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Preface 

This volume contains a compilation of 57 notes written by Dr. Klaus 
Halbach selectedfiom his collection of over 1650 such documents. It 
provides an historic snapshot of the evolution of magnet technology and 
relatedfields as the notes rangefiom as early as 1965 to the present, and is 
intended to show the headth of Dr. Halbach 's interest and ability that have 
long been an inspiration to his manyfiiends and colleagues. 

As Halbach is an experimental physicist whose scienhjic interests span many 
areas, and who does his most innovative work with pencil and paper rather 
than at the workbench or with a computer, the vast majority of the notes in 
this volume were handwritten and their content varies greatlpsome reflect 
original work or work for a specific project, while others are mere 
clarifications of mathematical calculations or design specijications. As we 
converted the notes to electronic form, some were superficially edited and 
corrected, while others were extensively re-written to reflect current 
knowledge and notation. 

The notes are organized under five categories which reflect their primary 
content: Beam Position Monitors (bpm), Current Sheet Electron Magnets 
(csem), Magnet Theory (thry), Undulators and Wigglers (u-w), and 
Miscellaneous (mise). Within the category, they are presented chrono- 
logically startingfiom the most recent note and working backwards in time. 
The note number, listed in the Table of Contents and at the bottom of each 
note 's first page, comes @om a database we have created which includes 
the titles of the entire collection of notes, and a recently added szjcth 
category, Conformal Transfornations (ctr). The appendixes contain a table 
of all the notes in the database and a list of Dr. Halbach 's publications. 

The extensive use of hand-written notes by Dr. Halbach leads us to believe 
that there may be many that were sent to colleagues which were not retained 
in Dr. Halbach 's files, and thus are missingfiom the database. Ifyou 
happen to have a note of scientiJc interestfiom Dr. Halbach and believe it 
to be an original, we would appreciate receiving a copy. 

Brian M. Kincaid 
Simonetta Turek 

November I994 
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Halbach Geometries 

The Halbach Geometries, referred to in the notes as Gm, are a collection of 
simple geometric shapes, simple function representations, and 2-dimensional 
electromagnetic geometries for which conformal mapping calculations have 
been done to compute basic features such as capacitance, excess flux, etc. 
For examples of calculations of excess flux, see documents 0336csem 
(p. 5) ,  0332csem (p. ll), 0183csem (p. 23), and 0131u-w (p. 175). 

The following two pages summarize Dr. Halbach’s representations and 
shorthand notations of his “Geometries.yy The reader is encouraged to refer 
back to them when encountering such abbreviations as Gm3 or Gm21 while 
reading the notes. (Note: Not all the Halbach Geometries are referenced in 
this collection.) 
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Exact, Complete Proofs of Reciprocity Theorems for 
Electrostatic and Magnetostatic Beam Monitors 

The following is an excercise in Maxwell's equations in a region that is bounded by 
perfect metal walls and contains nothing but moving electric charges. 

where j comes from the moving charges represented by charge density e(z, y, q t )  in 
the beam, and 

V x E = - B  and V - D = e ,  (2-11, (2-2) 

We integrate all equations over time, starting before the front-end wake fields begin, 
and ending after the end wake fields and RF are gone. 

/ D d t = O  and /Bdt = 0, 

V x ' F I = J  and V - X = O ,  

The new symbols stand for integrals over time at every 2, y, z. 

Electrostatic Pick-up. 
The beam with R produces K(z, y, z), with K = 0 on wall everywhere, including on 
the electrode. An electrode on fio produces &(z, y, z) ,  with & = 0 on wall except 
on the electrode*. 
Using (4.1) and (4.2) we notice that is the integrated 
potential over time. With 'FI = -AV, 

is the actual potential and 

December, 1986. Note 0022bpm. 

time integrated quantities. 
* For subscript 2, the quantities are not averaged over time but are time independent, as are all . 
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But it is also true that, for the charge qe, 

U = 1 (KVK - l$VVi) - da = l$o - Q with Q = 1 qedt, 

induced by electrons on electrode. 
The total charge in the bunch, Q B ,  is related to e(z, y, z,  t )  through 

edtda = & B / v ,  J 
1 Rvda = 1 edtvda = / Qhda, 

where Q k  is independent of z, and is the charge going througl 
da. The units for [QB] = A sec, and [Q] = Asec2. 

h area da, divided by 

M a g n e t o s t a t i c  Pick-up.  
We use (3.1) and (3.2). The beam with J produces Al(z ,y , z ) ,  and 'F11(z ,y ,z) .  In 
the coil, the flux from J integrated over t is 

In addition, we use a coil with a current, 1 2 ,  that produces A 2 ( z ,  y, z) ,  'F12(2, y, z). 
We now use, equivalently to the electrostatic case, 

where A1 is the integrated vector potential, and A:! is the actual potential associated 
with I2. 

thus, 

U = (A2 - J 1 -  A1 - J 2 )  dv. J 
With 

Jlda = jldadt = Q B ,  S /  J1 = J l e z  and 

2 



we get 

and get 

with the last integral taken over the "superconducting" wall. 
In the.vicinity of the wall we use 7-1 = -VV. Thus, 

U = 1 (A2 x VK - A1 x VK) - da. 

In general, V x (ViA2) = K V  x A2 - A2 x OK, thus 

U = /(KV x A2 - R V  x AI) -da = (K7-12 - - da= 0. J 
The last integral vanishes because on the superconducting wall the component of 7-1 
perpendicular to the wall (Le. parallel to da) is zero. We therefore get 

The units are [@2] = poA m sec, [A21 = A, [ ~ o Q B  A2,dz/I2] = poA m sec. It 
is important to notice that @2 is the integrated flux, and the flux is the integrated 
induced voltage.. 
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Integral for Excess Flux Calculation 

We have shown in an earlier note that for n 1  = 723 = 1/2,  

1 
f(t) 1 

dx, t = -(2(tz + t l )  + ( t 2  - t 1 ) 2 ( 3  - x 2 ) ) .  4 
-1 

For 121,723 # 1/2, the approach that gave the above equation becomes very compli- 
cated, especially if one wants to have generally valid and simple integration. For the 
general case, we use (arbitrarily, for simplicity) 

ti = 1 / 2 ( t 3  + t l )  and J = Ji + J3 

where 
t 2  t3  

Ji = 1 G(t)dt and J 3  = / G(t)dt , 
tl t 2  

We solve for J1: 

when x ( t 2 )  = 1, 
(t - t p  ( t 2  - tl)*l Adz = (t - AZ = and A =  

ml ml 

with 
1 m l = l - n l  p 1 = -  

ml 

t = tl + ( t 2  - t1)xP1, t 3  - t = ( t 2  - t 1 ) ( 2  - % P I ) .  

Thus, 

1 

June, 1993. Note 0336csem. 
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Equivalently, solving for J3: 

( t 3  - t)” ( t 2  - t l)m3 -BdX = ( t 3  - t)n3dt, BX = and B =  9 

m3 m3 

t = t 3  - ( t 2  - t l )zP3 t - tl = ( t 2  - t1)(2 - 2”) .  

Thus, 

We may now now conclude that 

We examine a specific case of excess flux in the pole in the geometry of Figure 1, 

0 

Figure 1. 

where, 

CY P n l = -  and n 2 = - ,  
n- n- 



sin CY sin f l  We may conclude that I2 = (11)n1*n2. Further, the expression 1 1 7  = 1 2 7  should 
be true. This is a non-trivial assertion and comes from a derivation of the expression 
for E12 in an earlier note. 
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H* at End of CSEM Block 

-x 3 + CurremSker 
5 

Figure 1. 

- CurrcnrSkef 
1 n 

0 

I 1 z z - z2 I’ 
2Ti 2 - 2 0  2ni z+x3  2 - 2 1  - In-.- + -- H * ( z )  = - - - 

In the vicinity of z = 0, -- 

where 

= x3coscr and z = re’p. . x3 
5 4 =  JT + x3/Y1 

Thus, 

5 4  
r Field ‘blows up” at r = 0. Thus, for scaling purposes, at location where In - = .2n, 

= 24e-’)k - - x4 .  1.9 x 10-3. 

There is a strong local field perpendicular to the ucurrent sheet side”, which is not 
problematic when easy axis is parallel to the “current sheet side”. It is-easier to see 
with charge sheet, and it leads to the same answer. 
Interesting damage results for block not magnetized in either a perpendicular or 
parallel direction to the sides. 

May, 1993. Note 0335csem. 
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B 

Figure 2. 

No damage will result in corner A, but there is a potential of demagnetization at 
corner B, and at symmetrically located corners. 
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Summary of Excess Flux Formulae for Gm3, Gm18 and Gm40 

Unless otherwise noted, the following definitions hold for all geometries in this Note 

AA cy h2 
vo a hl 

F = a - ,  n = - ,  and a=-. 

v =  0 3 

Figure 1. 

. . 2  
v =  0 

Figure 2. 

For Figures 2, 3, and 4 (Gm18 and Gm40) CY = n/2. 

v =  0 

3 

1 + 1/a2 1 + 2a arctan - , 
4 a 

Fa1 = In 

1 +a2  1 
F23 = In - + 2a arctan - , 

4 a 

April, 1989. Note 0332csem. 

(3) 

(4) 



We summarize here the the sum of excess fluxes for (1) and (3). For (l), we get 

And for (3), we have 

+ 2a arctan( l/a) + 2( l/a) arctan a .  

v =  0 

Figure 3. 

A = O  

4 

F34 = ln(1 + u2) + 2aarctan(l/a) , 

F12 = 21n (a + d g )  , 
FOl = F34 - F12 - 

(5) 

(7) 

Continued on following page. 
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5 4  

v =  0 

-1 1 
v =  0 

Figure 4. 

1 + a 2  1 
F67 = In + 2a arctan - , 2a ( a  + m) a 

- ( a + - )  1 
+ - a r c t a n a ,  2 a 

F56 = h 

1 1  
4a a a  + 2a arctan - + - arctan a ,  F567 = 

d i T p  1 + - arctan a. 
4 a F234 = In 

(9) 
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Anti-Symmetric Undulator to Make Vertically Polarized 
or Circularly Polarized Light . 

X 

We have 

-V = -sin BO koz cosh koy, 
k0 

with fields anti-symmetric to the midplane y = 0. 

Bz = Bo cosh koy cos koz and By = Bo sinh koy sin koz 

in direction S relative to the z-axis. 

A, = xo/ cos 6, 

B l =  Bo cosh koy sin 6 cos koz, - 
B2 

By = Bo sinh koy sin koz. - 
Bi 

Linearly Polarized Light. 
Let y = 0, B, = 0, 

B2 = sin SBO = sin E B ~  (9 - J-) . A, cos6 

. (3.3) 

(4) 

By the above Bo is indicated the achievable Bo as a function of g/Ao, where A0 is the 
period in the z-direction, and g is the magnet gap. 

October, 1984. Note 0208csem. 
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To have a better understanding, we look at the pure CSEM undulator: 

with B3 equal to the product of 2B,, the segmentation factor and the finite height 
factor. 

B2 = B3 sinSe-alcos6, with a = rg/X,. (5-1) 

We optimize with 6 for given g/X,. With B; = 0, 

cos6 - a tan2 6 = 0. 

Instead of solving for given a, we make a table of a vs. 6. 

cos3 6 a = -  
sin2 s ’ 

B2 = B3 sin 6e-‘Ot2 = B3y. 

Compared to a unormal’’ undulator: 

- = sin Se-COt2 6 cos scot2 6 y B2 

B2n Yo 
e - 

Table 1. 

16 



Circularly Polarized Light. - 
We set y = y1, and koyl = /3. From (3.2) and (3.3), we see we need to satisfy 
cosh p sin 6 = sinh ,f3 for the helical undulator action, thus 

sin6 = tanh p, (6.1) 

or 

or 

cos6 = 41 - tanh2 p = l/coshp, 

tan6 = sinh p, 

B, = Bo sinhp = Bo tan6 = Bo (:{ti) - tan6. 

We assess the reasonableness and feasability of the above analysis. 
Clearly, 

2Yl E = -  
9 

is m important parameter. 

and for p = SIX,, 
T a 

cos6 cos6 p = &p- = €-, 

p cos 6 
& = -. 

a 

The indicated procedure is as follows. Given p = g/X, and Bo(g/Xo) = Bo(p/ COS S), 
we optimize B, with 6 and get c from (8.3). 
For a pure REC undulator, 

with a = 7rg/X, = x p ,  -a/ cos 5 Bo = B3e 

B, = B3 tan 6 - 
With BI = 0, 

sin 6 atan6-  - - 1 
cos2 6 
-- 

cos2 6 - O7 

17 



sin2 s 
cos s cos s 

1 - cos2 6 
a - = a  = 1, 

For cosh p = 1/ cos 6, 

E = pcos -. a 
I I 

For extre-me "legal" E = 1: 
e. ' 

' 2  1 + sin6 
(7 ) cos6 ' 

pcos-=sin s 2 S - p = s i n  S-ln 1+tan26+tanS  =sin 6 - ln  
a 

,f3 = 60.27', g/X, = .21, and B,/B3 = -46. 



Hybrid Undulator with Superimposed Quadrupole Field 

With the electron beam in the z-direction, and the midplane the zz-plane, the normal 
undulator fields can be described by 

For the complex potential F1 = A1 + Vi; with A1 and 
potentials respectively, it follows that 

the vector and scalar 

B1 B1 
k k Fl = - sin k(z + iy) and VI = - cos kz sinh ky. 

The desired normal quadrupole fields are given by 

1 1 2  BO* = iFL = iBAz Fo = -Boz , and VO = Bhxy. 2 

For the scalar potential and the combined undulator and quadrupole fields, we there- 
fore have 

V = fi + VO = -coskzsinhky + Bbzy. 

Setting this equal to a constant gives the associated surface of a pole made with 
infinitely permeable material. With yo the half-gap of the pole at z = z = 0, 

Bl 
k 

B1 
kB1 0 = COS kz sinh ky - sinh kyo + A k z k y .  

With the following substitutions: 

, u = k x ,  and v = k y ,  & = - Bt, a = coskz, kB1 

we arrive at the following equation for the ideal 3D pole: 

I asinhv - sinhvo + Euv = G = 0. I 

To understand what this means, we look at some derived quantities: 

January, 1984. Note 0187csem. 
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is the slope of the pole in the xy-plane. For x = z = 0 it is reduced to 

1 sinh2 vo = -. 
kE2 01 tanh2 v1(2 - VI tanh VI) 

Looking at the slope just above the axis of the system, i.e. for x = 0, 

YO sinh' vo 
E2 vovl tanh' v1(2 - VI tanh VI) ' R = - -  

I a sinh VI = sinh vo, I 
and 

E V l  -- 
- acoshvl' 

where the subscript 1 refers to the case of x = 0 and z equal to anything. For z = 0 
this reduces to 

- EVO B; Y 0 lB1 y' = - - --. 
cosh vo cosh 00 

Eliminating a = cos k z  gives 

tanh 01 
sinh vo 

For the curvature of the pole in 

dy' dy dy' 
dx dx dy 

y" = - + -. - 

the zy-plane we need 

E2V acoshv + Eu - avsinhv) E2V 

( a  cosh v + Eu)' + (a cosh v + Eu) (a cosh v + E u ) ~  ) =k( 

For u = 0, this reduces to 

kE2vla 
a3 cosh3 vi 

yl' = (2 cosh V I -  vl sinh VI) 

01 tanh2 VI 

s iA2 vo 
= &2k (2 - V I  tanhvl) . 

We let Iy'l << 1, and therefore 4 m 3  z 1. With radius of curvature R, we get 



For v1 = 00, and yh = -Eva/ cosh vo: 

We make the following assignments: 

and re-write 

VO sinh2 00 . 

vi tanh2 q(2 - 01 tanhvl)' 
R = yo b - - - 

2TY 
x where for 2 - v tanh v = 0, v = - = 2.0653. 
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t = l  

t 

Excess Flux into Gm13 

= 1  
\ t =  -00 

v =  1 

t=00 
v =  0 

Figure 1. 

For the above graph, 

and nl+np =n3. P -  - = n 2 ,  
a! 

x -=n1, 

The conformal map is described by 

a € % .  
tn3 

i = a  
(t - 1)l+”’ 

From 
follows xF = ln(t - 1) - 1 n F = -  

t - 1  
We describe the flux into surface 2 of Figure 1 as 

Thus 

PAA2 = -722 In(1 - t l )  - In 1 + ( s, s o )  

tl 

September, 1983. Note 0183csem. 
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and by l'H6pital's Rule, 

and therefore 

We need to calculate h/a ,  and we begin with 

We now calculate y1 by going around the singularity at t = 1 on circle with e = el = 
1 - t l ,  that is 

and thus 

t = 1 + eleiy and dt = iele'pdrp, 

For el sufficiently small, 
ia e-in2x - 1 asinp 
e;"' -in2 we;"' 

-- y1= s- - 

Re-writing (2) with t = 1 - e 

Thus 

24 
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and 

where 

Therefore we may now summarize from (1) that 

and equivalently 

Further, since 

A different way to look at what was done earlier: 

t = O  t =  1 
Figure 2. 

0 Since, clearly, h = %Jl+ i d t ,  one may take a path from any point on the real t-axis 
to the right of t = 1 to t = 0. 
In this note the path followed a ,gl & 0 half-circle around t = 1, and then on axis to 
t = 0. 
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Flux Distribution Symmetry Theorem 

Even though this case is the same as the electrostatic case, it is formulated for mag- 
netic fields because of the application to CSEM in hybrid systems. 

Theorem. 
There are N bodies with p = m. The matrix M ,  which describes the relationship 
between potentials Vn on fluxes Fn leaving body n, is symmetrical, i.e.: F = M V ,  
M t  = M .  In this notation, the subscript 0 indicates the reference body on potential 
V = 0. Thus, the theorem states 

Analysis. 
Stored energy in the field is unique: it depends only on the initial state (we assume 
Vn = 0) and the end state. By going from the initial to the end state by bringing 
bodies in any sequence from Vn = 0 to the final V,, and doing so by moving magnetic 
charges from infinity, we get 

E = 1 V t d F  = 1 VtMdV.  

