thry PEP staircase 4-pole 77
0262thry Measurements to give field quality outside "normal" convergence 77 radius of quadrupole
0263thry AC force on 2D conducting steel plate 77
0264thry Eddy currents for fast permanent magnet magnetization 77
0265thry Stored energy in cylindrical and 2D geometry and in cylindrical 77 geometry with $r A=$ constant surface
0266thry Field errors because of parabolic segment cut from pole 77
0267thry Effect of circular arc carved into pole of dipole 77
0268thry Polynomials for edit in cyl. geometry 78
0269thry SC transform of Gm26 with ellipse integral 78
0270thry SC transformation of Gm27 78
0271thry Minimization of correction coil current 78
0272thry "Superconducting" kicker magnet 72
0273thry Shimming of pole with filament model 78
0274thry Eddy currents in cylindrical yoke-ring 78
0275thry Eddy current summary for TPC 78
0276thry Error analysis for Don Sorenson's measurement coil system 78
0277thry Decay of V in pipe 74
0278thry Poleface for weak focusing bend magnet with cyl. symm. 78
0279thry $\quad \bar{B}$ through plate excited by two coils 78
0280thry Lee Heflinger's notes on coil system stability 78
0281thry Current increase necessitated by hole in steel 79
0282thry Flux through $\mu=\infty$ bodies in uniform magnetic field 79
0283thry Eddy current - caused force and torque on conducting circular plate 79
0284thry Eddy current - force and torque on long thin sheet in 2D field 79
0285thry Force and torque on 2D body with $\mu=\infty$ or $\sigma=\infty$ in 2D multipole 79field
0286thry Model for eddy current forces and torques on 2D structures with 79 incomplete flux exclusions
0287thry Complex potential for $\mu=\infty$ or $\sigma=\infty$ ellipse in pure multipole field 79
0288thry Summary for 2D, $\sigma=\infty$, or $\mu=\infty$ forces and torques 79
0289thry $\int \mathbf{j} d v$ 79
0290thry Re-formulation of model for forces and torques on 2D structures 79with incomplete flux exclusion by eddy currents, and for $\mu=\infty$
0291thry $\quad 1 / 2$ dipole magnet with hole in septum 79
0292thry WNR stripping magnet 79
0293thry Effect of hole in yoke of PSR dipole 79
0294thry $\quad 1 / 2$ quadrupole with hole in mirror plate 79
0295thry 2D field model for D3 magnetic coil system 79
0296thry Field distortion from bellows welds in Bevatron 79
0297thry Corner flux 76
0298thry 1D model of eddy currents in non-linear steel 79
0299thry Re-creation of optimization of 2-coil measurement system for 79 quadrupoles
0300thry Force on coil in 2D and cylindrical geometry 79
0301thry Axial forces on HISS coil 79
0302thry Decay of cylindrical symmetrical field between two parallel plates 79 with $\mu=\infty$
0303thry B. Price magnet 79
0304thry Charged circle next to plane; minimization of $E_{\max }$ for given ΔV 79and center of circle
0305thry "Closed" charged surface with constant $I E^{*} \mid$ next to conducting 79 plane
0306thry Curved electrodes with $\left|E^{*}\right|=$ constant, next to conducting plane 79
0307thry Dipole steering with quadrupole 79
0308thry Dipole steering with quad in 2 extreme cases 80
0309thry Representation of laminated steel by anisotropic medium 79
0310thry Analysis of cylindrically symmetric solenoid system with a 80symmetry-violating perturbation
0311thry Approxim. calcul. of flux going into cyl. hoop, and consequences 80 of satur. of hoop
0312thry Effective edge associated with step in pole 80
0313thry Jeff associated with coil-ends in HIF quadrupole 80
0314thry Leff of HIF quadrupole 80
0315thry Etst. field from plate with circular hole 80
0316thry Axisymmetric elongated ellipsoid in field parallel axis 80
0317thry NBS race track K-iron magnet 80
0318thry Fringe field flux in some magnets 80
0319thry Force estimates for ideal superconducting undulator 80
0320thry Far field expansion of A_{φ} (cylindrical geometry) 80
0321thry Simulation of "rest of universe" in cyl. geometry 80
0322thry Deductive proof that for 2D fields, only A_{z} is needed 80
0323thry Test for aberrations for far off midplane trajectories in strip magnet 80
0324thry $B_{y}=$ constant curves in Gm10 80
0325thry 3rd order kick at end of semi-infinite quadrupole 81
0326thry Rogowski quadupole: formulation of problem 81
0327thry Compensation of ripple from coil (for D3) 81
0328thry Compensation of ripple from coil (for D3) 81
0329thry Adaptive optics correction element 81
0330thry VECAN; disk 52 81
0331thry Fourier analysis of vector pot. in X/4-section 81
0332thry Field penetration through 2D slit 81
0333thry $\overline{B_{r}}, \overline{B_{z}}$ in cylindrical geometry, from $r A=V=$ linear function in Δ 81
0334thry Eddy current in conductor with circular cross section exposed to 81 (previously) uniform AC field
0335thry Eddy currents in lamination 81
0336thry Poleface correction of LANL AT2 quads 81
0337thry 1st order shim of pole 82
0338thry Design of center part of "Rug's" quadrupole 81
0339thry TRW undulator problem with floating wire 81
0340thry Force on REC and small sphere of $\mu=\infty$ steel in external field 82
0341thry Design and properties of Helmholtz coil system 82
0342thry Superconducting wiggler with coil surface $=$ field line with $|B|=$ 82constant
0343thry Shielding inside of 2D "box" with elliptical outer contour 82
0344thry Shielding of long box against transverse field in presence of 82longitudinal field
0345thry Summary of formulas for shielding in transverse direction only 82
0346thry Shielding considerations for neutral beam injection module 82 containing 4 individual lines
0347thry Production on quadrupole field modulated by $\sin k z$ 82
0348thry Shielding of cylinder with superconducting sheet, or steel 82
0349thry Production and properties of 2D E field that has on x-axis the 82 properties
$E_{y}=E_{o}, E_{x}=f(x)$, with Gm28
0350thry Optimization of T-M coil system for quad 82
0351thry \mathbf{j} and \mathbf{H} caused by two displaced solenoids with opposite polarities 82
0352thry Force between charge sheet and pole (2D) 82
0353thry Force on solenoid (between steel poles) due to radial motion 82
0354thry Axial force on TPC coil due to axial displacement 82
0355thry "Rogowski"-shield (for TRW) 82
0356thry PSR stripper 2: magnet optimization 82
0357thry PSR stripper 1: conformal map, fields 82
0358thry . Single stripping magnet with eddy current driven Cu sheet 82
0359thry Pulsed wiggler field inside circular cylinder with thin conducting 82wall
0360thry Timing of ELF wiggler use 82
0361thry Fields in ribbon-beam-electrode system 82
0362thry Foraday-rotator-magnet 82
0363thry Fieldline bow \leftrightarrow field error in cyl. geometry 82
0364thry Jose Alonso magnet 81
0365thry Measurement coil for small quads 82
0366thry Questions about properties of 2D, 3D magnet codes 82
0367thry Application of the V-Q theory to the design of electromagnets 82
0368thry Decay of fields in $\mu=\infty$ steel box 83
0369thry Stability of current carrying wire in magn. field 81
0370thry Eddy currents in circular pipe in quadrupole 83
0371thry Filament-wiggler (for Sandia) 83
0372thry Production of quadrupole field with windings on cylinder surface, 83surrounded by shells of various properties
0373thry Quadrupole with thin sheet excitation, surrounded, at a distance, by 83 a thin sheet of finite conductivity
0374thry Finite thickness plate in homogeneous field 83