E must be independent of sequence in which this is done: the right hand side must 
be a complete differential leading to Mnm = Mmn. We show this explicitly for K, & 
and all other Vn = 0: 

We simplify G by making the following substitutions: 
1 1 
2 2 Mi2 = S + D, M21= S - D, and S = -(AI12 + M21), D = -(M12 - J l 2 1 ) ,  

+ V2df i )  +D (%d& - f i d q ) ,  
Y 

P 
(a) 

' J  
(4 

where (a) is d( K V2 ) and is therefore independent of the sequence, and (b) would 

November, 1986. Note 0143csem. 
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be dependent on our sequence. Since G must be independent of the sequence, it 
follows that D = 0. 
In a CSEM circuit, F equals the vector of charges deposited by the CSEM on the 
surfaces (with all V = 0). Therefore, a hybrid system can be represented by magnetic 
capacitors and sources that deposit DC charges. If one finds this more convenient, one 
may also do this analysis with capacitors and AC current sources, or with resistors 
and DC currents. 
The theorems known for these circuits apply, such as Kirchhoff's reciprocity theorem, 
i.e. the nodal equations, etc. One can also use 2 x 2 matrix methods €or systems like 
ladder networks, and apply them directly to hybrid wigglers. One can use concepts 
like characteristic impedance of networks and quadrupole theory, i.e. all the tools 
that have been developed for analog network analysis. 
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Stored Energy in CSEM 

We define the energy density as 

We can look at the easy-axis direction and the direction perpendicular to the easy-axis 
separately. The lower integral limit is arbitrary, but must be fixed. 
With BII = B, + p0pllH11 and BI = p o p ~ H 1 :  

Thus, 

and similarly, 

with I €tot = €11 + €1- 1 
This obviously gives Hi1 a unique role. 

November, 1982. Note 0142csem. 
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Earnshaw's Theorem for Non-Permeable Material 

Problem: There is an assembly of ufrozen" magnetic charges e(.)' in an external 
magnetic field (produced by solenoid or other REC assembly) without any permeable 
material in the system. 
Question: What is the restoring force for small displacements? 
Analysis: The force components in the (x1 ,x2 ,  x 3 )  coordinate system are 

Fl = - 1 eqdv,  F2 = - / eGdv, and F3 = - e'C/,'dv. / 
We displace the system by Ax1,  AX^, Ax3, which is the same as displacing the external 
fields by -Ax1, -Ax2, -Ax3 without changing e, and get 

a 3v --Q-dv 
d x m  

AF, = J ax, 

AF = M - AX. 
In general, M will not be a diagonal matrix. We assume that it can be made diagonal 
(by going to a new coordinate system) with matrix C, where 

where x ,  y ,  z are the new coordinates. From this, it follows that 

I I 
Since a stable system requires a negative restoring force in each of the three coordinate 
directions, any such system will be unstable. 

June, 1981. Note 0076csem. 
i REC can be considered this way if one assumes differential permeabiIity 1. 
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In applications, it will often be clear a priori in which coordinate system the matrix 
M will be diagonal, and the above equation can then be used directly in its final 
form. This means that for systems with cylindrical symmetry about the z-axis, that 
because 

AF, AF, AFT AFT AF, -- - - *- and 2- +--0, 
Ay Ax Ar Ar AZ 

only one of the stiffnesses needs to be calculated from basics. 
It is interesting to note that Earnshaw’s Theorem is often stated in an overly broad 
fashion. For instance, stable support is possible if one allows forces not derived from 
a potential satisfying V2V = 0. The forces between contacting solid materials, for 
example, such as mechanical bearings, are due to the quantum nature of solids, and 
hence do not obey Earnshaw’s Theorem. It is also clear without any mathematics 
that a permanent ’magnet is stably supported in a superconducting bowl. This is 
similarly true for an extreme diamagnetic bowl. 
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Harmonics Produced by Rectangular REC Block. 

e 

z =  0 

' 24 

Figure 1. 

In this document we refer to the above diagram and (4b) and (16b) of the Nuclear 
Instruments and Methods article t 

n=l 

For n = 1, 

For n 2 2, 

October, 1980. Note 0059csem. 
t Halbach, H., Nuclear Instruments and Methods 169, 1 (1980). 
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A Possible REC Undulator for SSRL 

I. Reason for REC. 
It may be possibe to use some very specific ferrite. All other materials, like the 
Alnicos, are not only significantly inferior in performance, but would probably also 
have to be magnetized in final assembly which may be difficult to do. 

A potential future advantage is that the permanent magnet undulator can be scaled 
down in physical size without difficulty. One can therefore envision the following 
scheme: design a REC undulator for very small gap and i-and have it inside vacuum. 
Move the two arrays apart to have the large gap necessary during beam formation. 
When beam is established, move the 2 arrays together to form the design gap that 
the beam allows. Clearly, this would be nearly impossible with either a conventional, 
or even a superconducting, undulator. 

11. Use of Nomogram and Notation. 

- 
h 

Figure 1. 

2 4 2  + i y )  
A '  B,+iB, = Bocos 

where B, is the remanent field of REC, M' is the number of pieces with fixed easy-axis 

April, 1979. Note 0038csem. 



per period. 

Figure 2. 

Because &,E2 are close to 1, and one usually chooses I( M 1 T(cm), k (cm-l) is 
numerically close to Br. 

In this document, all lengths will be in cm, and B's in Tesla. 

III. Design Considerations. 

0 End Section. Normalize center to z = 0 and that piece has easy-axis parallel to 
the y axis. The last pieces at both ends must have the same easy-axis as piece at 
z = 0, but should have only half of normal length in the z-direction. One may want 
to use coils to fine-tune the end sections, but it would not be surprising if this were 
unnecessary. 

In order to reduce the effects -from finite length in 2-direction (or to get away with 
Shorter length in that direction) and to avoid 3D fringe effects at the ends in z- 
direction by cutting end fields off rapidly, one should back-up REC with a soft steel 
plate with reasonable overhang in z and 2 directions. This will not deet the ampli- 
tude of the cos(2n(x + iy)/X) term, but will introduce a very weak, unnoticeable in 
the midplane, third harmonic (for M' = 4). 

0 Length of REC in 2-direction. The present estimate is that it should be approx- 
imately the sum of the width of the beam and 2g. The 3D effects discussed in the 
previous section are easily analyzed computationally and should be done before or- 
dering materials! 

' 

0 Choice of M' and L. It is recommended , at least for the first undulator, to use 
M' = 4 (giving E1 = .9) and L = X/2 (giving E2 = -96) or L = X/4 (giving E2 = .79). 
With these choices, the undulator can be assembled from identical REC pieces with 
square cross-section and the easy-axis parallel to a side. The exception would be with 
the end pieces which could be obtained by cutting or grinding the normal pieces. 
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IT. Specific Calculations. 
For a realistic undulator with g = 2.8cm, B, = .95T, I< = lTcm and M' = 4: 

4.44 

Table 1. 

Since A/4 uses only half the REC of the X/2 case and X is only less than 10% larger, 
this is the preferable design. The volume for X/4 is V = 3540 cm3, and for X/2 is 
V = 6660 cm3. 
The REC price would probably be approximately $ l -2 /~m-~.  
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A Simple Derivation of the Lorentz Transformation 
Without Talking About Light 

Postulate: Physics is independent of location, time and uniform motion of the system 
in which the experiment is performed. 

We look at two systems that move with velocity, o, relative to each other. We establish 
clocks and space (2) markers in each system. 

‘1.5 

4 

- 

Figure 1. 

We locate the origins and synchronize the clocks so that 21  = 0, tl = 0 , 2 1 . 5  = 0, and 
t1.5 = 0. Also notice that the “1.5” system has x increasing in the opposite direction 
from the “1” system. 

We want to know (Zl.5,tl.S) as a function of ( q , t i ) .  

We know that A~1.5/Axl, A~1.5/Ati, Atl.5/Axl, and Atl.s/Atl can not depend on 
x1,tl because of our postulate. This means that the relationship between the two 
systems is linear, and can be expressed as a 2 by 2 matrix. 

The velocity of a particle in system “1.5” (e.g. at 21.5 = 0) as seen from system “1” 
is v = --a12/all. Thus 

I a12 = --allv I 

with ~ 1 1  # 0 always true. 

The choice of the relative sign of x in the two systems means that the observer in 
each system sees the other system move in the positive 2-direction with velocity v. 

July 30, 1992. Note 0287misc. 



Therefore, 

and also, 

must be satisfied. By multiplication and substitution, . 

a l l ( a l 1  - a 2 1 ) v  --allv(all+ a 2 2 )  

a 2 1 ( a 1 1 +  a 2 2 )  a 2 2  - a 2 l a l l v  A 2 =  ( 2 

Therefore, 

and 

By further substitution, 

-a22 A =  ( 
( l / a 2 2  - a 2 2 ) / v  a 2 2  

We introduce x 2  = - ~ 1 . 5 , t 2  = t1.5 and 

We further define 

and therefore 

It is important to notice that the diagonal elements are identical. 
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e 5 9  t3 

v2- 3 

0 - x2s t2 

5 - 2  

0 - t 1  

Figure 2. 

We define 

and thus 

--old2 
B1-3 = 71+272-+3 (g2+3;v2-+3 -v2-3) 1 ( g1+2;v1+2 1 

and further, 

By the identical diagonal elements we have: 

Thus, we may generalize our equation and we have 

= k = constaqt of nature. (Vr2 - 1) g / v 2  = 
0 2  

Here 

We have t verify that other relationships are also satisfied (e.g. relation between 
elements [ll] and [12], etc.). We have shown that if the postulate is true, the rela- 
tionship between z and t of the systems moving with velocity v relative to each other 
must be 

1 
( : : ) = 7 ( k :  iV) (;$ y = d w -  

We have not shown that k # 0, but the value of k can be obtained from "any" 
experiment, e.g. lifetime of meson, etc., and experiments do not have to use light. 
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(1:) = (-:z 

1) The lifetime of particle 
“2”? 

1- I 

Figure 3. 

-”) 1 (1:) , (::) = r  (-$ iV) (::) 
t rest at 2 1  = 0 in system “1” is 71. What is it in syst 

2) The distance 21 covered by observer at rest at 2 2  = 0 in time t 2 :  

Note that 
vy = c for v/c = 1/& 
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Dimensional Analysis of the Trajectory of Non-Relativistic 
Charged Particles in Stationary Electric and Magnetic Fields 

(MKS units, with and without space charge) 

Motivation. 
To explain the structure of trajectory equations to engineers working on cyclotron- 
mass spectrometer. 
We use linear scaling length Do, and represent B and E fields by the scaling quantities 
Bo and Eo = &Do times the appropriate dimensionless functions of z/Do, y/Do, and 
z/Do. We must be able to represent the trajectory z( t )  (t = 0 at start of trajectory) as 
the product of Do and a function of dimensionless products P,. The list of parameters 
to form P’s has, in addition to Do, Bo, &(Eo), t ,  the quantity m / e  due to the equation 
of motion. Thus, the complete list consists of m / e ,  Do,Bo, &(Eo),t.  
We construct P’s by first finding the appropriate physics relationship, then re-writing 
them in product form with parameters from the above list, and finally by solving for 
P ,  i.e.: 

For construction of next P, consider the parameter list without elm: 

We use PI to form P3 without t ,  and use P3 instead of P2: 

B; e 
E: m 

P3 = Pip1 = -- 

We now remove Bo from the parameter list, leaving only Do,Vo(Eo),t, and we see 
that no additional P’s are possible. Thus, we have 

and this is equivalently true for y ( t )  and z( t ) .  

April, 1992. Note 0278misc. 
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These expressions show the available options for changing the values of parameters if 
one of these has to be changed in a particular way and if one does not want to change 
the trajectory. If one does not care how long it takes for the particle to traverse its 
trajectory, then P3 is the only P that is to be kept constant. PI can be considered 
to be an expression for the time to traverse the system. 
If one wants to include space charge effects, one must include I ,e ,  and EO to the 
remaining list of parameters Do, Vo, t. If the magnetic fields produced by the moving 
charges are important, one must add po as well. 
When writing the P’s, we shall use the fact that space charge and magnetic fields for 
charged particles go to 0 as  EO and po go to.@. The space charge effects come from 

I t  -+ p4=--. 
EO t V - E O E = ~  4 EO-=I- 
Do 003 Eo &Do 

We remove t with P2 to get 

We remove Bo with P3 to get 

with P4, Ps discarded. 
We remove I from our parameter list and are left with e, EO, Do, t ,  Vi for 

e e V -EOE = e, EOEO = - 
D: I I 

By removing EO we see that no more P’s are possible with just e, Do, t ,  VO. Thus, we 
have . 

and this is equivalently true for y ( t )  and z( t ) .  
We expect that some P’s are not significant if EO is large enough so that P6 and/or 
P7 are small enough. For instance, for Do = 10-2m, & = 103V, and e = charge of 
electron, we have P7 = 1.8 x lo-’ << 1, thus P7 is probably not important. 
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We now add po to the parameter list, and for e,  Do, t ,  h, po, we have 

Using other P’s, we get 

We remove po from the parameter list, and see that no more P’s are possible, and we 
have 

and this is equivalently true for y(t) and ~ ( t ) .  

Application to System with Fixed Do, BO (Cyclotrino). 
We ignore PI since it determines traversal time. Without space charge and current- 
field effects, we must keep & m / e  constant to get same behavior when the particle 
is changed, i.e. vo - e l m  is necessary. To see how space charge limitation affects 
cc permissible” current, one must look at Ptj: 

= constant 12m/e 12(m/e)4 -- - vd” (vom/43 
and this implies that (m/e)2  - I should be a constant or small enough. As stated 
earlier, P7 will be small enough to cause no problems, and the same will be true for 
p9. 

Further Comments. 
While this theory was formulated with scale factors in mind, the P’s also have local 

it becomes clear that P6 and P7 (with the local V and 0)  cannot be sufficiently small 
to be ignored everywhere since the particles start somewhere with eV = 0. But if the 
ion source is considered as a separate entity the ignorability argument will hold. It is 
also clear that looking at the P’s with subscripted If, 16 applies not only to applied 

f 
potentials within the structure, but also to the energy of the incoming beam’ 

meaning. That is, if the ‘local” V t is interpreted as potential energy (divided by e) ,  

Without the subscript 0 that identifies the “global” scale. 

Bo differs from its original design value. Using P3 we must have Bi/& = constant. 
$ This study was motivated by Tony Young’s question about how VO has to  be changed when 
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Some Practical Numbers. 
Use 7 sufficiently smaller than 1 to make a P ignorable. Then P7, 
if 

can be ignored 

With e, = electron charge, and mp = proton mass, 

I < vd/2y *8.7 x lo-? /L 

46 



Analog Integrator Dynamics 

Contrary to conventional analysis, which expresses the output signal in terms of the 
input signal, the quantity one wants (time integral over input integral) is expressed 
in terms of output signal (in digital form or as a scope trace), with all dynamic effects 
taken into account. In addition to dynamic terms being caused by the frequency 
response of the operational amplifier, the first order sensitivity is also affected by its 
dynamic behavior. 

Figure 1. 

For p the Laplace transform variable, and RC = 71, 

%+&vi? 
R = -%(I + E)pC, 

where p = 1 / ~  >> 1 is the open loop gain of the operational amplifier, and 

& = -&(p71(1+ &) + e )  = -v2 - F. 

We use the following.rough numbers: 

The frequency response of the operational amplifier is 

It actually behaves in this fashion until the open loop gain is much less than.1. If 
the operational amplifier were not to behave this way, it would be useless for many 

January, 1989. Note 0267misc. 
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applications. We characterize the frequency response either by the time constant TO, 

or the frequency (times 2n) where the amplitude gain is reduced to 1: 

1 - 1 ---- PO I=-- 

with 

- 10-7sec, PO = I /EO x lo6, and E = ~ o ( l  + p r o )  = EO +p7-2, 
1 

' 2  = - - 
"2 

and for rf = (7-1 + 7-2): 

- 

In the time domain, the quantity of interest, J &(r)Cl'r, is expressed in terms of the 
measured quantity &(t) by 

One has to choose the time constants and open loop gain such that the second and 
third terms are small compared to the first term so that they can effectively be ignored 
or corrections can easily be macle. It should be noted that the frequency response of 
the operational amplifier can make a small, but noticeable, correction to the effective 
time constant 7-f through 7 2 .  



Local Interpolation with Continuous Function 
and its First N Derivatives 

xO 
0 

x1 
0 

x2 
0 

x3 
0 

pz 
Figure 1. 

1. Real function yo(z) must have known values at z = 50, z1, -. . , zn. 

2. Establish interpolation functions P1l..+-l (z), that have properties appropriate to 
model yo(z) in small regions. This necessitates continuous functions, and continuous 
and meaningful first N derivatives. Pj(z) must reproduce yo(z) exactly for = zj-1, 
z = zj and z = zj+l, f o r l l j s n - 1 .  

3. Calculate the approximate function y(z) from y(z) = Pi(z)W.(z) + P2(5)W2(z) 
in interval z1 5 z 5 2 2 ,  and similarly in other intervals. Make the choices, to some 
degree arbitrary, for the weight functions W-,.-+-i(z) so that the desired goal is 
obtained in a reasonable fashion. ._  

4. If, .Pi and P2 are the same as yo(z), we do not want the interpolation scheme to 
destroy the relationship y(z) = yo(z). Therefore, we must have that 

Condition 1: 

Condition 2: 

Wl(.) + W2(.) = 1 
And if the above is satisfied, it is also true that 

W?)(z) + W,C"'(z) = 0. 

May, 1981. Note 0177misc. 
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for n = 1,2,. . . , N .  We choose W(l) so that all needed derivatives exist. At x = zl 
or x = 22,  

because PI, P2 fit yo(z) exactly at 2 = 2 1 ,  2 = 22,  and due to Condition 2. We 
now choose the weight functions such that at z = 21, y(n) = PPI, and at z = 22,  

y(n) = I??'. We do this by requiring that weight functions fulfill 
Condition 3: Wl(z1) = 1, T;fr,(22) = 0, and 

W2(21) = 0, li[r,(za) = 1, 
and fulfill 

Condition 4: WF(z1) = WT(z2) = 0 and 
WF(z1) = W;(Z~) = 0 for n = 1,2,. . . , N - 1. 

With the above choices, y and its first N derivatives at x = xn depend only on Pn, 
independently of whether we get to zn from an upper or lower interval, i.e., y and its 
derivatives are continuous everywhere. 

6. The construction of the weight functions that satisfy Conditions 1 (and therefore 
Condition 2), 3, and 4, is not unique. We introduce 

This gives us 

We now have that 
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where, 

1 
aN 

g N ( X )  = aN / (1 - v2)N-1dv and - = /(1- v2)N-1dv. 
0 0 

We may now conclude that, clearly, Conditions 1 and 3 are satisfied, and from 

- - aN ( 1  - u y - y  1 + , 
5 2  - 2 1  

it follows that Condition 4 is satisfied as well. 