0375thry Thoughts on description of fringe fields of dipoles 83
0376thry Comments to representation of 2D dipole fringe fields 83
0377thry Thin sheet eddy current damper 83
0378thry Behavior of $F, \int F d z, F^{\prime}$ in vicinity of a corner 83
0379thry 3rd order kick in fringe field of quadrupole 83
0380thry Estimate of flux going into pole of multipole 83
0381thry Treatment of 2D quadrupole, with excitation sheet, eddy current 83sheets, etc., with matrices (in Laplace domain) (Version 1)
0382thry Using different matrices for 2D quad description 83
0383thry Treatment of 2D quadrupole, with excitation sheet, eddy current 83sheets, etc., with matrices (in Laplace domain) (Version 2)
0384thry Details of coils for 3rd gradient, including induced voltage 83
0385thry Eddy current H for cylinder with hole 83
0386thry Eddy current H in cylindrical disk 83
0387thry Unified matrix representation of fields produced by externally 83driven and eddy current sheets for two gradient systems
0388thry Gradient fields inside thick steel shell 83
0389thry Tests of gradient field quality 83
0390thry Time constant necessary to make eddy current sheet infinitely thick 83
0391thry Energy deposition by eddy currents in thin conducting sheets 83
0392thry "Interference"-effects in eddy current energy dissipation in sheets 83
0393thry Negative restoring torque in ring dipole magnet 83
0394thry $\quad F=\Sigma_{1} C_{n} z^{n}$ from $F=\Sigma_{1} b_{n} t^{n}$ and $z=\Sigma_{1} a_{n} t^{n}$ 83
0395thry Expansion of fields in Gm29 in harmonics 83
0396thry Eddy currents in laminations \rightarrow necessary thickness 83
0397thry Rogowski dipole 83
0398thry Flux induced into Helmholtz coil system by small volume of CSEM 84 with easy axis perpendicular to z-axis
0399thry Sandia storage ring steering magnet 84
0400thry Transcription of letter regarding the calculation of forces and 83 torques between magnets
0401thry A 2D field paradox 84
0402thry Stored magnetic field energy in vacuum and $\mu=\infty$ material, and 84 circular cross-section conductors
0403thry Numerical examples for ε^{\prime} in quadrupole 84
0404thry Stored energy in some pure circular conductor excited quadrupoles 84
0405thry $\quad \varepsilon$ modification of quadrupole by circular outside shield that is 84superconducting or has $\mu=\infty$
0406thry Design and properties of Helmholtz coil system for measurement of 82 magnetic dipole moment of REC
0407thry Design and performance of Helmholtz coils with finite winding area 84
0408thry Eddy currents in thin conducting sheets 83
0409thry Eddy currents in thin conducting sheets in LAMPF2 magnets 84
0410thry Electric field between laminations of AC magnet 84
0411thry 2D needle with $|E|=$ constant on rounded part 84
0412thry $\quad F$ from I if B perpendicular to a part of boundary, and parallel to the 85 rest, or vice versa
0413thry 2D electrode system to produce prescribed $|E|$ on a $V=$ constant 85surface of prescribed shape
0414thry Exact solution for 2D electrodes that give $|E|=$ constant on $V=0$ 85surface given by curvature $\approx \cos (k \cdot c u r v e ~ l e n g t h)$
0415thry Re-creation of eddy current overshoot limit 85
0416thry Penetration of potential (+ fields) into a hollow cylindrical shell of 70 zero potential and semi-infinite length
0417thry Magnetic spring constants for radial and axial displacement of SLD 84coil
0418thry $\quad B(H)$ interpolation function 85
0419thry \bar{j} for circular bend of conductor (for POISSON) 85
0420thry Representation of a rectangular 2D conductor with non-uniform j by 85 a rectangular conductor with uniform j
0421thry BNL measurement system deficiencies (quad system) 85
0422thry Fields around $x_{0}=y_{o}=z_{o}=0$ from centered rectangular \pm charge 85 sheet pair at $\pm z$
0423thry Beam spreader magnet optics 86
0424thry Beam spreader quadrupole: first cut 86
0425thry GM in source magnet 86
0426thry Fields, and flux into center pole, of cyl. in source magnet 86
0427thry Field in vicinity of comer 86
0428thry Design of poles of quadrupole for general shape of good field 86 region
0429thry Quadrupole, made with filaments, inside a dipole 86
0430thry Filaments for dipole field parallel to midplane in midplane of dipole 86
0431thry \quad Sextupole $=0$ from linear superposition of contributions from 83 vacuum and iron
0432thry Field change inside circular $\mu=$ constant shell in $\sin n \varphi$ multipole 86 with circular outer iron shell
0433thry ALS combined function bend magnet (Note \#1) 86
0434thry ALS combined function bend magnet (Note \#2) 86
0435thry ALS laminated combined function bend magnet (Note \#3) 86
0436thry Aberrations in a curved laminated combined function bend magnet 86
0437thry Penetration of solenoidal field through conducting shell 86
0438thry Characterization of dipole fringe fields with field integrals 86
0439thry Field from four semi-infinite line charges 86
0440thry Flux in shell of Richard's refrigerator 86
0441thry Math details for "perfect" quad end 86
0442thry Math details index 86
0443thry Quadrupole with "perfect" ends 86
0444thry Three coil quad measurement system 86
0445thry Method to calculate effect of iron connection between parts of 86 symmetric multipoles
0446thry \quad C between poles of symmetrical multipole 86
0447thry Excitations necessary in sextupole to produce given sextupole 86
0448thry Flux into poles of sextupole for various excitation patterns 86
0449thry $\quad C$ between poles of 2D undulator or wiggler with $V=0$ midplane 86
0450thry $\quad C$ between poles of 2D undulator (general case of two linear arrays 86 of poles)
0451thry "Invisible Flux" to $V=$ constant surface: sextupole run as skew 86 quadrupole. Correct method to calculate flux from a surface to other surfaces on varying potentials
0452thry $\bar{B}_{\text {max }}$ in "coil section" of pole of quadrupole 86
0453thry $\quad \bar{B}_{\text {max }}$ in CSEM section of quadrupole 86
0454thry Max of \bar{B} in pole of quadrupole, general formulation 86
0455thry Comments and sum notes for excitation coefficients in iron 86 dominated multipoles
0456thry $\quad E^{*}$ from 2D charge distribution 87
0457thry $\quad E^{*}$ from uniform σ inside ellipse 87
0458thry Analysis of flux pattern in ALS sextupole 86
0459thry Running iron dominated sextupole as a dipole 86
0460thry $L_{\text {eff }}$ of dipole with thin field clamp 87
0461thry Excess flux in Gm30 87
0462thry Field from current sheet on $\mu=\infty$ pole of dipole 87
0463thry Definition and measurement of imperfect multipole magnet center 87
0464thry Field from $0<\mu<\infty$ sphere 87
0465thry Unimportance of magnetic length of dipole in ring 87
0466thry "Corner problem" for CTI 87
0467thry S-C-transform of Gm31 87
0468thry Thick septum eddy currents 87
0469thry $\quad I=\int d s / z^{4}$ over ellipse with half-axes a, b 87
0470thry "Screwdriver-effect" 87
0471thry Estimate of harmonics produced by thin $0<\mu-1 \ll 1$ vacuum 87 chamber
0472thry Field from "slightly" magnetic material in H_{0} 87
0473thry Tolerable $\mu-1$ for ALS booster vacuum chamber 87
0474thry Effect of stacking factor η on $B_{\text {air }}$ 88
0475thry \bar{B}, B_{0} in bend dipole 87
0476thry Description of the properties of an ellipse 88
0477thry Fields produced by eddy currents in thin elliptical vacuum chamber 88
in dipole with