We introduce here some further details. Given 

we have that 

bN = / ( 1  - ~ ~ ) ~ - ' ( 1 -  v2)dv 
0 

1 

= bN-1 - / ( 1 -  v2)N-2v2dv. 
0 

For 
(1 - 0 2 ) N - l  

du = -1(1- v2)N-2vdv and u = 2 ( N - 1 )  ' 

r = v  and dr = d v ,  

we have that 
bN-1 

1 '  bN = 

2(N - 1) 1 +  
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Thus, for a1 = 1 

N-1 1 

n=l 

And further, 

Summary. 
PI fits yo exactly at x = xo, XI, 52. 
P2 fits yo exactly at x = XI, x2, x3. 

232 - (21 + 22)  

(52 - 21) ’ u(x) = 

1 

1 
aIV 
- = /(1- v2)N--ldv, 

0 

Special Cases. . 
N =  1: 

N = 2: 

N = 3: 1 1 1  8 

n 

93 = - ~ ( 1 5  - 1 0 ~  + 3 ~ ~ ) .  
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Linear Least Squares with Erroneous Matrix 

When one is dealing with a system in which the relationships between parameter 
changes, Ap, and the system performance changes, As, are in good approximation 
represented by the linear relationship 

As = MAp 

achieving a desired performance change is simply accomplished by parameter changes 

Ap = M-lAs 

- ... 

as long as one has as many parameters as system performance characteristics. 
When the desired change, As, has more components than Ap, it is often adequate to 
minimize the weighted sum of the deviations from the desired performance, i.e. one 
minimizes 

where W is a diagonal square matrix with appropriate weights on the diagonal. S is 
minimized in the first iteration if the parameter vector is changed by 

-1 where A = (MtWM)-l MtW. 

If the matrix M used for this operation deviates by AM = MR - M from the real 
matrix MR, the desired change As2 with the new parameters is given by 

I As2 = As1 - ( M  +-AM)Apl= ( I  2 MA - AMA)Asl I 
If the effort to determine MR (often by elaborate measurements) is too large one can 
iterate the procedure, and it would be of interest to estimate the asymptotic As,. 
To obtain this, we introduce 

Thus, 

As, = ( B  + D),-l As1 and Ap, = A( B + D)"-'Asl 

Notice that AM = I ,  AB = 0,  DB = 0 and B2 = I - 2MA + MAMA = B. 

November, 1971. Note 0038misc. 
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Further, 

( B  + q3 = B(I  + D + D 2 )  + 0 3  

and so forth such that 

I ( B  + 0)" = B(I  - 0)-'(l- D") + D". 1 
Therefore, 

as it must be, because for A M  = 0 and n 2 2, A p n  = 0 and As, = As2. 
If A M  is small enough, the absolute values of the eigenvalues of 0 will be less than 
1, resulting in the following for large enough n: 

Judging whether one is close to this value is possible by observing the decrease 
A p n  with increasing n. 

in 
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Matrix Describing Second Order Effects to 
Second Order in One Dimension 

N o  Momentum Errors. 
The normalized equation of motion is 

y" = y + by2. 

Expand y in terms of initial conditions yo, yh up to 2"d order: 

Initial conditions for a(z) 

a11(0) = &(O) = 1, 

all others are 0. The equation for a(z) is: 

a12 = sinhx, 

a22 = coshx. 

Because in all three cases a(0) = u'(0) = 0: ,C(arl) = p2L(a). 

For a131 

In general, 
e" e-" e-cx + +- 

c2 - 1' 
-5 

1 
(i, - l)(P + l)(P + c) - 2(1+ c) 2(1 - c) 

thus, 

= - c o s ~ x + - c o s ~ ~ z - ~ .  4 2 
3 3 

Therefore, 

and 1 1 1  
February, 1966. Note 0006misc. 
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and thus, 

and 

4~11~12 -4 ex 4 e-= e2x - e--22 
p2 - 1 3 2 3 2 '  + 3  

e-.-+-.- 

4 2 = --sinhx + -sinh2x. 
3 3 

I 2b 
3 a14 = a24 = - (cosh 2x - cosh 2) . 

Therefore, 

b 
6 

a15 = - (cosh 2x - 4 cosh z + 3) and I b 
3 

a15 = a25 = - (sinh 2x - 2 sinh x) . 

Similarly, for a15, 

thus, 

Therefore, 
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Inclusion of Momentum Error a. 
The normalized equation of motion is 

y" = y + a + by2. 

First, add the term linear in cy to the expansion in yo,&: add U16CY- The initial 
conditions are 

I I 

Second, take the terms a2, ayo, cry; into account, where the procedure is the same 
as in the calculation of U13, ~ 1 4 ,  and a15. 

Third, do not add any terms, but introduce z = y + p (p  is a constant) in the 
differential equation. Thus, 

z" = z - p + a + b(z2 - 2zp + p2), 

2b 

This procedure requires the calculation of a new*matrix for every cy of interest, but 
this will give more insight in return. .. 

General Procedure. 
Description of higher order effects with power expansion and the consequences for 
stability. 
We describe deviations from the closed orbit by the column vector 

where the components of y1 are y and y', and components of y2, y3,. . . , yk are, re- 
spectively, the second, third, . . . , kth order contributions of y and y'. Then, 

All A12 A13 - - -  Alk 
0 A22 'A23 .-. A21; 

. . . Akk 

In M ,  A11 describes the first order effects, A12 the second order effects, etc. The 
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other matrices reproduce the higher than first order components of v. The diagonal 
elements A22, A33,. . . , Akk depend only on the matrix element of All. The eigenval- 
ues of M do not depend on ,412,. . . , Alk. Thus, the stability of the system does not 
depend, in this approximation, on the non-linear effects described by these elements. 
Since stability obviously can depend on non-linear effects, this implies that the power 
expansion for many passes through the system has a progressively shrinking radius of 
convergence. One can thus conclude that although this method is worthless to eval- 
uate the effect of non-linearities on stability, it might still yield valuable information 
provided the system does not become unstable because of the non-linearities. 
We show rough numbers for 

X 

e" 

x i 4  T I2  x 

2.2 . 4.8 23 

cosh x 

sinh x 

1.33 2.5 11.5 

0.87 2.3 11.5 

t 

5 ~ 1 4  T I 2  

F 3  (4 0.77 2.25 

F 4 ( 4  0.18 2.3 

F 5  (4 0.03 0.75 

2 x i 4  T I 2  

(4 1.06 4.6 

I 6 Fax) 0.78 

Fax) 0.18 2.3 



Curvature of 2D Magnetic Field Lines and Scalar Potential Lines 

I. Preparation and  Background. 
Magnetic fields. 2D magnetic fields can be derived from a scalar potential V or a 
vector potential A, or the complex potential F ( z )  = A + iV, an analytic function of 
the complex variable z = z + iy, according to 

(1) 
. d F  
dz 

&. - iBy = B* = 2- = iFf. 

Field lines and scalar potential lines in the z-plane are the z ( F )  maps of straight lines 
parallel to either the imaginary or real axis of the F-plane. 
Modification of the curvature by a conformal map. If a curve in the z-plane 
has a local tangent in the direction eiaz, the conformal map w(z) of that region has 
a local tangent in the direction 

This equation shows that the angle of intersection of any two curves in the z-plane is 
preserved under the transformation w(z), hence the name conformal transformation. 
If the curve at that location in the z-plane is kz, then the curvature of the map of 
that point can be shown to be . 

( kz + S ( $eiaz))  
kw = I W'I 

(3) 

The sign convention used for this formula is such that a positive curvature means 
that if one proceeds in the direction of the tangent, the curve turns to the left, i.e. 
the conventional mathematically positive direction. 

11. Application of (2). 
Fundamental relationships. There are several ways to apply (2) to this problem. 
The most natural way to do so seems to be, at least at first, to assign quantities w 
and z in (2) to the the variables F and z of our problem, since we are looking at the 
map of a region of the F-plane to the z-plane. For most applications, this is not very 
practical since one then gets the curvature of the maps of constant potential lines as 
a function of A and V ,  when in fact one wants the curvature as a function of x and 

January, 1994. Note 06llthry. 



y. We therefore proceed in the following manner: we assign z and w to z and F ,  and 
look in 

for k~ = 0, i.e. the curvature of maps of straight lines in the F-plane is given by 

To get a more practical formula, we express eiffz with the help of (2) through 

and the derivatives of F through the fields as given in (l), yielding 

k, = -?R (g[Blei.,> . 

For some expressions of the fields, it is more convenient to write this as 

k, = +% ( ( ; ) I  IBIe"F) 

(7) 

In both (7) and (8), eiffF has the absolute value 1 and is real if one is looking at a 
scalar potential line, and is purely imaginary if one looks at a field line. 

Comments. It is worth noting that in order to calculate the curvatures of interest, 
one needs only the expressions for the complex field, not the complex potential. 
Under most circumstances, the expression for the comples potential is not more 
complicated than the expression for the complex field. There are, however, exceptions. 
For instance, the field of a modified sextupole is given by 

2 az2 B * = i z e  . (9) 

Integrating this to get the complex potential, (l), leads to the error function in the 
complex plane. 

60 

- .. . . - .. _. _. . _ .  .. , , .  . 
I . . 



111. Applications. 

F- plane z- plane 

Figures l(a,b). 

(i) The regular multipole. For a multipole of order n with the field perpendicular to 
the midplane, the field is given by 

Substituting in (8) gives directly 

kz = (n - 1) lF1l 32 (iz-"eiaW) . 

Using, for eiQF, the phases corresponding to the arrows in Figures l(a) and l(b), and 
using z = reip, gives, for the curvature of the field line and the scalar equipotential: 

ncp 
r kz = (72 - 1) cos -, 

ncp kz = (n - 1) sin -. r 

(ii) The modified sextupole. This particular implementation of a modified sextupole 
has the field in the midplane perpendicular to the midplane, and behaves like a good 
sextupole close to the origin, but has a stronger modified field, proportional to x2eaz2 , 
a E 3, as one moves away from the origin of the coordinate system. The complex 
field is therefore given by 

' az2 B* =ize  . 
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Fringe Field Model Function for Dipoles 

For a number of beam optics tasks, it is important to have an analytical function 
that describes the field in the fringe field region of a dipole’. We restrict ourselves to 
the simple case of a dipole that has a straght effective field boundary, making this a 
very simple problem of describing two dimensional fields. Putting the x-axis into the 
midplane of a dipole whose half gap is normalized to be equal to 1, with large x > 0 
describing the outside of the magnet, and the far negative end of the x-axis the deep 
inside region of the magnet, the field in the region of interest can be described by 

z = 2 + iy, (0.1) 

and the functions D1, D2, D3 chosen such that the asymptotic behavior of G(z) reflects 
the properties of the fields in the regions deep inside and far  outside the magnet. In 
addition, G(z) should not have any singularities for the space within -1 < y < 1. 
The following functions satisfy these conditions: 

with all coefficients real, n 2 2, IC2 > 1, and A, C2, I&, m > 0. The fields deep inside 
the magnet are dominated by the “longest surviving” term eRz from D l ( z ) ,  while 
far outside the magnet the field is dominated, as desired, by the Ulongest surviving” 
term proportional to l / z 3  from D3, with clearly no singularities for -1 < y < 1. 
D2(z) has been added (and .one could add more such terms) to allow a good fit of 
G(z) to measured or computed data in the transition region. While this suggested 
model function G(z) has enough free parameters to fit data, the quality of such a 
fit has not been tested on a real problem, but the G(z) given here should contain a 
sufficient number of suggestions that this approach to the Enge function promises to 
be successful. 

December, 1993. Note 0610thry. 
t See document 0609thry, Comments about RAYTRACE. 
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Comments about RAYTRACE 

Introduction. 
Several years ago I was asked at a workshop to comment on the representation of 
magnetic fields in the R-4YTRACE code, a computer program that was 'developed 
by H. A. Enge and his students in the 1960'~~. Since my comments contained not 
only some academically interesting points, but also suggestions for improvement of 
this enormously successful code, several people asked me to put my thoughts on this 
subject on paper. After describing the specific aspects of the code that I want to 
discuss, I will elaborate on what I would characterize as shortcomings, together with 
suggestions for eliminating them, and a description of some mathematical detail at 1 

the end. 

Fields in RAYTRACE. 
Even though it is not a major effort to generalize my comments, I restrict the dis- 
cussion to the case of the fringe field region 'of a dipole magnet that has a straight 
effective field boundary in the region of interest. This means that we are dealing with 
two dimensional fields, with all the associated simplifications that make it possible to 
address the core of the problem without unnecessary distractions. 
Using the midplane of the magnet as the z-axis of the zy coordinate system, with 
large positive z represenhg the region far outside the.dipole, and the other extreme 
the region deep inside the magnet, the field is characterized by the following function, 
commonly called the Enge function : 

with n an odd integer and C, > 0. 
The coefficients are obtained by fitting measured or computed field values in the 
midplane to (l), and fields off the midplane are obtained by using a Taylor series 
expansion, with the derivatives obtained from (1). 

Comments and Suggestions. 
I have'problems with three tightly linked aspects of this procedure: 

December, 1993. Note 0609thry. 
t Spencer, J. E. and Enge, H. A., Nuclear Instruments and Methods 49,181 (1967). 
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(A) It is true, in general, that if one fits parameters of a function so that the fields 
on the surface of a volume are well represented by that function, the quality of 
the fields computed with that function inside the volume is at least as good as (but 
usually better than) the original data on the surface. It is, of course, assumed that the 
function and field calculation algorithm satisfy all the relevant vacuum field equations. 
Conversely, calculating fields in the volume from a function whose free parameters 
were determined on a line inside the volume gives fields that are not nearly as accurate 
as the original data. These facts are qualitatively clear if one thinks of the fringe 
fields in the midplane of the dipole: significantly different pole contours produce 
very similar fields in the midplane. That means that if one calculates fields off the 
midplane accurately from the fields in the midplane, small differences in the function 
there will give significantly different fields far away from the midplane. 

(B) Calculating fields off the midplane with a Taylor series expansion makes no sense 
in this case for the following reasons: since Bz - iBy or, more conveniently in this 
case, By + iB,, is an analytical function of the complex variable z = x + iy, the field 
at location (x, y) can be obtained directly, without any approximation, by evaluating 
(1) for complex argument: 

This very simple evaluation of fields from a midplane model function makes it obvi- 
ously easy to fit the parameters of the model, no matter the nature of that function, 
to fields off the midplane, thus eliminating the objection raised in (A). 

(C) It seems to me that the form of the Enge function is not well suited to this 
problem for two reasons: 1) the function does not have ther appropriate asymptotic 
behavior far away from either end of the magnet; and 2) unless one makes a careful 
study of the Enge function, it may have one or more singularities in the "business" 
region. Avoiding that kind of disaster by evaluating the field only approximately is 
clearly not a satisfactory answer to this problem. While it is fairly easy with the help 
of (2) to make the singularity check (see Appendix), it might be simpler to "design" 
a function that can not have that kind of singularity, in addition to having the proper 
asymptotic behavior. I have some very promising candidates but have not made the 
effort to test them on some real problems. 



Appendix. 
For the Enge function to have no damaging singularity it is necessary and sufficient 
that the equation 

(3) P(z)  = imlr with m = odd integer # 0 

has no solution for z between the midplane and a line parallel to the midplane one 
half gap, h, away from the midplane. This test is most easily carried out with the 
argument principlekhat states, in this case, that the number of zeroes of ~ ( z )  within 
a region of the z-plane equals the number of times w(z) goes around w = 0 when z 
traces the boundary of the region. Since, in this case, 

w(z) = P(z)  + imn, I (4) 

with all Cn in P ( z )  real, it is only necessary to find the locations where the map of 
the straight line parallel to the midplane at distance h intersects the imaginary axis 
of P(z), i.e. one has to find W(z )  at the locations where XP(z + ih) = 0. Since 
%P(z+ih) = 0 means nothing more than finding the real roots (in z) of a polynomial 
of order n, this a very simple exercise for a computer. Having these points, it is trivial 
to see whether w(z) = 0 is possible for any odd m. I have carried out that test for the 
example 3ven by Spencer and Enge, and for four cases given to me by S. Iiowalski. 
I am happy to report that while none of these cases had singularities within one half 
gap of the midplane, there were some singularities just outside the end. of the dipole 
only a little more than a half gap away from the midplane. 
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Stored Energy in H-Magnet €or p = 00 

I I 

I -  - 1  

w3 

Figure 1. 

2€ = /B: Hdv = / H  - V x Adv. 

From 

V * (A x H) = H (V x A) - A - (V x H), 

we have that, with j =je , ,  

2E = I A - j d v  + / ( A  x H) - da 

= / A -  jdv + / A -  (H x da), 

where H x da = 0 on 1-1 = o surface. 

In case of a long magnet, s j d a  E 0 which means that we can add any constant 
to A without changing anything. We make A = 0 along the y-axis. We now use 
A = poAe,, so that the total energy per unit length is 

where the integral is evaluated over the coil in the first quadrant. 

January, 1993. Note 0607thry. 
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To get 

we look at 
Y<YZ h2 

J 2 ( y ) =  / / H , d x d y = / / ? d y d x  
0 0  

= 1 (A(x ,  y )  - At) dx = / A(x ,  y)dx - Atha, 

where At is A at top of the coil slot. 
We integrate the original expression for J2 over x first, and by Amphre’s Law, 

Y 
I IY2 

Y2 2Y2 
J2(y) = / -ydy = -. 

0 

Therefore, / A(x ,  y)dx = - IY2 + Ath2, 
2Y2 

From H-Magnet With MinimaE Yoke Flux Density‘ we know that 

At = I (? + + h2 Y2’2 +El) 3 

and thus we have that 

Document 0606thry. 
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where 
I = H1hl = jh2y2, 

E&) = a + - (In a + 4 + (i - a) arctan a) with a = h2/hl 
7r 
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H-Magnet With Minimal Yoke Flux Density 

H, 

Figure 1. 

W1, H I ,  W3, D,  and hl are given. We want to minimize Byoke,ma for p = co by 
chosing the proper h2. 

Procedure. 
Calculate flux for 0-thickness coil at top of coil slot using excess flux coefficient E1 for 
corner. Subtract “window frame flux” from combination of real coil and 0-thickness 
coil. 
For V = H1hl = jh2y2 we chose h2 and j. Thus, 

We determine the minimum value of Byokelm2. by varying ha, and we define 

&(a) = a + -  In + - - a  arctana with a = hz/hl. 
7r ( a+:/a (: ) ) 

January, 1993. Note 0606thry. 
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Dipole with Small  Gap Bypass 

I 
I 
IF= > 

Figure 1. 

For WolW2 = EO,  

B2W2 = BoWo + BiWi 

B1 voo = -(ho + 
PO 

The exact equation 

and thus B2 = Boeo + Bl(1- E O )  , 

1) + hzH(BoE0 + Bl(1 -eo)) 

has the following implementations 

B1 + Bo and then BI , Bo +. Via. 

We will now examine three special cases. 

June, 1993. Note 0591thry. 
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In Case 1, Vi0 is so small that poH(B)  = y B ,  

BO(h0 + 7hl) = Bl(h0 + h l )  , 

where 

For ho << yhl: 

IC’ = 0 for ho + 7hl = dcoyhlhz(1-  y) such that 

For hi = 1, h2 = 5, EO = 1 / 2 , y  = we have 

In Case 2, we need KO large enough so that Bo NN Bs, but small enough so that for 
(2)  poN(B) = y B ,  thus 

where 

In a third, simple case, Case 3, for a still higher T.bo, 

Bsco + & ( I -  E o )  + B S  , 
i.e. it is independent of fii, and thus 

... - : . I .  . -  
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Boundary Condition at Iron-Air Interface for AC 
and Application to 2-Dimensional Cylinder 

Interface at y = 0, 

-=-= d d  0 and -= 3 '  . 
ax 3.2 dy 

H =  Hez ,  j = e z o E  and E = e z E .  

(V x H)z = -HI = aE and E = -eH'. 

(V x E)z = E' = -poppH = -eH" and HI' - k2H = 0 

where, depending on the application, p is either the Laplace transform variable or, 
for sinusoidal excitation, iw. 

Therefore, with 

Given an iron cylinder with D2, of radius 1, in far-field H = Hcoez, we try to solve for 
the complex potential F.  Ansatz: the superposition of the macro and micro dipoles, 
with normalized units. 

F = - i H l ( ~  + l / ~ )  - i H 2 ( ~  - l / ~ ) -  

with z = 2 + iy, normalized with radius TO of the cylinder. 
~~ ~~ 

May, 1988. Note 0492thry. 

77 



F = A + iV = 2H2 sincp - i2H1 cosy, 

H" = iF' = Hz - iHy and 'FI = H, + iH, = He-@, 

x* = H*e+, 

and the boundary condition is, with 

HII = Hp a d  H_L = -Hr, 

On the surface, 

'FI" = H, - iH, = 2iH1 sincp + 2H2 cos p, 

and the boundary condition is, with 

2H2 cos 43 = D22H1 sin 'p + 2H2 cos y and H2 = D2 H i ,  

-1 and 
1+D2 1+D2 

normalized with radius TO of the cylinder. 

78 



Using SI units, we choose opo = 10, p = lo4 and w = 27r - 60Hz, and therefore we 
have 

For sinusoidal excitation, 

I , 

Normalized, where ro is the radius of the cylinder: 

That is, for same material and frequency, ID21 is large for a small cylinder and 1021 
is small for a large cylinder. 

Unfortunately, if H l  = &q is valid in z-geometry, it is not satisfied in confor- 

mally mapped tu-geometry, i.e. dealing with this problem in mapped geometry is not 
practical. 





Flux Into A Rectangular Box 

z-plane 

--E E 

-1 1 
Figure 1. 

For 
t = csincp, dt = ~coscp dcp 1/1- c2 = c1 , 

we have 

rl2 r l 2  

For 

t = cosy, * dt  = -s in9 dcp, c = COSCY, el = sincr, 

May, 1988. Note 0491thry. 



~1 COS $ d$ 
siny = EI sin$, dy = JC&&7 

we have 

CY 7i/2 
cos2 $ - -  b dt = Jd-dy = E: / $-- d$ 

0 0 1 -E: sin 9 C 
E 

I = E(&!) - E%(€:) - 1  
Thus 

For 

and therefore 

I I 

Given a square box,.with dimensions c2 = 1/2, E(1/2) = 1.3506, 1- (1 /2 )  = 1.8541, 

F(E) = F(m) = 1.67aBm, F ( l )  = 2.361aBm7 Bo = 1.41Bm. 

.'. .* . .  .:-- . . . 
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Propagation of Fast Perturbation in Dipole 

We describe the boundary condition as 

Ansatz: 

where we look to satisfy the Hy(-y) = H y ( y )  symmetry only. 

V2Hy = 0 is obviously satisfied. 

---- - - E an kn COS kny e -knz dH, dH, - 
dy dx  

At the boundary we have 

For 

we therefore have 

an tan an = - 

where 

November, 1987. Note 0489thry. 



Case 1: "normal" case, P+*  a;, = nn. 

1 
Case 3: using iron with w = 2n60Hz, and given that D1 = 
Case 2: superconducting case, u-+* an = (n + 1 / 2 ) ~ .  

l /z= iGF '  

We introduce 

For a better notation of cy0 we have that, for 

CY; + ai/3 = E CY; = -3/2 + J-. 
and it follows that 

3 E  2E 
a; = 

5 3 +  J G = ~ +  J-' 

To determine an from Hy(y) at z = 0 we try 
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Note: this orthogonality condition is not satisfied for J0 h sin y sin kmy dy. So, for in- 
stance, V(0, y) would not work 'klirectly". One would have to first calculate Hy(O, y). 
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Description of the Properties of an Ellipse 

For many problems, one needs integrals over the circumference of an ellipse, whose 
equation is 

52 .y2 
-+-=1. 
a2 b2 

One may describe the ellipse by the parametric representation 

z = acoscp + ibsincp, 

and use 'p as the integration variable. 
However, in many cases, it is mathematically more convenient to use z on the circum- 
ference as the integrations variable. If one can represent all quantities of interest on 
the Circumference as analytic functions of z, one can then use the Cauchy Theorem 
to execute the integration. 
In using the parametric representation, one usually does something similar by intro- 
ducing eip as the new integration variable. While this oftens works very well, it can 
lead to difficulties: for example, when ekz appears in the function to be integrated. 
In general, problems are much simpler for circles, where a = b. When b f a it often 
becomes so difficult to execute the integral that it is most convenient to expand in a 
quantity that is equivalent to a - b and thus the formulas will be easily written and 
therefore the expansion will be similarly easy. 
Thus, 

- a - b  
2 '  

+ - a + b  
z=acoscp+ibsincp=eZP- 2 - -  

Z + d Z  1+Wl 
= Z  = 

a + b  a + b  ' 

January, 1988. Note 0476thry. 



For cos 'p, sin y: 

-2b +--- and ----- - 1 2a 1 1 
a + b  a - b - e  a + b  a - b  E '  

1 

z2 + b2 z2 + b2 - - az - b d G  
az + b d G  = z(a 4- bW1) ' cosy = 

E (4-1) 

ds = i/a2sin2lp+b2cos2rpd'p. 
From (3.1) we have 

(5) 

Thus, 
E ~ G  = E2(a2 sin2 y + b2 cos2 'p) 

= z2(b2(a - bW1)2 - a2(b - awl) ')  
= z2(Wl 2 4  ( b  - a4) + 2abW1(a2 - b2)) 

€(a2 + b2) 1-w,2 
2 2  1 + WI 

= z 2  ( - ( a  - b)2 - 2ab 

2ab G = a'+ b2 - z 2 E  - 
(a+b)2 I + W '  

where 
1 - w1 

1 + Wl 
= 1 +  

2 
1 + Wl 
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and thus 

1 - w1 2 "  
(a+b)2 1+ W1 

1 - w1 2 "  
(a  + b)2 1 + Wl 

- ab 

- ab 

G = a2 + b2 - ab - z 

= (a - b)2 + ab - z 

e 1 - w1 
1 + Wl 

- ab 
e2 - - 

(a  + b)2 + ab - z2 (a + b)2 

9 L' - & 
ab-& - ab 

(a. + b)2 1 + W1. 

To expand an expression like 

- w1 with wI= J-, 
. l + W l  

in e, it is often convenient to break it up into an even and odd part in e: 

To 

2F(e) = F(e)  + F(-e) + F ( E )  - F(-e) with W2 = 41 + E / z ~ ,  

l-W1 1-w2 l -W1 1-w2 

1 + W2' 
21 - Wl = 2 H =  - 
1 + Wl 1 + w1+ 1 + w2 + 1 + w1 

2H(1+ w1w2 + Wl + W2) = (1 - Wl)(1 +.W2) + (1 + Wl)(1 - W2) 
+ (1 - W1)(1+ W2) - (1 + W1)(1- W2) 

=2(1- WlW2+ w2- Wl), 

xond order in E: 

1 - rv, 
1 + rv, 22 4 

E 1 + e/2z2 - _  - (7-2) 

A comment about the expansion in e and subsequent integration: the expansion has 
to be valid and good for z on the ellipse. If, to carry out the integration, one later 
modifies the integration path (in particular, to a very small circle around z = 0), this 
will not invalidate the original expansion. 
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Addendum. A different way to  derive G. 
For 

2 2  
1 - EZ /s - 

Z J W +  wo - 
G=sWo 

we have 

2 2  1 - EZ /s 

swld-+wl- 
To first 

wo = d z 2  - E ,  

E = a2 - b2 and s = a2 + b2, 

s2 - E 2 = 4a2b2 and 2ab = d m ,  

e2G = (b&coscp + iassincp)(b~cosy - iacsincp) 
= Wo(2abz - Wo(a2 + b2)) 

= swo (zd-- wo) 
2 2  z2(1 - E  /s ) - Z 2 + E  

Z J W + W O  ' = swo 

order in E: 

G = s l ( 1 -  5) (1 - $) (1 + 5) = f (1 - E ($ + L)) , 
2 222 422 422 

for s = 2a2 and s2 = 4a4, 
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Characterization of Dipole Wmge Fields with Field Integrals 

I,, X midplane 

Figure 1. 

Background and Introduction. 

The quantity s By(+ y, z)dz was measured as a function of y for a fixed s, with inte- 
gration region beginning in the homogenous field region inside the dipole magnet and 
reaching into the essentially field-free region outside. This resulted in the approximate 
plotted curve of Figure 1 below. 

Figure 2. 

The conclusion reached pointed to the coil being too close to or too far from the 
midplane. For didactic purposes this is a very interesting problem for two reasons. 

(1) The coil position is only indirectly responsible. The fact that s B,dz depends on 
y indicates that this is a 3D problem: namely, s B,(s, 0, z)dz will.have a curvature 
of opposite polarity (i-e. effective field boundary is curved). This is due either to a 
curvature of the pole ends (when projected into the sz-plane) or to the finite width in 
the s-direction. If the latter is the cause, the problem is magnified by the absence (or 
incorrect design) of the field clamp and by a coil that is too far from the midplane. 

(2) The characterization of the fringe field by measuring s By(z, 0, z)dz gives, in case 
of midplane symmetry, more information than s B,(O, y, z)dz alone. 

May, 1986. Note 0438thry. 

I 

I '  
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Analysis. 
We assume midplane symmetry. Violation of midplane symmetry should be detected 
and/or measured, preferably with null method. 
In vacuum, full 3D, the following hold: 

dBz d B ,  d B ,  -+-+-- - 0. 
d x  dy dz 

We now investigate the properties of 

7 Bz(X ,Y ,L )dZ /L  = bx(x ,  y) and 
z1 'a I w c ,  y ,  Z ) W L  = by(x ,  y )  (2% b) 

where z1,zz are constants, i.e. they are not considered variables; L is a convenient 
length that is used only for normalization purposes. Integration is performed over 
(1.1). Integration and differentiation can be interchanged and thus 

db, ab, ---- - 0. ax d y  

Integration is performed over (1.2) and 

If, independently of z and y, B, at the two end-points is the samet, we have 

db,. aby - + - = O .  
d x  d y  . (3.3) 

(3.1) and (3.2) mean that b, and -by satisfy the Cauchy-Riemann conditions of real 
and imaginary parts of the analytic function of Z = x + i y :  

b, - iby = b*(Z) .  (4) 

We use the Taylor series to represent b*(Z): 
n 

b*(Z)  = -i C a n Z n ,  
0 

where n = multipole order -1, i.e. n = 0 + dipole, n = 1 quadrupole, 
etc. Because of midplane symmetry all an must be real. Notice that for y = 0, 

t In the case under discussion here, B, = 0 at both ends even though B, # 0 in the fringe field 
region. 



by(x,O) = Canzn, i.e. all harmonics contribute; while for x = 0, only a, with even 
n contributes to by(O,y). If one measures for x = 0 both by and b,, then one gets 
information about all harmonics. There is an advantage to measuring both by(O,y) 
and b,(O, y) since one gives only the odd harmonics and the other only the even, while 
they are all mixed when calculating by(x, 0). 
Looking at (5) it is obvious that if by(O,y) is not constant, but depends on y, then 
by(a,O) must depend on x. That is, one is in fact dealing with 3D fields which must 
be due to curved (in projection on zy-plane) poles or poles of insufficient width in 
the 2-direction, and failure to use a field clamp. It is also qualitatively clear that 
these 3D effects get more pronounced with increasing distance of the coils from the 
midplane. 
Specifically, for a known value of by(O, y), what is by(x, O)? 

m 

0 

0 0 

where in (6.2) ~2m+l  is not obtainable from by(O, y), but can be obtained from b,(O, y). 
If one measures b,(O, y), one gets 

For simple analysis, one should plot by(O, y) vs y2, and b,(O, y)/y vs y2. One has to 
be careful to make the measurements in such a way that they really mean something. 
The flux loop and integrator method is perhaps best because it can practically always 
be done in such a way that one makes a null m e a s k e n t .  
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Penetration of Solenoidal Field through Conducting Shell 

Preliminaries: Solenoid, shield infinitely long. Thin shell, circular cross-section: 
treat eddy currents in it in plane geometry with proper boundary values. Only one 
shell: matrix formulation not needed. 

X 

Figure 1. 

At z = 0, 

At z = D, 

Hy = Ho(p) = given solenoid current. 

In shell, 

For popop = k2, 
H" = -uE' = popopH = P H H ,  

H = Ho cosh Lz + bsinh kz, 

and for 7 = LD, 

HI  - HO cosh7 HI  = Ho cosh 7 + bsinhr, and thus b = sinh 7 , 

May, 1986. Note 0437thry. . 
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r1 HI k Ei = TpopHi = -2 = --(Ho sinhy + bcoshy), 
0 c 

where, for 

where diffusion occurs for p >> 1. Thus, for 

HI (cy sinh y + cosh y) = Ho, 

The zeroes of cosh y + cy sinh y are given, with 

yn = D J m  = ian- 

And 
cosh y + ey sinh y = COS CY, - €an sin an = 0, 

pop0D2 

One may expect difficulties for some calculations because y = D d m ,  but this is 
not so, for 

coshy+eysinhy= 1 + y 2  ( :+e )  +y4 ('.") +y6 ("> + - - -  
4! 3! 6! 5! 

00 

n=l 

and coshy + eysinhy is a simple function of y2, not a complicated function of y. 
For 

1 
e rl 

c >> 1 + ai M - = p o p ~ p o D ~  = - 

with OD implying non-diffusion. 



The roots, in quadrants 1 and 3, are given by, 

Where, for a n &  >> 1, a n  = n7r + on, and thus 

The residue contribution from cosh y + ET sinh y is given by 

1 
cash 7 + ET si& y =+- 1 

dY -(sinh y + E sinh y + ET cosh y) 
dP 

R =  

where dy /dp  = y/2p and ~y = - cosh y/ sinh y. Thus, 

For cot a n  = an&, and sina, = 1/J- = l/J-, 
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Rogowski Dipole 

00 

Figure 1. 

,i" 
B = Bo cos a - - and B* = iB0 cos a - e-'", 

2 

On pole: sRG = 0. On 0,1, oc) : SG = 0. 

00 

0 1 
Figures 2(a,b). 

February, 1981. Note 0397thry. 
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Since ih = b( ln i  + ia) = ib(7r/2 + a), we let 

+acosha) = c h (C+a (coshi; 2 - 1)) = 

On pole: t = -T < 0, 

y = h (1 + 2 (coshCh 
C 

with 

and 
B ( z  = ih) G ( l ) = l + a =  B(z  = 0) - 

100 



Rogowski Quadrupole: Formulation of Problem 

Figure 1. 

p = m ,  and B*=+iBo. 

,i& 
B = BO cos CY - -, and B* = iBo cos Q - e-ia. 

2 

Thus, 
i Bo ,iCu 
- = G = - = I + + i a n a ,  B* cos CY 

on the pole, with 8 G  = constant = 1, and 

On the 45' line, 

February, 1981. Note 0326thry. 



Observe Figures 2(a,b,c): 

x-Y P h  
Y 

t = O  t = - 1  t = O  t = O  
Figures 2(a,b,c). 

In the F-plane, for -1 5 t 5 0: 

The mathematical difficulty arises in the integration of G. For 

dt 4w3dw 4dw - t = w4, dt = 4w3dw, - - - - - 
t5/4 - W5 w2 ' 

we solve the elliptic integral 

The integration of i = (GF)  - GF leads to 

and therefore 

.. . .  
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Eddy Currents for Fast Permanent Magnet Magnetization 

Sometimes permanent magnets are magnetized by "hitting" them for a short time 
with high H. It is of interest to know how the magnetization front propagates through 
the material. Since this is a highly non-linear problem, a strongly simplified model is 
used in this document, but one which has all the essential features of the real process. 

At the left edge of the material, assume a step function excitation starting at t = 0, 
with amplitude Hoo. Our model is a 1-dimensional block of material with the left 
edge at x = 0, and 

= 0, H ='eyH, E = ezE, and j = aE. a a  --- - ay az 

For the times of interest, H 2 0 everywhere. We use a strongly simplified B ( H )  
curve. 

B 

-H 
Figure 1. 

Figure 1 shows that in the beginning, the material "sees" no H and B = 0. As soon 
as it 'kees" H > 0, it becomes magnetized according to the above curve. 

To reach an initial understanding of the problem, only the propagation in a medium 
that is, at least at first, unlimited to the right is treated. 

a V x H = j  H'=aE,  with H'= -. 
d X  

V x E = - B  =+- + E ' = + B .  

August, 1977. Note 0264th~~. 



H 

xO 

Figure 2. 

The "location" of the front is designated by xo( t ) .  We integrate E' = B over x across 

E(XO + E )  - E(XO - E )  = -E(xo) = / B d z  = Bo&, 

giving the equation of the front for both Case I and Case I1 below. 

XO(+ 

C%e I B ( H )  = Bo. 
For z < 20: 

E' = 0, and E = -Bok0 = eH'. 

meaning that for this B ( H )  model, the H ( x )  curves of Figure 2 are straight lines. 

Integrating over t gives Hoot-oBoxi/2, giving the following result for the propagation 
of the front: 

Case I1 B = Bo + poH. 

For x < xo : H' = oE,  and E' = pof i i .  