$\mu=\infty$ poles, to 1st order
0478thry Procedure to get $f[g(x, y)]$ with $\nabla^{2} f=0$, when $\nabla^{2} g \neq 0$ 88
0479thry Useful techniques for designing a 2D non-dipole in dipole geometry 88
0480thry De-normalization of fields and currents in quadrupole 88
0481thry Excess flux in Gm32 88
0482thry Total flux into 1st quadrant pole of quad when excited as dipole 88
0483thry Thoughts about the (asymmetric) ALS ring quadrupole 88
0484thry "Production" of nonlinear $I_{0}\left(V_{0}\right)$ for quadrupole shunt 88
0485thry Summary of properties of fringe fields of multipoles 88
0486thry $\quad 3 \mathrm{rd}$ order kick in fringe field region of semi $1 / 0$ quad 88
0487thry Force in cylindrical symmetry on $1 / 2$ tones 88
0488thry A general theorem about integrals over Cartesian vacuum field 88components, and applications to field integral measurements
0489thry Propagation of fast perturbation in dipole 87
0490thry Boundary condition vacuum-conducting iron 87
0491thry Flux into rectangular box 88
0492thry Boundary condition at iron-air interface for AC, and application to 88 2D circle
0493thry AC shielding of circular cylinder 88
0494thry Propagation of AC fields in 1D 88
0495thry Decay of fields between parallel plates, and in circular cylinder, 88 with eddy current boundary condition
0496thry $\quad \Omega(x)$ properties 88
0497thry \quad Summary of eddy current modified H in $\mu \geq 1, \sigma \geq 0$ material 88
0498thry Inadequacy of ID eddy current analysis 88
0499thry Quad measurement coil system on surface of cylinder 88
0500thry Sextupole measurement coil system 88
0501thry Effect of (thin) gap in yoke of quadrupole 88
0502thry "Math part" of ID eddy current analysis in iron 88
0503thry Model functions for $H(B)$ without hysteresis 88
0504thry $\quad|B|$ at the edge of a multipole pole, and \bar{B} between edges 88
0505thry Analytical design of dipoles with vanishing $N=3$; and $N=3,5,7$ 88(no success)
0506thry Eddy currents in $\mu \sigma \neq 0$ spherically symmetric system 88
0507thry ΔV generated at joint of inner shell of a two shell system with 89 points in same location in both shells
0508thry Effect of a gap in μ-metal shielding, for DC fields 89
0509thry Polarity jump associated with flux going across joint 89
0510thry Estimate of effectiveness of double shell DC shielding 89
0511thry Fields in cylinder with eddy boundary condition and potential 89 jump- V_{0} at $\varphi= \pm \pi / 2$
0512thry Propagation of EM fields between two plates with different 89 properties
0513thry 2D field harmonics from measurement of $|B|$ 89
0514thry A simpler way to do $\int_{0}^{1} \ln \frac{1+t}{1-t} \cdot \frac{\sqrt{1-t^{2}}}{t} d t=J$ 89
0515thry Calculation of F produced by small "bump" in $v=$ constant surface 89 in SC mapped geometry
0516thry $\int V d x$ across top of gap in Gm41 89
0517thry $I_{2}=\int \frac{d x}{x^{3} \pm 1}$ and $J=\int_{0}^{\omega} \frac{d \omega}{1+\omega^{4}}$ 89
0518thry Maximum achievable field in conventional quadrupole 89
0519thry Strongest possible conductor dominated quadrupole 89
0520thry $A=\int_{0}^{2 \pi} \cos ^{3} \varphi \cdot e^{\left(a \cos ^{2} \varphi\right)} d \varphi$ 89
0521thry Reduction of saturation induced movement of trajectory at center of 89 symmetric dipole magnet
0522thry $\overline{\ln |B|}$ 89
0523thry Effect of iron end plate on fields of ALS gradient magnet 89
0524thry Driving two coils with some amplitude, but 90 degrees phase shift, 90 currents from one source
0525thry $\quad \mu^{T}=\mu$ and $\varepsilon^{T}=\varepsilon$ from scratch 90
0526thry Data reduction for some hybrid ID measurements 90
0527thry Harmonics in S.C. dipole due to horizontal and vertical splits in 90 iron yoke