For x = xo+ : H = 0. 

t The right side of this last equation is now non-zero in contrast to Case I where b = 0 in the 
magnetized part of the material; Le. b # 0 only at the propagating front. 
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For x = 20- : 

For x = 0 : 
B = Bo, E = -Box0 = gH'. 

H = HOO. 

The differential equation is 

- We introduce 
2 -7 and thus t = T  pea, /&- 

and get 

We use the dimensional analysis argument that x and T are the only dimensional 
quantities entering the problem. This means that H must be a function of X / T .  We 
let u = x/27-. For H = F(u)  : 

-U -Flu ----- .F' .---  - 2r2 ' d2H F" 1 and thus F" + 2uF' = 0,  - 
3x2 4 T 2 -  27 7 

I- F' In - + u2 = 0, and F' = -ae-u2, 
FA 

with FA = -a because F' has to be less than 0. 
The boundary conditions, with fixed T > 0: are 

U 

F = H(u)  = HOQ - a 1 eqU2du. 
0 

uo = x0/27 and xo refer to the location of front. 

Hoo 
e-U2 du - H(uo) = Hoo-a du  = 0,  with a =  

0 

Just as in Case I, the location xo of the front is proportional to &. Thus, 

I 

Since uo = x0/27, this is a first order differential equation that looks difficult at first. 
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However, it is obvious that from dimensional considerations the solution must be 

g 0.01 0.1 0.2 0.3 0.4 

r 2.0 x 2.01 x 8.22 x -191 .356 

where the factor of 2 is for neatness. That is, uo = g(r), and then g ( r )  is determined 
bY 

0.6 -0.8 1.0 

.920 2.00 4.06 

r = 2geg2 1 e-u2du. E l  

g 1.1 1.2 1.3 1.4 1.5 1.6 

r 5.76 8.17 11.7 16.8 24.4 35.8 

For small g: 

1.8 2.0 

80.6 193 

where 20 has the same solution as the case of B = Bo, as it has to be. 
Evaluation with a TI59 gives the following results: 

If T is of order 4, then 

Case III: H after complete penetration of the slab. 
When the front has reached 20 = 21, where 221 is the slab thickness, the boundary 
conditions change. In contrast to our earlier analysis, a given 'length 21 enters the 
problem implicitly, and thus the dimensional analysis argument that H must be equal 
to F(x/27) is no longer valid. If time is counted anew, with f = 0 when 20 = z1, we 
are dealing with a linear system with boundary condition 

H ( z i  + Az) = H(z1- Ax) for t 2 0: 

with known and given H ( z )  for t = 0 and 0 5 x 5 22. 
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If H ( z )  - HOO is defined to be an odd function of x with respect to x = 0, and an 
even function with respect to x = f z1 ,  and this function is expanded into a Fourier 
series, then the period is 4x1, and 

H ( z )  - HOO = xu, ( t ) s in  ( n- 4 2 ) .  

To satisfy these symmetry conditions n must be odd, and we get 

and azm+l(0) from known H ( z )  at t = 0, the time of complete penetration. 
Recalling the differential equation, H“ = /.LOCH, with n = 2 m  + 1 we have 

2 
-an (E) = poohn, 

2 

an(t) = an(0) - e T(%) & > 

At t = 0: 

I I 

To determine ~ 2 ~ + 1 ( 0 )  we let 

1 

an(0) - /sin2 (n;v) dv = - HoO - ] (Je-u2du) sin ( n t v )  dv, - J: e-u2du 
0 , 0 .  / d p  Y 

0 

. .  c 
with 

1 1 
1 /sin2 (n%v) dv = f /(1.- cos(nnv))dv = - 2’ 

0 0 
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gv 
2 2  C = 1 e-u2du, and dC = ge-g , 

0 

cos (n$v) 
dv ,  and q = - 

n$v ' 

( I  [ d q )  n=odd 

= 2 na e-gZv2 cos ( n i v )  dv. 

Thus, 

4 
(2m + 1)a 

One would let 

if one wants to evaluate it with the integral of the numerator. Otherwise, one may 
return to the definition of g and use 

The total time required to get good magnetization is determined as follows: 
(1) Time to reach z = z1 : tl = poo(z:/4). 

(2 )  Time for a1 to decay by a factor of e : 

Thus, 
t:! = p o 0 Z ~ ( 4 / a 2 ) .  

(3) If time for a1 to decay by e" is used, t 2  = poUZf(4 /a) ,  and 



Change of Determinant for Small Changes of One Element of the 
Matrix that Describes a System that Is Least Squares Optimized 

with Restraints and Has Least Squares Limitations on Parameters 

We let 

M t W M + V  N t  
N 0 

A =  ( 
I I 

and consider only those terms linear in AM,, or AiVnm- 

1) 
AMik = AMnm'S(i - n)S(k - m) with AM,, = a. 

Here and below we sum over indices appearing more than once. 

To get IIA + AA 11 to first order in a, one must differentiate [ [ A  + AA 11 with respect 
to a and then evaluate, knowing that A-' is Hermitian. 

where IC is the co-factor, and summation over k is done only over values consistent 
with the number of rows in M. 

AN;,  = ANnmS(i - n)S(k  - m), 

November, 1968. Note 0072thry. 

109 





Sensitivity of Solution of Linear Equations to Change 
of an Individual Matrix Element 

We let 
M P = S ,  M- '=N and P = N S ,  

( M  + A M ) ( P  + 4 P )  = M ( I  + A)(P  + A P )  = S where A = N A M ,  

P + A P  = ( I  + A)-'P and A P  = ( ( I  + A)-1- I )  P. 

Further 
AM,, = ~ 6 ( n  - no)6(m - mo) where u = AMnomo, 

( I + A ) - ' = I + y A  and ( I+A) ( I+yA)  = I + A ( I + y + r a )  = I ,  

That the matrix M becomes exactly singular for AMnomo = -l/Nmono is easily shown 
with Crumer's Rule. Let I'nm be the co-factor to the nm element, and IIM+AMll = 
llMll+ AMnOrnoIcrn0no: 

which is the necessary condition for a singular matrix. 

November, 1968. Note 0071thry. 



This condition can easily be used to judge whether a matrix is "close" to being 
singular. One would test 

and when the result is large compared to the inverse of the relative error of Mnomo, one 
is likely to be in trouble. This is of particular importance when the matrix elements 
are experimentally determined. 

. .  



.Fourier Analysis of Numerical Data 

We assume that the spacing between data points is uniform, 27r/N. Representing 
F ( y )  by a Fo-urier series with unknown coefficients and making the coefficients such 
that 

gives the same coefficients that one obtains by evaluating the integral 

with trapezoidal rule applied 

a t  =. 2 F(cp)eimVdy 
27r 

to the whole integrand 

1 .  3 F(y,)eimpn = - F(y,)eimpn. 27r N 

A better way to integrate would be to assume that not the whole integrand changes 
linearly over an individual interval, but that only F ( y )  changes linearly over the 
interval. 

For one interval, 

When summing over the whole range of cp, the first term contributions cancel. With 
b = (F' - Fl)/Ay,  we get 

J 
interval 

August, 1968. Note 0059thry. 



When summing over the whole circle, we get: 

E 5' 10" 15' 

t -9999 -9998 -9988 

with 

20' 25" 30" 35" 40" 45" 

-9962 -9911 -9821 .9682 -9482 -9213 

A parabolic approximation for F over two intervals, -Ap 5 'p 5 Acp, without eia, 
gives after some calculation: 

E 

t 

with E = m x / N ,  and 

50" 55' . 60' 65" 70" 75" 80" 85" 90" 

.8870 .8450 -7957 -7397 -6780 .6120 -5434 -4739 -4053 

Program to Calculate t ,  and Results. 

5 CLS 
10 FOR N=l TO 18 
15 E=B*3.14159265/36 
20 PRINT ( (SIN(E)/E)-2* ( (SIH(E) )"2+COS(E) *SIN@) /E) 
30 NEXT N 

For E = N"5: 
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Program to Calculate K ~ / E ~  and K ~ / E ~ ,  and Results. 

5 CLS 
10 FOR N=l TO 18 
20 E=N*3.14159265/36 

30 PRINT N*5, (3+COS(4*E)-SIH(4*E)/E)/(4*Ê 2), (SIH(2*E) /(2*E) -COS(2*E) )/(E-2) 

40 NEXT N 

5' I .67069299 I 1.3292762 

10' I -68235368 I 1.3171576 

' 15' 1 .70042915 I 1.2971353 

20' I -72300072 I 1.2694693 

-74761149 1.2345172 

.77147163 1.1927287 

-79169091 1.1446375 - 

40' I 30551841 I 1.0908528 

45' I 31056947 I 1.0320491 

50' I -8050208 I -96895504 

55' I .78775796 I .go234147 

60' I .75866353 I .83300908 

650 1 -  ~ .71763969 I -76177546 

70' I -6665645 I -68946226 

75O -60718709 ... -61688241 

80' -54197173 -54482766 

85" -47370526 -47405682 

90' -40528474 -40528474 
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Curvature of Field Lines in a Quadrupole 

-e-- A 
w 

Center - 
r 
Figure 1. 

F(z )  = (z  + T ) ~  with T = l/K. 

The field line is described by %(z + T ) ~  = (s + T ) ~  - y2 = constant, thus 

(s + T ) 2  - y2 = (so + ?-)2 -4 3: = -T + dy2 + (so + T)? 

Further, 1/R = .I1/ (1 + (z ' )~)~ '~,  with 

I Y // (so + T)2  and s = x =  
JY2 + (so + T)2  (Y2 + (so + r)q3I2 

2y2 + (so + T)2  and (1 + (z')~) 3/2 - - (2y2 + ( S O  + T)2 )3 /2  1 + = 
J y 2  + (so + T)2'  (32 + (so + T)2)3/2 - 

Thus, 

for field line starting at so. 

May, 1986. Note 0009thry. 



The field line at z, y is described by 

((x + r)2 + y2)3’2 - 
(x+r)2 -y2  - - 

W e  make the following substitutions: 

2 cos2a and 1-tan a =  - 
x + r  cos2 CY ’ cos2 a ’ 

2’ 1 -- - tana, 1 +tan a =  - Y 

and thus, 

Also, 

. .  



Skin Effect in Fe 

Figure 1. 

We introduce initial conditions and definit.ions: 

E = ezE, and B = e,B with B = poprelH = pH,  

a a  a 
az ax dY 
-- - - = O ,  and - # O ,  

V x H = H' = aE = j ,  and V x E = -E' = -iwpH, 

aE' = j' = iwpaH. 

We let i w p  = k2, and 

H" - k2H = 0, I( H = Ho a s h  k y ,  and -1 . 

The average field in the sheet, H ,  compared to the field outside, H I ,  is given by 

In (l), we let z = kyl,  and solve 

February, 1966. Note 0007thry. 
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- 
H tanhx 
Hl X 
-- --- N 

N N 

1 + x 2 / 6  + x4/120 
1 + x2/2 + 24/24 

) (l+;+&) (1-,+24+... 1 2  5x4 

M I--+-. I ”1”5” I 
The power dissipation per cubic meter is given by 

P = :[j12 = z&Tilk12[ 1 sinh2 kyI. 

We let ky = a + ia where a = Ikl/& thus 

sinh(a + ;a) = sinh a cos a + i cosh a sin cy, 

and 

sinh2 a cos2 a + cosh2 a sin2 a 
sinh2 a - (1 .- sin2 a) + (1 - sinh2 a) - sin2 a 
sinh2 a + sin2 a 
1 T(1- COS 2a + C O S ~ ~ C Y  - 1) 
1 -(cash  CY - COS 2a), 2 

1 I sinh(a + ia)I2 = - 1 (cosh 2 a  - cos 2a)dy 
0 

2Yl 

0 
1 

4a1 
= -(sinh2al - sin2al). 

Thus, 

For 

3 ’  
N 

sinh x - sin 2 
N. 

X 2 



and thus, 

Therefore, 

For Hop = Bo, 

Resulting, thermally, in a trivial geometry: 

To" =maX - 
Figure 2. 

X 

For heat conductivity, S = AT' in power/m2, 
- 

AS(x) = PAX, and thus F =  S' = AT", 

and thus, 

Typical Numbers for Dynamo Steel. 
We let 

e = 46pR cm = 4.6 x 10-7fi m, 

p(14kG) = 2100, and ,u(lSkG) = 125, 

BTU/h 0.293 Watts 
ft O F  1.S4 m°C 

--- - with 1 BTU/h 
f t  O F  

.A = 27-36 

= 47.5-63.5 Watts/m "C. 
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(1) For 1x21/3 = 1/10 we have 

and yi = E = lOW3E = 0.37 x 10-3m = 0.37mm, 
1x21 U P  2 1 ---. Y1 - 10’ - 
3 3e 

-1 
(2) For Bo = 14 kG =1.4T and the above 23q, 

- 60 .P = - x lo3 = 13 x 103Watts/m3 = 13 x 10-3Watts/cm3. 
4.6 

(3) For x = 0.4m and the above F, 

= (13)(.16)OC x 21OC. 
(.16)(13 x lo3) 

(2)(50) 
AT = 

If the field is a sinusoidal function between B = OT.and 14kG, one has to use Bo = 
7kG. 

A More Detailed Expression for p/&. 
With 2yl = D, we let 

With X = d G ,  
D -  - &E, where E = - D .=Az- J Z X  - 

Therefore, 

and thus, 

- 

6 ’  
and tanFX--= 

3 
H .E2 2.54 - = 1 --- - - 
Hl 3 15 

7E4 and l$i=l-K, 7e4 
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Results for Al, Cu and Fe at 60Hz. 
For A1 and Cu, we let 

c u  
A1 

ecU = 1.7 x and Xc,, = O.S$cm, 

0.755 0.570 0.095 0.00635 

0.587 0.345 0.0575 -0023 

and D = (1/4)in = 0.635cm: 

I I D/X I (D/A)2 I (D/X)2/6 I 0.7 (D2/6X2)2 I 

and D = 14mm: 

I A1 I 0.350 I 0.1225 I 0.0205 I 0.00029 
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Magnetic' Field Energy Calculations 

E = 1 2 /(B - H)dr = L/(B 2 - VV)dr = 1 2 / H  - (V x A)dT, 

with 
B - VV = V - (VB) - VV - B = V - (VB), 
H -  (V x A) = A -  (V x H) = A  -j. 

. -  

Field Energy in the Airspace of a Long, Symmetrical Bending Magnet. 

The airspace is bounded by the midplane, an equipotential and two field lines (lines 
starting at two locations on the midplane). 

,- 

equipotential, V = 0 

midplane, V=Vo 
/ 

) X  
J, 

field lines 
Figure 1. 

Derive B from the potential: B = VV, 

2poE = /(B - VV)dr = 1 V - (VB)dr = / VB - da. 

Normalize V = 0 on equipotential, then contribution on equipotential is 0, as well as 
being 0 along the field lines: 

where L is the length of the magnet. 

February, 1966. Note 0006thry. 
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For By = Bo(l+ Kz): 

Bydx = 2aB0, and V;I,=o = By = BO 
-a J 

Thus, 

yo equipotential is the hyperbola tangent to an ellipse with half-axis a: 

For a/ro = E, 

we redefine yo = ~ F ( E ) ,  where 

- 
I I 

For 8~~ << 1: 

dl + SE2 = 1 + 4€2. 

F2(&) = 2 + 4€2 ( +:2)3 = (1 - 2 ~ ~ ) ( 1 +  3 E 2 ) ,  

For E = 1/2, F(1/2) = 1.2, while if E = 1, F(1) = 1.3. 
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Magnetic Energy of 2D Vacuum Field Inside Arbitrary Boundary. 

Represent B by scalar potential: B = VV, 

= 

2poE = /(B 0V)d.r = / V - (VB)d.r = / V (B - da)  . 

J vdu = J V ( U ~  + u;Y')~x. 

The expression for scalar product of two vectors in 2-dimensional space, when vectors 
are expressed by the complex numbers a = a, + ia, and b = b, + ib,, is 

a - b = a,b, + ayby = %ab* = %a*b. 

Thus, for d a  = iLdz: 

For V = v, and iB* = F': 

Special Case. 

The energy of field derived from F = (BoK/2)(z +  TO)^, with ro = l/K, inside the 
ellipse described by + (y/b)2 = 1, is @veri by 

F = --BOK 1 ((x + To)2 - Y2 + 2iYk + TO>> - 
2 

With 

and 

x = asin y, dx = acos ydy, y = b d z  = bcos y, 
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and U/TO = E, 

2a 

= Biub ( l+esinp)  J 0 

2a 

=B$ub / ( l+es inrp (2+z)  +e2sin2rp(l+z))cos2pdrp 
0 
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Scalar Potential for 3D Fields in “Business Region” 
of Insertion Device with Finite Width Poles 

Task. 
In the absence of random errors, we are interested in the formulation of 3-dimensional 
V(s ,  y, z )  (with V2V = 0) for B in the “business region” of an insertion device (hybrid 
or electro-magnetic) with finite width poles, and containing only a small number of 
free, easily measured constants. 

Notation and Coordinate System. 
The beam will be in the direction of the z-axis. The midplane will be in the sz-plane. 
The field will be in the y-direction in the midplane. 

Field Symmetries. 
By will be the even function of s, y and Bz will be the odd function of s, y. 

,-3- x 

Figure 1. 

Representation of V(z, y, 2). 
We represent V(s ,  y, z )  by a Fourier series in z: 

V(s ,  3, Z) = cos nk3z - Gn(s, 3) with k3 = 2r/X, 
n=odd 

where 

February, 1992. Note 0144u-w. 
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For an infinitely wide pole: 

aGn/& = 0 Gn(z, y) = an sinh nk3y, 

which is a standard 2D solution. The effect of the finite width pole is described by 

G n  = an sinhnll-3~ + gn(z,  y), 

where gn is the effect of the finite width pole. Thus 

V2gn = n2k,2gn. (3) 

Case 1: 

p~~ = 00 BZ(x,fh,uX/2) = 0 

where u is an integer. 
(4) 

1.1) We initially assume that 

and we see that the symmetries and (4) give giZ(z ,  0) = g iZ( z ,  f h )  = 0. We expand 
gi,(z,y) in a Fourier series in y with a 2h period, and see that 

We now substitute (5) into (3). We have b: = b&(rn2kg + n2kg), with n = 1. A 
solution which satisfies this equation and the symmetries is given by 

(6)  bm(2)  = C, cash knmx, where knm = (m2k; + n 2 k3) 2 1/2 . 

A complete solution is given by 

V(z, y, z)  = cos IC32 - a0 sinh k3y + sinmk2y cosh klmz - 
m=l 

c, is chosen such that am can be expected to be only weakly dependent on w. 