0528thry Three representations of notation to $\nabla^{2} V=0$ in cylindrical geometry 90
0529thr μ_{1}, r_{1} circle at $z=0$ in 2 D multipole field 90
0530thry Harmonics from Hll at top and bottom of "tall" window frame 90 dipole
0531thry Mid-plane symmetrical window-frame magnet with excitation to 90 produce quadrupole, sextupole
0532thry Design of window-frame with quadrupole not equal to 0 , sextupole 90 equal to 0
0533thry Design of window-frame magnet coil that gives no sextupole even 90 though it can not touch poles
0534thry Flux carried by ferromagnetic conduction bolt 90
0535thry $\quad F(z)$ outside circle from A (or V) on circle (if well behaved outside 90 circle)
0536thry Mapping exterior of ellipse to exterior of unit circle 90
0537thry Procedure to "fake nut of universe" outside elliptical boundary in 90 POISSON
0538thry Line integral measurement with circular coil of magnet with non- 90 parallel straight EFB ideal
0539thry Properties of field integral along circular arc through a magnet with 90 a field that depends on x, y, but not z
0540thry Europe Notes - POISSON 90
0541thry Calculation of 2D harmonics from exotic measurements 89
0542thry POISSON notes, Europe 1990 90
0543thry Circular cyclotron magnet design 90
0544thry Curvature of $\omega=z^{2} / 2$ map of circle 90
0545thry Curvature of $\omega=z^{n}$ map of circle 90
0546thry Flux induced onto $\mu=\infty$ surface by coil with I 90
0547thry Change in EFB due to movement of coil, to 1st order 90
0548thry Coil system to measure precisely the (integrated) strength of a 90 (small) quadrupole
0549thry $\quad I^{\prime}$ shimmed vertical steering magnet 89
0550thry Penetration of external fields into gap of semi-infinite dipole 90
0551thry Penetration of external field into gap of dipole with finite pole 90thickness
0552thry Multipole expansion of skew fields produced by filaments and 90 sheets
0553thry Dipole field from environmental field in fig 8 quad 90
0554thry General procedure to get perturbation effects in non-ideal 2D 91 magnets "without" finite element code
0555thry CERN Permeameter. primitive analytical model 90
0556thry Techniques for evaluating $F(C, A)=\int_{0}^{2 \pi}[G(C+A \cos \varphi) \cos \varphi d \varphi]$
0557 thry $\quad \int_{0}^{2 \pi} \cos k(C+A \sin \varphi) \sin \varphi d \varphi=J$90
0558thry Amplitude dependent shift correction for modified sextupoles 90
0559thry Field in iron quadrupole from $I^{\prime}=\cos 2 \varphi$ 91
0560thry Currents $\approx \cos n \varphi$ on circle in iron multipole 91
0561thry Thin walled circular conducting shell in multipole field 91
0562thry Generation of 3rd harmonic in mapped geometry with filaments in 91 ideal multipole
0563thry Generation of 2nd harmonic in mapped geometry with filaments in 91 ideal multipole
0564thry Multipole from I_{1} in dipole and quadrupole 91
0565thry Stored energy inside I carrying conductor 91
0566 thry $\quad \mathcal{L}$ for correction conductor in dipole 91
0567thry Minimizing stored energy in (2D) region around point with given 91field
0568thry A theorem about fields produced by \pm filaments on closed $\mu=\infty$ 91 boundary
0569thry Map of circular disk on unit circular disk with centers at $\omega=0$ and 91$z=0$, with $\omega(1)=1$ and $\omega(0)=\omega_{0},\left|\omega_{0}\right|<1$
0570thry Re-formulation of "large gap suspension" problem in 2D 91
0571thry Cyclotron correction coil use (Juelich Note) 91
0572thry Transmission of light through a substance between two polaroid 92 filters
0573thry $\quad V_{1}, H_{z}, H_{z}^{\prime}, H_{z}^{\prime \prime}$ for semi-infinite solenoid of finite radial thickness 92