1.2) We now assume that 

(7) can be generalized, but one must realize that the resulting formula does not have 
the same force of logic that was inherent in .its original derivation. This generalized 
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formula allows the possibility that contributions from many n could combine to make 
&(z, fh, uX/2) = 0. 

V(z,y,z) = cosnk3.z - Gn(x,y) 
n=odd 

knm = (n2ki + m2k;)'/2 with k3 = 2n/X and k2 = n/h. 

Notice that in the above set of equations An0 has units of Tesla-meters and anm is 
dimensionless. 

We expect that anm is of the first order, the finite width effects decrease with increas- 
ing n and m, and further, that only a few anm are needed. 

I -  

Case 2: 

The contributions from Fe alone are given by the addition of Qn(z,  y): 

v = cosnk3z - &(x, y) where V2Qn = n2k:Q,. 

For the sake of simplification, we shall look at one Qn, normalize lengths so that 
nk3 = 1, and denormalize at the end 

V 2 Q  = Q. 

We follow the logic of Case 1 as well as also satisfying QL(x,O) M x2 for sufficiently 
small z. Thus, we start with 

where 17 is real and arbitrary. Later we will let q~ + 0. We substitute (11) into (10) 
and get 

V2Q = q2cP1 + ( c  - 1)Pf + P. 
= &  
= ( c -  1)Pl + P2. 

where c = cosh ~x and PI, P2 are unknown. Separating into terms with and without 
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c, we have 
q2P1 + Pi' = PI, P; - Pi' = P2 - PI, 

p2 = 1 - q2, Pi' - p2P1 = 0 + PI = sinhpy, 

P; - P2 = Pi' - PI = -7 PI = -7 sinhpy, 

P2 = sinhpy - psinh y, 

2 2 

in which the second term serves to satisfy the condition Piy(0) = 0. 

Q(x,y) = (coshvz - 1)sinhpy + sinhpy - psinh y, 

with q + 0 and p 3 (1 - q2/2). 

Q(x, y) = -(x v2 2 sinh y - y cosh y + sinh y). 
2 

We denormalize (16) and drop q2/2 and get 

Qn(x, y) = (nk3~)~sinhnk3y -nk3ycoshnk3y +sinhnk3y, 

Magnetic Measurements. 
First, the simplest implementation consists of measuring the Fourier coefficients of 
the expansion of B,, By, B, in sin nkz and cos nkz and determining the value of the 
free coefficients in G, and Qn that best fit the data. Use a %iter" to remove the 
random errors from the data sets. 
Second, choose x, y very carefully for each of these sets of measurements in order to 
take advantage of the properties of G,(z, y) and Qn(z,y) and its derivatives with 
respect to x, y. This is particularly important for the contributions originating from 
sinrnk2y in Gn(z, y). 
Third, investigate suitability of less conventional magnetic measurements, like a Hall 
probe or flux loop that vibrates in the x-direction, with phase sensitive de-modulation. 

Use of Model. 
After verification of the validity region of the model is completed, it can be used 
for trajectory calculations. Furthermore, one can use this model to determine the 
maximal narrowness of the pole before detrimental effects become intolerable. 
In application to existing hardware, one can break up the total field into the ideal 3D 
field and the random errors. 
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Magnetic Measurement and Data Reduction to Identify 
Some Specsc Error Field Consequences 

Measurement of Steering in Wigglers and Undulators. 
Prefer null measurement method, if it can be done. 
In "body" of wiggler or undulator: use coil with length equal to the product of period 
and integer. 
In the end-region, from the field-free region to the periodic part: measure using 
long coil reaching from the outside to the periodic part, together with an attached 
compensation coil in the periodic part. This gives a signal that depends only on 
the steering integral, and is independent of position in the periodic part. It is an 

Normalized sensitivity of system, for 'p = kz = 2nzjX is given by 
important tool for correcting the ends. . .  

S(cp) = SO('p) + Sl(cp), 

where So refers to the main coil, and SI to the compensation coil. With 'p = 0 
referring to the end of the main coil, and cp = -a to the center of the correction coil 
(of length 2'pl) relative to the end of the main coil, we have, in the coil coordinate 
system, 

So('p) = 1 at -CQ cp 5- 0, 
SO('p) = 0 at 0 I 'p, 
Sl('p) = E at --a - (p1 L 'p L --a + 'pl, 
SI ('p) = 0 at 'p outside the above region. 

For the periodic region, 'p > 0 and 

B = na, cos ny = 3 naneiny, 
,=odd 

with the end of main coil at yo > n in the field coordinate system, the signal from 
the main coil is 

. 

0 P O  

Fo = J Bd'p + J 3 E na,eiRyd'p = Steering J + 3 a, (einpO - 1) ji, 
-03 0 

and similarly, the signal from the compensating coil is 

Yo--cu+Pl 

September, 1993. Note 0142u-w. . 
Presented at the ID Measurement Workshop, ANL, September, 1993. 
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We want Fo - F1 independent of 90, thus 

2~ sin ncr sin ncpl = 1, and 2~ cos na cos nyl = 0. 

When harmonics are weak (undulator), we need to satisfy these conditions only for 
n = 1, but when strong harmonics are present (wiggler), we need to satisfy them for 
all odd n: to get 

cosncy = 0 choose 

sin na = ( -1)(n-1)/2 choose 

y1 = n / 2  needs to be done by hardware, = n/2, e = 1/2, can be done by "tuning" 
if one provides for it. Other solutions should be obvious. 
This scheme can also be implemented with simple coil (or Hall probes) and software. 
However, software implementation is not a null method and therefore suffers much 
more from equipment imperfections. 

Phase Shifts of Emitted Light Due to Error FieIds. 
This is one of a number of ways to develop more insight into why or how synchrotron 
light properties deteriorate because of error fields. 
We make the following definitions: 

9 e 
XI' = -B, with g = - 

Y mijc' 

2n , 'p= kz, and k =  - a I - -  - 
dz A '  

For the reference trajectory: 

B(y)  = Bo cos 9, 

- K = -934 - &(T) - A(cm), sin y = -sin y, with - - xo = - 1- 9Bo 1 SBO 
.yk Y E 
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We define the trajectory length error as 

= / ( X ~ A X I  + 5 A ~ ' z )  1 dz 

For D = AB/Bo as a function of 'p: 

Thus, 

With At = As/c, A@ = wLAt = ASWL/C = A s ~ L ,  and 

x X K 2  
XL = - 2Y2 (1 + $) = -@- (1 + $) , 

where 
4 

1 + 2 / I P  - P =  

Notice that, as a function of IC, A@ M IC2 for K 2  << 2, and A@ is independent of IC2 
for IC2 >> 2. GI produces harmonics and reduces the intensity of the fundamental, 
but only if steering is not 0. The G2 f. 0 contribution depends on symmetry of D, 
not on the presence or absence of steering. In G3 only steering errors contribute and 
it always gives A@ of the same sign. G3 being of second order, we may expect a 
significant contribution only for a long undulator. We will see below that G3 can be 
surprisingly large even for a short undulator. 
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-- 
We present order of magnitude estimates for G;, GZ, for the ensemble. 

For G2 from one primary source: 

For n 2  sources per period: after N1 = z/X periods 

z -  - 
Gi = (~2D27r)~n2, = D;7r2e;n2z. x 

Without cos 'p in the integrand, we may expect from steering: 

- C# = zn2E&o k = K7r 2 2 2  EonoNl. 

To get a feeling for the order of magnitude, we assume that the first order term, @, 
contributes twice the contribution of the second order term, G, i.e. €4 = 112, and 
further, EO = 6 2  = 1 no = 722 = 4,'Nl = lo2 D; = 022, then 

- -  

. I  
= 5 x 20 x 103 

has to be satisfied. And for @ = EO = 1, no = 4, N1 = lo2 ,  

A@ = -6radians. 

A@ over-estimates the damage done to the emitted light because A@ = a + bz causes 
no real damage. We subtract the straight line from the original A@(z) = f(z), and 
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then normalize the length of the undulator to 1: 

H = )(u + bz - f ( ~ ) > ~ d z  
0 

and minimize H with a, b, 

The solution gives 

L I I I 

and this gives 

H = F2 - 4(F; + 3Fl(F1 - Fi)). 

For a specific function f(z) = u& + vz2,  corresponding to the ensemble model used 
above, and after optimization (see Appendix A for details), 

2u2 8uv H = ( & ) - - -  5 7 + v2,  

With a! = v / u ,  we get the following improvement factor: 

H 
F2 36 a2 f - 2 0 ~ ~ 1 7  +5/2*  

cu2 - 8017 + 215 -=  ('> 

-10 -5 0 

Figure 1. 

For Figure 1, 
(H/F2)mh = 4.5 x at CY = .605, 
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(H/F2)max = -274 at a = -1.65, 
Even if one does not consider the model of f(z) = uJZ + oz2 a realistic one, it is 
quite clear that (a) one should optimize not A@(z), but A@(z) minus &best" straight 
line, and that (b) gains can be remarkable. In other words, the quality of the light 
generated may be much better than one would think if one were to only look at 
A@(z) or D(z) .  We make a trivial, but interesting observation: since H .(before or 
after subtraction of straight line) is a quadratic function of u,o, an increase in the 
G2 or G3 contribution may lead to a decrease of H.  

~~~~~~ ~ ~~ ~ 

For the measurement of G2 = cos 'pDdy, consider the following 2-coil configuration: 

<p=O 
Figure 2. 

The above design will measure the integral over cos 'p - B( 'p) . But, cos cp  Bo cos cp  gives 
a large signal, therefore the null-coil system is needed. The proposed system cancels 
Bo cos cp  but also "sees" steering; thus, it is fine only if steering is small enough or 
known. Therefore, we give below onl>y the basic design and performance equations 
for system components, and one system. . 

Since A@ is only relevant for undulator, we ignore the harmonics. 
The compensation coil is the same for measurement of steering at ends. 
The main coil sensitivity is So = cos(ao+cp) at -cp2 5 cp 5 9 2 ,  and So = 0 outside this 
region. At the center of the coil, sensitivity is cos QO, and B = cos p o  = %ezyo = B. 
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The compensation coil sensitivity is Sl(cp) = 61 at -cp1 5 9 2 cp1, and Si(9) = 0 
outside this region. At the center of the coil, B = cos(cp0 + p) = %ei(vO+fi). 

With E = 4El sin91 and 292 = 7, 

To get no signal for all 90, we must satisfy 

cos ao(sin 7 + 7) = -E cos p ,  and sin cyo(sin 7 - -1) = --E sin p ,  

and since there are four parameters to satisfy two equations there are many possible 
solutions. We pick one with p = 0 and cro = 0 and have 

If lei1 > 1, we can use a combined coil system as follows, with 9 2  = p1 = 3 ~ / 2  and 

Figure 2. 

This is not the ultimate answer, but only a first step, and it may start similar thinking 
on other issues. 
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Appendix A. 
For the execution of the optimization of H, we let 

a + b/2 = Fo, 2F1 - FO = b/3, a/2 + b/3 = Pi, . 

With the above, we have 

H = a2 + b2/3 + F2 - 2aFo - 2bF1+ ab 
+b(b/3 + a/2)  +F2 - 2aFo - 2bF1 

/ " 
Fo Fi 

= F2 - aFo - bF1 
= F' - 2F0(2Fo - 3F1) - 6F1(2F1 - Fo) 

= I F2 - 4F$ - 12F; + 12FoF1. I 
For the special case of f(z) = 6 + az2: 

Fo =. 2/3 + a / 3  = (a + 2)/3,  and F1 = 2/5 + 44, 
and for f2(z) = z + a2z4 + 2 ~ 2 ~ ' ~ ,  F2 = 2 + + y. Therefore, 

2 4 
9 
7a2 26a 112 +-+-, 36 45 225 

F2. - H = -(a + 2)2 + 12 (: + 5> -  CY + 2)  (: + 5> 
-- - 

H = a 2 ( L - T ) + a ( 7 - ~ ) + ~ - ~  4 26 1 112 , 

5 36 

I I t  I 

F2 
H 1 a 2 - 8 a / 7 + 2 / 5  

36 cy2 + 20a/7 + 5/2' 
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Least Square Fit of f(z) with a + bz in 0 5 z 5 1 

Origin and Purpose of Study. If f(z) = phase shift, the difference between f(z) 
and a + bz is the only damaging property of f(z) since a would be an irrelevant shift 
of phase reference, and b represents a shift of center of line without any broadening. 
We define 

S = (a  + bz - f(~))~dz- J 
For S’; = 0: 
For Sf, = 0: 
Therefore, 

a + b/2 = Fo = s f(z)dz? 
a/2 + b/3 = F1 = zf (z)dz .  

S =. a2 + b2/3 + F2 + ab - 2aFo - 2bF1 
= a(a + b/2) + b(a/2 + b/3) - 2aFo - 2bF1+ F2 
= F2 - aFo - bF1 
= F2 - Fo(4Fo - 6F1) - Fi(12Fi - 6Fo) 

2 0  2 0  1 40 CY2 

3 3  5 4  2 7 5 ’  
F o = - + - ,  F1=-+- ,  and &=-+-+-  

thus, 

0 2  40 + 1 - 4 (-(a2 1 + 4cu +4) + 3 ( ;  + g + $) - (0 + + S)) 9 
S = - + -  

5 7  
1 

= O2 (ik) - (&) + 450 
2 = a! a2 + aa1 + ao 

with 
1 and a0 = - 315 ’ 450 ’ 

2 a1 = -- 1 a2 = - 
180 ’ 

August, 1993. Note 0141u-w. 
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therefore, 

For Q >> 1, d m  is improved by a factor of 6, and for CY << 1, d m  is improved 
by a factor of 15. 
S/F2 is a strongly peaked function: 

(S/F2),,, x -274 at Q M -1.65, 
S/F2 M -125 at CY M -3, 
S/F2 M -004 at CY M 0. 
(S/F2)min M 4.5 x at CY M -605, 

Since a + bz represents the error-free condition, looking at the deviation of phase shift 
from the straight line may represent the best way to characterize the consequences of 
the error fields. 

4 with CY= - smin=- --- -- 
7' 

1 
180 (2 5 49 l6) -50.49 

and the values for a, b are 
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Normalizations Factors €1 and €2 
for Comparison of First and Second Order Phase Shifis, 

with Analytical Model of b(z) 

- - 

At the center 

sinh liox2/2 
h sinh kox1/2 -. 
h (k0(x22-x1)) ' 
v 

AB = b(0) 

with ko = n/h  and k1 = 2n/A. Further, 

Y ' I  . .  I 91 

Thus, 
AB AB X/2 2n [ Z k l d z  = ~ n -  = --- 
Bo Bo go A '  

August, 1993. Note 0140~-w. 
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Similarly, 
A B  - &IT-, 

AB 91 J bcos(klz)kldz = -- - 
BO Bo 90  BO 

Thus, 
I 1 

and 

L I I 

I 
I 
I 

Figure 1. 

For the above figure, 
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Further, 

Thus, 

.2h 2 2 where for - = b = -, and a = - X a b’ 

145 



n 



Comparison of First and Second Order Contributions 
of Error Fields to Phase Shife 

We introduce, for kz = y, kdz = dy, and - AB = D, t 
BO 

( / D d y ) 2 d y ) ,  .0 / 

where 
4 

1+2/1c2- . 
P =  

Notice that A@ M K 2  for K 2  << 2, and A@ is independent of K 2  for IC2 >> 2. 
We denote the “typical” case of B1 as 

+ 
At every error source, B1 changes by the above “typical” value of B1’. We assume 
n contributions per period. After N = z/X periods, the total expectation value is 

When 

we expect 

Bl = / D d %  

At the end of insertion device with N periods we expect 

(B;) = &qn2D2n N ,  

August, 1993. Note 0139u-w. 
See document 0138u-w for the origins of this equation. 

# See document 0140u-w for derivations of €1 and 62. 
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1 27 (NA)2 2n 
(B2) = -e27r D n-- 

2 2x x 
2 

2 3 2  N2 = -c2n D n 

= ~ 3 @  with &3 < 1. 

This means that 

1&$n3pnN3 2 = & 3 q T G f i f i ,  

We make the following definitions: 

61 =e2 = 1, 283 = 1, n = 4  and N =81. 
Thus, 

M 5 x io5. 
1 B- - 20 x 103 

This means that the second order contributions will dominate. Or, similarly 

and for = 

E3 M 5 x 2 x x io3 M i o  
still demonstrating that second order contributions will dominate. 
The magnitude of the AQ shift along the length of the insertion device with second 
order contributions is 

1 3 3 7  A@ = 4-&57i D nN2 2 
M 2 x 30 x 

M 30 x 50 x 
M 1.5 radians. 

x 4 x 6.5 x lo3 

Thus, 

for equal contributions (ie.: ~3 = l), and for 

for representation of phase shift by straight line. 

. .  . I. . 

148 



Connection Between Undulator Field Errors and Optical Phase 

We begin with the following definitions: 

9 e x " = - B  and g = - .  
7 mo C 

We introduce the following references: 

B(z)  = Bo COS kz, 

- I - ,  I SBO IC gBo xo = - sin kz = - sin kz with - - Yk 7 k 

We now proceed with the analysis. 

By integration by parts, with du = xbdz, u = 50, v = Ax', and dv = Ax"dz, 

1 
2 As = SOAX' - / x0Ax"dz + - / A(x')2dz, 

Furthermore, 
As At = -, 

C 

August, 1993. Note 013811-w. 



where, 

4Y2 kL = k 
(1 + $) ' 

and therefore, 

with 
4 

1 + 2/IP - P =  

Term (c) is of second order and is important only for a long insertion device. Term (a) 
gives harmonics and reduces line intensity for steering errors, but produces no effect 
if there is no steering. Term (b) produces phase shift and line broadening. Whether 
or not it is equal 0 depends on such elements as symmetry, but not on presence of 
net steering. 



e, €or Hybrid Insertion Device 

This note is a result of ANL lecture notes, and from Simple Analytical Model For 
Fields From One Pole Of Hybrid Insertion Device! with kl = 2r/X and kn = nkl, 
and 

Bn COS knx, 
n=odd 

from poles with f ul”, and 

-00 

where b(x) is the field from one pole with excitation +1. 
For V from 0 to VI at the edge of pole going from -XI to XI, 

For V going linearly from 0 to over thickness of CSEM = (22 - 21)/2, we have 

I 00 I 
v , x  A0 = J b(x)dx = - - h 2’ 

-00 

We may now conclude that 

August, 1993. Note 0137u-w. 
Document 0136u-w 
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For 

1.5 e 
g/X -35 

we have 

5.0 2.0 2.5 3.0 4.0 

.57 -70 -79 -94 1-05 
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Simple Analytical Model for Fields from One Pole 
of Hybrid Insertion Device 

1 -x . X. 
2 

v= ----++iTo 0 v=v* 

v= 0 t=  1 
z = o  

Fig&e 1. 

Model: midplane on V = 0, and pole from --o to +-o on V = 0, except on V = K 
for -Lx1 5 x 5 xi. 

' 

The above geometry is described by the following conformal map - 

# 

h 
t '  n-2 = - 

and the following elements 

n- koz = lnt, t = ekoZ and ko = - h' 

and where x1 is the half-width of the pole. Putting f current filaments at x = fz1, 

August, 1993. Note 0136~-w. 



The odd harmonics of the field are described by 

b ( s )  cos(Nklz)dz, 
-03 

where N = 2n + 1, k~ = klN = kl(2n + l ) ,  kl = 2n/X, and a is a constant, thus 

cos( khr z) dz -- 
cash koa: + cosh kozi - sinh koz1 

= sinhkozl - GN, 

BN 
a 

-03 

(3) 

That is, to evaluate this integral, one can integrate a line integral along the real axis 
of the complex z-plane, and close it at o in the upper half-plane without changing 
its value. 

There are singulaxities at cosh koz = - cosh kozl in the upper half-plane, with koz = 
f k o z l  + i n (2m + l), for m = 0,1,2,. . . . We take the first singularity at koz = 
+kozl + iwM and do others later by replacing z1 by -21. We integrate over the 
upper half-plane: 
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One solves for GN- similarly. Thus, we may re-write (3), 

and further, 

This model of b(z), and the resultant BN, assume that the potential increases like 
a step function at the edge of the pole. As a next approximation, to improve this 
model, one would assume that the potential increases linearly over the size of the 
CSEM and represent this by the operation 

which is easily executed on both b(z) and BN. For b(z)  we have 

and for BN we have 



d X 1  - COS N k l f l -  COS N L I x ~  / sin(Nklx1) 
( 2 2  - 2 1 )  - m ( f 2  - 2 1 )  

x2 - 2 1  
f 2  + 21 2 

2 
h 2 

where 

3 2  - f 1  - +n.?r. - 2 2  + f 1  - 4 
2 - and (2n+ 1)kl 2 4 

The argument of the log function can, and should be, operated on in the same manner, 
such that for 

cosh koz = CO, cosh k o x l =  C1, and cosh Lox2 = C2, 

b 

b 
l+- Co+C2 C o + a + b  Co + a  - 

Co+C1 & + a - b -  1-- 

b 
l+- C;I + a  

A -  CO + a 
where 

c2 - Cl 
2 , b= c2 + Cl 

2 a =  



Wiggler Parameter K Definitions 

For v = c we have 
rno7v2z" = evB = evA' , 

Definition 1: 

For a pure sinusoidal field we have 

BO 
k . B=Bosinkz and A=-coskz. 

Thus 

Definition 2: 
The "path length" slippage in A, equals Alight. (We shall refer to Alight as AL for the 
remainder of this document.) 

where s = path length over one period, and SI = JD. 
Proceeding from above, we now have that 

June, 1993. Note 0135u-w. 
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By introducing 

1 1 a2++;;i = 1 and thus P-l= 272 ' 
. we further simplify 

1 + - 1 d 2 d z  AL 1 
A, 2y2 2Au 
-=- 

0 

K i / 2  

and we now arrive at our definition 

BO 
k 

For A = - cos kz we have 

e \ 2  

where (e/2nmoc) = -934 - lo2 in SI units. 

We define (2nmoc/e) = A, and thus I/& = -934 - lo2 MKS. 
We now reformulate our Definitions 1 and 2 such that 

and 

Definition 3: 
BOX, K O  L / 4  

Ae Ae 0 4  
1 - 3  = - = - 4--. 

Where Dq refers to the NPOLEl.BAS program variable which describes the distance 
factor in the transformation from scalar potential to the field. 
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NPOLE 

A recreation, with "Korea modification," of a program (for HP71B) to design and 
analyze X/4 of hybrid insertion device. 

We will begin by establishing some background information for the conformal map 
and the limits for tl and t 2 -  

t = t l  

Figure 1. 

For the map of Figure 1, 

1 - t 1  

1 and thus tl =. 3.  1 a=- 
JtT 

June, 1993. Note 0134u-w. 
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I I 
I I 
I I 
I I 

0 

t = t 1  t = t 2  
I 
I 

* I 

I >: 
%=a? 

Figure 2. 

We proved in Korea in 1987 that 

2 1 
0 < t i  < l/a2 < t 2  < 1 and .2 = (2) 

for the geometry of Figure 2. 

Therefore, in program NPOLELBAS (included at the end of this document), 

1 
a- 

t l =  ,RANG(Cl), 

with 0 < RANG(z) < 1 as used in the first version, and RANG(z) = 1/(1 + eZ) as 
specifically used now. 

The map for geometry with corners at t l ,  tz is described by 
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We determine tl and t 2  from 

To evaluate the integrals, we use 

. .. I t =  I 2(t2 + tl) + ( t 2  - tl) 4 3  - 52)  

1 -  4 
We use Gaussian integration with segmented intervals for testing and accuracy pur- 
poses. We use a “2D” secant equation solver to determine tl and t 2  from the above 
integrals. 
We describe the complex potentials for fluxes, fields: 

0 00 

t = t 1  
Figure 3. 

t = l  
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We therefore have 

Q2 

t 3  
Ep = -1n 

2du - d t  
= -Q2Ih s tzJ-(l- 1/t; - - Q 2 /  tl ( 1  - (1 - uZ)/t1) vo 

J G G F + t 3  
J=-t3 

where 
2 dt 2udu - 1 - u  , andthus - = - tl 

. .  t t2 tl 

Thus, 

= -Qz / (- 1 - -) 1 - d u  
u-t3 u+t3 t 3  

Q z  u+t3 
t 3  u - t 3  . 

=-In- 

Flux into pole / Vo: 

Flux into midplane (for I<): 

J%!f = (F(t2) - F(t1)) /vo 

03 

0 

with IC1 = 2 n V o E ~ ( l / A ~ )  where (l /Ae) = .934 + 10' MKS. 
We calculate the excess flux coefEcient for the side of the pole (KO = 1): 
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M M 

where 

and thus 

J R  G1 = Q2 (1- Jq) 

The field Bo at t = tl is ( j / i ) .  With & on pole, 

where D4 is an old notation and 

I I 

For the second definition of IT‘, 

We need JF2dz ,  thus, 

Therefore, we have that 

t 2  

1 A2dz = / P2Z dt = G2. 



where 

dt 
dZJ=%&=3(1- t )  ' 

and thus we may summarize 

I I 
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Program NPOLE1.BAS 

PR1NT:PRINT DATE$;" ";TIME$;" I NPOLEI" . 
'GOTO BYPASS 
PRINT "Determines parameter values and evaluates flux into midplane (Em) and" 
PRINT "pole (Ep) of ID, and excess flux coefficient for side of pole (Es)." 
PRINT "Kl,K2,K3 are obtained by multiplying the printed values by the scalar" 
PRINT "potential of pole in Tcm. KI is for maximum deflection angle, K2 for" 
PRINT "trajectory length effect, and K3 for BOqeriod. 
REM--List of PI() elements:O>WOl^(-2),l>Tl,2~T2,3>T3,5>Ql,6>Q2,9>Fhnction ID 
BYPASS : 
DEFINT J:DEFDBL 8-2 
PI=4*ATN( I) :AI$="##.###-̂ -̂  ":TAP=O 
A2$=" Em EP Es KI K2 
A3$=" HO=##.## WO=##.### Wl=##.##" 
DIM Pl(O:9) ,GX(1:4) ,GW(1:4) 
SHARED PI,GX() ,GW() ,PI() ,AI$ 
REM--GX,GW=(normalized) abscissas; Pl=parameters for Gauss integrator 
DATA .1834346425,.3626837834,.5255324099,.3137066459 
DATA .7966664774,.2223810345,.9602898565,.1012285363 
FOR J I = I  TO 4:READ GX(JI),GW(JI):NEXT JI:W--Abscissas, weights for Gauss 

D4=VO/BO for VO=I." 

REN---------------------------------------------------------------- 

'CIO=I:C20=I 
PRIHT : PRINT TAB (TAP ) ; : PRINT A2$ 

K3 D4" 

DO 
AGAIN: 
INPUT;~~HO,WO,>WI=",HOO,WOO,WIO:IEM--IHP unnormalized 1/2gap, period/4, 
IF HOO>O THEN HO=HOO:REM--pole to symmetry line distance, stored temporarily 
IF WOO>O THEN WO=WOO:REM--in HOO,WOO,WIO,.then in HO,WO,Wl(=not-normalized). 
IF WlO>O THEN WI=WIO:REM--HOI,WOI=normalized with Wl, used in program. 
IF HOO=O AND WOO=O AND WlO=O THEN EWD 
IF WO<WI THEN PRINT TAB(20);:PRINT "WO must be larger than WI!":GOTO AGAIN 
PRINT TAB(24) ; :PRINT USING A3$;HO;WO;WI 
HOl=HO/Wl:t~Ol=WO/Wl:Pl(O)=l/(WOl*WOl):DCl=.l:DC2=.l 
GOSUB SOLVIT 
PRIHT TAB(TAP);:PRINT USING AI$;EM;EP;ES;Kl;K2;K3;D4 
LOOP 

SOLVIT : 
Cli=ClO+DCl:C21=C20:Cl2=ClO:C22=C2O+DC2 

CALL EVAL(CIO,C20,SIO,S20):SIO~SIO-HOI:S20~S20-WOl:S00~BBS(SlO)+ABS(S20) 
CALL EVAL(CI1, C21 , S I 1  ,S21) :SlI=SII-HOI : S2I=S2I-WOI :SOl~ABS(Sll)+ABS(S2l) 
CALL EVAL(Cl2,C22,Sl2,S22):Sl2~Sl2-HOl:S22~S22-WOl:SO2~ABS(Sl2)+ABS(S22) 
DO 
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REM--REARR puts "uorst" set into last column, to be discarded later 
GOSUB REARR 
Nl=l/((Sll-SlO)*(S22-S2O)-(Sl2-SlO)*(S21-S2O)): REM--Start of 2D secant 
DI=Nl*(S20*S12-S10*S22):D2=NI*(Sl0*S2l-S20*Sll):REM--equation solver 
DCI~(CII-CIO)*DI+(CI2-ClO)*D2:DC2~(C21-C2O)*Dl+(C22-C2O)*D2 
cl2=cll:c22=c21:cll=clo:c2l=c2o:sl2=sll:s22=s2l:sll=slo:s2l=s2o 
SO2=SOI:SOI=SOO:CIO=CIO+DCI:C20=C20+DC2:RM--Recommended new parameters 
CALL EVAL(ClO,C20,S10,S20):SlO~SlO-HOl:S2O~S2O-WOl:SOO~~S(SlO)+ABS(S2O) 
LOOP UNTIL SOO<.OOl 
PI(9)=3:CAU SGAUSSIMT8(0,l,G2,-.OOl):Q2~Pl(6):Tl~Pl(l):T2~Pl(2):T3~Pl(3) 
Ql~Pl(5):ES~~*G2:EP~Q2/T3*LOG((l+T3)/(l-T3)):D4~Wl*SQR((l-T2)/(T2-Tl)) 
EM~Q2/T3*LOG(2/(l-SQR(l-Tl/T2)/T3)-I):Kl~2*PI*EM*.934:K3~4*WO/D4*.934 
Pl(9)=4:CALL S G A U S S 1 ~ T 8 ( - 1 , 1 , K 2 , - . 0 0 1 ) : K 2 ~ 2 * P 1 * Q 2 / P 1 ( 0 1 ) * . 9 3 4  
RETURN 

REARR: 
IF SOO>SOI THEN GOSW SUO1 
IF SOI>S02 THEN GOSW SUI2 
RETURN 

SWOI : 
SWAP SO0,SOI:SWAP SI0,SII:SWAP S2O,S21:SWAP CI0,CII:SWAP C2O,C2I:RETURM 
SWI2 : 
SWAP SOI,SO2:SWAP SII,SI2:SWAP S21,S22:SWAP CII,CI2:SWAP C21,C22:RETURM 

SUB EVAL(CI,C2,Sl,S2):REM--Calcnlates HO1,YOI for set of parameters CI,C2>TI,T2 
Tl=Pl(O)*RANG(Cl):T2=Pl(O)+(l-PI(O))*RANG(C2) 
T3=SQR(l-Tl):Pl(l)=T1:Pl(2)=T2:Pl(3)=T3 
Q2=T3/PI:Ql=~2*SQR(l-T2):Pl(5)=Ql:Pl(6)=Q2 
PI(S)=I:CALL SGAUSSIMT8(-I,I,G2,-.OOl):Sl=3*Ql*G2 
P1(9)=2:CALL SGAUSSINT8(-I,I,G2,-.OOl):S2=3*Ql*G2 
END SUB 

SUB SGAUSSIIT~(XO,X~,G~,DG):REM-G~US~ integrator, uith interval segmentation 
IF DG>O THEN EI=DG:E2=0 ELSE EI=O:E2=-DG:W--For DG>/<O,DG=absol./rel. 
CALL GAUSSINT8(XO,X3,G2):Jl=l:J4=16:REM--J4=largest # subdiv. 
DO 

error 

G1=G2:G2=0:Jl=2*Jl:DX=(X3-XO)/J1:REM--Gl/G2=last/next computed integral 
IF J O J 4  THEN PRINT I' Not converged":EHD 

CALL GAUSSINT8(X0+32*DX,XO+(J2+1)*DX,G3) 
62=62+63-REH------------------------------- G2=int egral 

FOR J2=0 TO 31-1 

MEXT J2 
LOOP UMTIL ABS(G2-GI)<EI+E2*ABS(G2) OR J D J 4  
EMD SUB 



SUB GAUSSINT8 (XI, X2,G2) :REM----------- Integrator; G2=value of integral 
XO=.5*(X2+Xl):X3=XO-Xi:G2=0 
ON Pl(9) GOT0 INTEGRANDl,IHTEGILAM)2,IHTEGRAND3,IMTEGRAHD4 
INTEGRANJ) I : 
FOR JI=I TO 4 
DX=GX(JI)*X3: G2=G2+GW(JI)*(GCTI(XO+DX)+GCTl(XO-DX)) 
NEXT Jl:G2=G2*X3 
EXIT SUB 
INTEGRAND2: 
FOR JI=I TO 4 
DX=GX(JI)*X3:G2=G2+GW(Jl)*(GCT2(XO+DX)+GCT2(XO-DX)) 
NEXT,JI:G2=G2*X3 
EXIT SUB 
INTEGRAND3 : 
FOR JI=I TO 4 
DX=GX(Jl)*X3:G2=G2+GW(Jl)*(GCT3(XO+DX)+GCT3(XO-DX)) 
NEXT JI:G2=G2*X3 
EXIT S W  
INTEGRAND4: 
FOR JI=l TO 4 
DX=GX(JI)*X3:G2=G2+GW(JI)*(GCT4(XO+DX)+GCT4(XO-DX)) 
NEXT Jl:G2=G2*X3 
END SUB 

FUNCTION GCTI(X):REN------------ First of functions to be integrated. 
TT=PI (I) * (2+X* (3-X*X) )/4: GCTI=I/SQR( (PI (2)-TT)*(4-X*X) )/( I-TT) 