0574thry AC fields onto conducting 2D iron cylinder 92
0575thry Penetration of mid-plane symmetric fields into ends of 2D dipole 92
0576thry PM solenoid for SLAC Klystron 92
0577thry Penetration of fields parallel mid-plane of 2D dipole into ends of 92dipole
0578thry Design of coil system to measure quadrupole (re-creation) 92
0579thry Sextupole measurement coil design 92
0580thry Field from finite size Helmholtz coil 92
0581thry Ratio of fields at points in scale and mapped geometry 92
0582thry Power of Panofski quadrupole 92
0583thry T-distribution in magnet when cooled/heated on outside surface 93
0584thry Field in vicinity of $\mu=\infty$ 93
0585thry Magnet axes notation - Folder (no transcription) 68
0586thry Ht windings - Folder (no transcription) 70
0587 thry Conductor dominated magnets - Folder (no transcription) 70
0588thry Iron dominated magnets - Folder (no transcription) 69
0589thry Over-relaxation - Folder (no transcription) 75
0590thry Ripple (Eddy currents) - Folder (no transcription) 75
0591thry Dipole with small gap bypass 93
0592thry Displacement-caused change of force on coil in coil slot 93
0593thry LEB-MEB symmetrical H dipole 92
0594thry Field lines, $\mu=\infty$ surface, from two filaments in vacuum, on 92 boundary and inside or outside circular $\mu=\infty$ surface
0595thry Load line for circular cylinder/sphere in uniform field 91
0596thry 2D ellipse with arbitrary (isotropic) $B(H)$ curve in homogenous 91 external field
0597thry Representation of magnetization data, for 3D sphere and 2D ellipse 91
0598thry Conduction 2D iron cylinder and 3D sphere in AC field 91
0599thry Geometry specific perturbation effects by mapping into infinitely 91 wide dipole
0600thry Perturbation harmonics in circular disk 91
0601thry Mapping function POISSON geometry \rightarrow circular disk 91
0602thry Relations between expansion coefficients for perturbations in 91 systems with mirror symmetry
0603thry SSC dipole: analysis with 2DPERT2 using GEN1.DAT 91
0604thry Determination of amplitude and phase of long coil 93
0605thry Meaning of C_{n} for one filament from 2DPERT in system that is 91 symmetric with respect to x and y axes
0606thry $\quad H$ magnet with minimal yoke flux density 93
0607thry \quad Stored energy in H magnet for $\mu=\infty$ 93
0608thry Some thoughts on generation of a set of 2D fields that are locally 93 perpendicular to each other
0609thry Comments about RAYTRACE 93
0610thry Fringe field model function for dipoles 93
0611thry Curvature of 2D Magnetic Field Lines and Scalar Potential Lines 94
0612thry Some Thoughts on an Eddy Current Septum Magnet 94
0613thry One Pulse Energy Deposition in Septum 94
0614thry Geometry Specific Effects in Iron Dominated 2D Magnets 94

[^0]: December, 1986. Note 0022bpm.

 * For subscript 2, the quantities are not averaged over time but are time independent, as are all time integrated quantities.

[^1]: May, 1993. Note 0335 csem.

[^2]: June, 1981. Note 0076csem.
 \dagger REC can be considered this way if one assumes differential permeability $\equiv 1$.

[^3]: January, 1994. Note 0611thry.

[^4]: December, 1993. Note 0609thry.
 \dagger Spencer, J. E. and Enge, H. A., Nuclear Instruments and Methods 49, 181 (1967).

[^5]: January, 1993. Note 0606thry.

[^6]: \dagger In the case under discussion here, $B_{z}=0$ at both ends even though $B_{z} \neq 0$ in the fringe field region.

[^7]: August, 1993. Note 0139u-w.
 \dagger See document $0138 \mathrm{u}-\mathrm{w}$ for the origins of this equation.
 \ddagger See document 0140 u -w for derivations of ε_{1} and ε_{2}.

[^8]: 1 Table of Functions with Formulae and Curves, Dover Publications, 1945: p. 56.