END FUNCTION 

. 
FUNCTION GCT2(X) 
TT=((PI(2)+PI(I))*2+(Pl(2)-Pl(l))*X*(3-X*X))/4 
GCT2=l/SQR(TT*(4-X*X))/(l-TT) 
,END FUNCTION 

FUNCTION GCT3(X) 
SI=SQR( I-PI (2)*X) : GCTS=I/SQR( I-PI (I) *X) / (SI*  (Sl+SQR(X*( I-PI (2) ) ) ) ) 
END FWCTIOB 

FUNCTION GCT4(X) 
TT= ( (PI (2) +PI (I) ) *2+ (PI (2)-PI (I ) ) *X* (3-X*X) ) /4: T4=SQR( I-PI (I) /TT) /PI (3) 
GCT4=(LOG ( ( I+T4) /( I-T4) ) ) -2/( I-TT)/SQR(TT* (4-X*X) ) 
END FUNCTION 
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Program Results 

06-28-1993 10:14:02 BPOLEI 
Determines parameter values and evaluates flux into midplane (Em) and 
pole (Ep) of ID, and excess f lux coefficient f o r  side of pole (Es). 
Kl,K2,K3 are  obtained by multiplying the printed values by the scalar  
potential  of pole in Tcm. Kl is for  maximum deflection angle, K2 f o r  
t ra jectory length effect ,  and K3 for  BO*period. D4=VO/BO f o r  VO=l. 

Es Em EP KI K2 ' K3 D4 
HO, WO,>WI = .5,1.4 HO= 0.50 WO= 1.00 Wl= 0.40 
1.373E-I-00 1.515E-I-00 2.532E-01 8.055E+OO 7.890E+00 7.310E+00. 5.lllE-01 

168 

-_I_- . . -. 



Error of Flux Calculation for Finite Pole Width 
with Excess Flux Coefficient 

I h. i I 

I 
le 

v= 1 
00 

1 -I-- 

V a 
0 

Figure 1.  

We have 

we therefore have 

June, 1993. Note 0133u-w. 
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cos cp d y  
a And given au = sincp, and d u  = ' 

d u  and u = sina! For t = -, dt = -- 1 
U u 2  ' 

*/2 
/' Cos2a!da! 

From Jahnke and Ernde': 

and therefore 

hl .K(a2) - E(a2) 
%= E(1-a2)  - 

1 Table of Functions with Formulae and Curves, Dover Publications, 194-5: p. 56. 
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F 

1 

M 

1 

V 

Aapprox - Aided - - Aapprox - I =  
G ( 2 )  = Aided Aided 

0 
Figure 2. 

hl 1 - + -(2 - h 4 )  
ho R - 1. 1 l + a  

-1n- 

1 - a / t  
t + a  r F = l n - - - = h  

The flux into the poleface is 

Comparing this flux to the -homogeneous flux and the excess flux for the end of a 
semi-infinite pole with half-gap = ho, we have 

K(a2)  - E(a2) + -195. = /  E ( 1 - a 2 )  

Therefore we have 

I R 1 - a  
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Program EXCFLTST.BAS 

CLS 
DEFDBL A-Z 
PRINT DATE$ ;" ";TIHE$ ;'I EXCFLTST" 
REM--Error of flux calculation for finite uidth pole uith excess flux 
REM--coefficient. 
PI=4*ATH( I) : Al$="dA=i#.###---' dA/A=M.###---- dX/HI=##. ###----" 

EIz(2-LOG (4) )/PI : X2=1 :DY=IE-6 
DIM P1(0:2) 
DO 
INPUT; "HI/HO=" , HO 

INPUT parameter = 1/2-vidth of pole / 1/2-gap. 

Xl~.9*X2:Pl(O)~HO:REM-GI~2/(I+E(PI*HO+2)):EI~2/PI*(I-GI-LOG(2-G1)) 
CALL SECANTS(X1 ,X2,DY7Y2,PI()) 
AI=I/SQR(I+EXP(X2)):AO=LOG((I+AI)/(I-AI))/PI:AE=HO+E1 
PRINT TAB( 15) ; : PRIHT USING AI$ ; BE-A0 ; AE/AO-I ; (BE-AO) /HO 
LOOP 

SUB SECANTS (XI, X2 ,DY ,Y2, PI() ) 
CALL FCTY(X1 ,Yl ,PI ( ) ) : CALL FCTY (X2 ,Y2, PI ( ) ) 
IF ABS(YI)<ABS(Y2) THEN SWAP YI7Y2:SWBP XI,X2 
Jl%=O 
DO 
DX=Y2* (XI-X2) / (Y2-YI) 
XI=X2:YI=Y2:X2=XI+DX:Jl%=Jl%+l 
CALL FCTY(X2,Y2,PI()) 
LOOP UNTIL ABS(Y2)<DY OR J1%=15 
IF J1%=15 THEN PRINT "NOT COHVERGED" 
END SUB 

SUB FCTY(X1 ,Yl ,PI( ) ) 
A2=1/ (I+EXP (XI) 
Y1= (ELM (A2) -ELLE(A2) ) /ELLE( l-A2)-PI (0) 
END SUB 

FUNCTION ELLK(X1) 
X~l-Xl:S1~.O145il96212*x+.O37425637l3:Sl~Sl*X+.O359OO92383 

Sl=Sl*X+.O96663#259:SI=SI*X+I.38629436112:S2=.OO441787O12*X+.O3328355346 
S2=S2*X+.O6880248576:S2=S2*X+.12498593597:S2=S2*X+.5 
ELLK=SI-S2*LOG(X) 
END FUNCTION 
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FUNCTION ELLE(XI) 
X~l-Xl:Sl~.O17365O645l*X+.O4757383546:Si~Sl*X+.O626O6Ol22 
S1=Sl*X+.44325141463:S2=X*.OO526449639+.04069697526 
S2=S2*X+.09200180037:S2=S2*X+.2499836831 

ELLE=X*Sl+l-X*S2*LOG(X) 
END mTHCTION 

Program Results 

06-16-1993 

HUH%=. 1 
Hl/H2=.2 
Hl/H2=. 3 

Hl/H2=. 4 
Hl/H2=. 5 
Hl/H2=. 6 

Hl/H2=. 7 
Hl/H2=.8 

HI/H2=.9 
HI/H2=1 
H 1 /H2=2 

09:09:24 EXCFLTST 
dA= 4.832E-02 dA/A= 1.956E-01 
dA= 2.240E-02 dA/A= 6.022E-02 
dA= 1.129E-02 dA/A= 2.331E-02 

dA= 5.848E-03 dA/A= 9.920E-03 
dA= 3.074E-03 dA/A= 4.441E-03 
dA= 1.627E-03 dA/A= 2.050E-03 
dA= 8.645E-04 dA/A= 9.665E-04 
dA= 4.602E-04 dA/A= 4.626E-04 

dA= 2.452E-04 dA/A= 2.239E-04 
dA= 1.307E-04 dA/A= 1.094E-04 
dA= 3.008E-07 dA/A= 1.370E707 

dX/Hl= 4.832E-01 

dX/Hl= 1.123E-01 
d X / H l =  3.762E-02 
dX/Hl= 1.462E-02 
dX/Hl= 6.149E-03 
dX/Hl= 2.712E-03 
dX/Hi= 1.235E-03 
dX/Hl= 5.752E-04 

dX/Hl= 2.725E-04 
dX/Hl= 1.307E-04 
dX/Hl= 1.504E-07 





Excess Flux Into Pole and Flux Into Side of Gm40 

t = a  t = w  

z-plane 
Figure 1. 

The conformal map is described by 

f i ( a  - I ) ~  
(t - l)(t - a)2 

7rz = 

To determine the value a that produces the desired D, we use t = a + r, 171 << a. 
Expanding in r gives 

Q 

Expanding more, and then integrating over the half-circle around t = a, we get 

1 1 D = -(a- l)&(- 2a - -) a - 1  

By substitution and integration, we have 

April, 1993. Note 0131u-w. 



where, for t = W2 and dt = 2WdW, 

= J - 2 (5 - -) 1 dw a - 1  t - a  t -1  

dW 1 
a - 1  )-(&-A)) - - 

& - W  J.+ W 
+ln- l + W )  :I =I  (61. 1-w 

Further, we have that 

D = -  1 &+l/& 
I 1 (&- l/&) = -2a- (6- 1/&y (a -  1)2 ' 

Thus, 

a - 1  a - t  
J I = -  1 (in= + Dln 

(a - 1)2  1 - W 

and therefore, is 

1+w - In - rz = (a - 1)- 
a - t  

Further, for 
a - 1  1 1 

( t - l ) ( t - a )  t - 1  t - a '  
---- TF=- - 

nF = In 
1 - t/iz 

The flux into the side of the pole, for -a 5 t 5 0, is 
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We describe the excess flux into the poleface by 

AAp = F(0)  - F(1- E )  - ( ~ ( 0 )  - ~ ( 1 -  E ) )  follows E + 0 ,  

1 - l/a &+ 1 nAAp = In 
E 

-In-), 2 
4 2  

f i -  1 
a-1 1 AAp = fP+ln- 4a + Dln 

The definition of AAp means that the flux into the pole surface is the same as the 
uniform flux into a pole whose width is increased, on both sides, by the product of 
the half-gap and the expression for AAp. The definition of A s  means that the total 
flux into each side of the pole equals the product of the scalar potential of the pole 
and the expression for As. 
From our expression for D, and a - 2D& + 1 = 0, we have 

We may now eliminate a from A s  and AAp. Thus, 

and further, 

/AAp=:(l+-ln--ln D D + l  
2 D - 1  
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Flux Transport Along Axial Direction of Electro-Magnetic Wiggler 

V 

I - @  

X 
jlu conducting 'bipe" 

midplane 
0 

Figure 1. 

Status characterized by status vector o = , where V is the scalar potential 

with respect to the midplane, and Q! is the flux transported to the right. Going 

"downstream", V and Q! change because of the J H d s  uloss" in iron (and due to 

small gaps), and because of flux going to the midplane. Over a short distance, 

dQ! -=-V.&,  
dx 

with E to 0th approximation (detailed later in this note) is given by 

W 
h '  

E = -  

with h having the value of the half-gap, and W being the width over which the flux 

"escapes" to the midplane. 

April, 1993. Note 0129u-w. 



with k2 in 0th approximation (also detailed later) given by 

1 
aP 

k2 = - = y / a ,  (4) 

where a is the cross-section area of the flux “duct”, and p is the permeability. The 

voltage drop due to small gaps perpendicular to the flux flow will be added later. 

Within the section with constants kq and E, we get 

V” = -k2@ = Vk2 with ’ I;2 = ck2 . (5) 

The solution within the uniform section of length z is 

V = c r C + / ? S  with C=coshkx and S=s inhkx,  

0 - k z / k  
v(x) = 

-Sk2/k  
C v(5) = M - v(0) , 2) = (i) and,=( -Sk/k2 

By reversing the direction arrow of @, i.e., by re-defining the sign of the off-diagonal 

minus signs disappear. The sequence of sections with different properties are taken 

into account by multiplying their matrices. v remains unchanged when crossing the 

interface from one section to the next unless there is a (steering) coil, or a local field 

clamp, thus introducing an additive Av when going through that interface. 

It is clear that l / k  is the important scaling distance that describes how transported 

flux decays. 
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Structure of Solution to Simple Problem. 

1 2  3 4  

0 

Figure 2. 

There are field clamps at each end, i.e. at point 0 and point 5. 

coils at the interfaces between points 1 and 2, and between points 3 and 4. The 

status vectors vo = (ii) and vug = ( i5) describe that the points 0 and 5 are 

located in the midplane, and that they contain the to-be-determined values @o and 

@5 which represent the fluxes going to the midplane through the field clamps. Of 

similar interest are the @-components of 02 and v4. 

. Given Avo = (A:), we describe the coil(s) by 

5 

There are &AV 

where I is the unit matrix. 



where a;k and b;k are elements of these matrices, and thus 

(7.4) * 

With @O and Q!5 now known, (7.1) and (7.2) give the flux produced by the coils in 

the section delimited by points 2 and 3. 

Details of k2. 

One has to be careful to use the correct value for p. If the field associated with this 
dB 
dH‘ flux is parallel to the pre-existing field, one has to use p = - If it is perpendicular 

I> u 
to the pre-existing flux, one must use p = - which is the ((normal p”. H 

Now we must look at the effect of a thin gap over a large area. AV across that gap 

. If a gap-less length ~ and thus AV = - 
‘ Q !  

from flux Q! is gotten from Q! = J /!E 
c / g  

L of p is associated with this gap, the total AV is given by 
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Details of E. 

Only the general approach and the results derived in a separate note are given here. 

There are three contributions to E: flux from the top, from the sides, and from the 

poles facing the midplane. 

Figures 3(a) and 3(b). 

Figures 3(c) and 3(d): 

To get the flux into the top per unit length in direction perpendicular to the paper 

plane, we use as a model the solid block that touches the midplane of Figure 3(b). 

For the flux into each side, we use the geometry of Figure 3(c) and calculate the 

flux into the side. If the side has “pole structure” we take it into account with an 

excess voltage drop coefficient approximation (if necessary). For flux from the poles 

to the midplane, we calculate the flux for the geometry of Figure 3(d), and we use 
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the excess flux coefficient for a solid block of Figure 3(c) to correct the width 2Wo of 

the cross-section shown in Figure 3(a). 

Results for the Geometry of Figure 3(d). 

with '(A/4) calculated by POISSON or an analytical program. vo 
We calculate AWo from the geometry of Figure 3(c), with 

(9.2) 

. .  
The contribution from the 3ux into the top is 

where a1 is determined from 

with b2 = 1 - a:, and 

The flux into the sides contributes 

with D given by (9.2). 
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(10.3) 
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(11.1) assumes smooth sides, i.e., the excess potential drop is ignored. It should be 

noted that the area a in (8) is smaller than the cross-section shown in Figure 3(a), 

the latter includes the poles? while the former does not. 

We make here further clarifications on units. If we were to deal with a uniform 

field over a width of a flat pole, at distance ho from the midplane, E would be 
TV d@ 
H ’  dx exactly E = - That is, - and V have the same dimensions, meaning that either 

po = 4x - is incorporated in the vector potential V ,  or po is left out of the 

definition of a. The meaning of E is the flux per unit length in the axial direction of 

the structure on potential V ,  divided by V .  

ES with excess potential drop is given by 

with 

(11.2) 

(11.3) 

Figure 4. 

h3 
h3 ir 

a=- and 4 L  = - ((a + 1) ln(1 + l / a )  + (a - 1) ln(1- l/a)) . (11.4) 

The effect of AL will be very small under most circumstances. The excess flux 
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potential drop is too small to be of concern for ET. 
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3D Scalar Potential for Saturation-Caused Fields 
in the Insertion Device 

This entails the same approach as for the case of p = co, except that the condition 
dV/dx = 0 at y = h is to be dropped: 

We introduce nkzx = u, and nkzy = v: 

We construct g(u,v) that has the following properties: odd in y, g(-v) = -g(v), and 
gives field approximating cosheu - 1 for y = 0. E is arbitrary, real or imaginary, and 
the field equals 0 for u = 0 when letting E + 0 at end. 
We try g = cosheu sinh av. To satisfy (1): 

e 2 + a 2  = 1 and thus I a =  Js I - 

has to hold. We add a function of v, such that g; is proportional to cosheu - 1 for 
TJ = 0. The only odd function of v that will satisfy this requirement and also satisfy 
(1) is --a sinhv, thus 

g = cosheusinhav - asinhv. (2)  

One can use the superposition of such functions with different e, but this would 
probably not be practical. 
The expansion for E --t 0 is 

1 g = (u2 sinh v - v coshv + sinhv) . (3) 

For 21 = 0, we obtain the expected sextupole field: 
n eL 

g;<u, 0) = Tu2. 

At the pole, where vh = nkZh, 

~L(u, vlL) = -2u e2 sinh vh , 
2 

(4) 

(5) 

It is this field in the x-direction that is responsible for the sextupole field in the 
midplane. 

February, 1992. Note 0125u-w. 
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(5 )  allows us to make an estimate of the saturation effects in the midplane during the 
design phase. Thus, 

x nkzh --. nkzx - - U 9:(u,o) - - - 
gL(u,vh) 2sinhvh 2sinhnkzh 2h sinhnk,h 

It is interesting to note that every additional expansion of (2) in e' leads to a new 
solution to (1) describing the fields in the midplane to the highest orders - x4,x6, 
etc. 
To check on (3), its expansion in kz up to the 3rd order terms in { u , ~ )  gives, as 
expected, 

g = ." 2 (2. - 21 (1 + ; - (1 + ;))) 
= ." (& - ;) 

2 

6 
= -S(u E2 + i v )  3 . - 
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Scalar Potential for 3D Insertion Device Fields 

In the 2D case, 

27r 
V = bncosnkzz - sinhnk,y with k, = - A '  

n=odd 

In order to simplify matters, we drop the sum, and re-introduce it at the end. 
The effects of lateral ends are equally periodic in z, thus nkz =+- k,, and 

Where g ( z ,  y) is valid only in the vacuum region of the {x, y) space. 

Further, we have that 

2 (3) V 2 V = 0  V2g=kzg,  

where g is the Fourier expansion coefficient as a function of 5, y, 

At the pole surface, for integer p, z = pX/2  and y = h = half gap, Bz = By = 0. We 
expand g in a Fourier series in y. We have that g N sinmkyy for ky = n/h,  and 

g = C am sin mkyy - cosh kmx , 

with k k  = kz +m2ki. We use am = bob,/ cosh kmW, where W is half the pole width, 
and we expect bm to be only weakly dependent on W. 

- kz Under most circumstances, - 5 -5. For n = 1, knm M mky, 
liy 

~~ 

February, 1992. Note 0124u-w. 



In the region of interest, only the case of m = 1 is of importance. That is, the 
dominant term is 

(5) 

We may now proceed to conclude that 
(6 )  

From ( 6 ) ,  we expect brim < 0, and -1bnml mky to be in the order of 1, but probably 
nkz 

less than 1. 

Suggestions for Magnetic Measurements. 
Make all measurements as function of z, filter out random errors, and then do the 
harmonic analysis by measuring the quantities derived from sinh nkz y + gn. To mea- 
sure field components, measure By at y = 0 for a number of values of z close enough 
to the lateral edge to get values of bnl and bn2. Then measurements of B, close to 
the lateral ends are made, at y 21 h/2, to check the validity of V(x, y, z). If agree- 
ment is reached, an investigatation of whether bn, are more easily obtained from 
B, measurements is to be done. To verify the model, compare the measurements at 
individual points, without the harmonic analysis, to the model calculations. 
After s&cient measurements, make a table that lists the brim coefficients as functions 
of two dimensionless products (i.e. h/X and W/h) ,  and possibly find a practical 
formula to represent the data. A possible complication may result from saturation in 
the iron which may dominate the behavior of the field as a function of x. 
Examination of experimental data shows that decay of field errors as one moves away 
from the lateral edge of the insertion device can be much slower than this description 
indicates. A possible cause of this may be H, at pole surface caused by saturation. 



(11.1) assumes smooth sides, Le., the excess potential drop is ignored. It should be 

noted that the area a in (8) is smaller than the cross-section shown in Figure 3(a), 

the latter includes the poles? while the former does not. 

We make here further clarifications on units. If we were to deal with a uniform 

field over a width Mr of a flat pole, at distance ho from the midplane, E would be 

exactly E = - That is, - and V have the’same dimensions, meaning that either 

po = 4n - is incorporated in the vector potential V ,  or po is left out of the 

definition of a. The meaning of E is the flux per unit length in the axial direction of 

the structure on potential V ,  divided by V .  

TV d@ 
H ’  dx 

ES with excess potential drop is given by 

with 

(11.2) 

(11.3) 

h i 4  

Figure 4. 

h3 
h3 iT 

a=- ’I4 and 4 L  = - ((CY + 1) ln(1 + 1/a) + (CY - 1) ln(1-  CY)) . (11.4) 

The effect of AL will be very small under most circumstances. The excess flux 
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potential drop is too small to be of concern for ET. 
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3D Scalar Potential for Saturation-Caused Fields 
in the Insertion Device 

g = cosh EU sinh av - a sinh v . 

This entails the same approach as for the case of ,!L = m, except that the condition 
dV/ax = 0 at y = h is to be dropped: 

v = CCOSnkzz-gn(x,Y), 

(2) 

We introduce nkzx = u, and nkzy = v: 

I g = 5 (u2 sinhv - vcoshv + sinhv) . 

We construct g(u,v) that has the following properties: odd in y, g(-v) = --g(v), and 
gives field approximating coshm - 1 for y = 0. E is arbitrary, real or imaginary, and 
the field equals 0 for u = 0 when letting E 3 0 at end. 

(3) 

We try g = coshcu sinh uv. To satisfy (1): 

= 1 andthus I a =  1/31 - 

The expansion for E + 0 is 

For 21 = 0, we obtain the expected sextupole field: 

E2 g&O) = -2. 
2 

At the pole, where vh = nkzh, 

(4) 

E2 gL(u, vh) = -2u sinh vh , 2 (5) 

It is this field in the x-direction that is responsible for the sextupole field in the 
midplane. 

February, 1992. Note 0125u-w. 



(5 )  allows us to make an estimate of the saturation effects in the midplane during the 
design phase. Thus, 

It is interesting to note that every additional expansion of (2) in E' leads to a new 
solution to (1) describing the fields in the midplane to the highest orders - x4,x6, 
etc. 
To check on (3), its expansion in kz up to the 3rd order terms in { u , ' ~ }  gives, as 
expected, 

g = ." 2 (2. - 21 (1 + ; - (1 + $)) 
= 2 (& - ;) 

2 

6 
= -S(u E2 + . 
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Scalar Potential for 3D Insertion Device Fields 

In the 2D case, 

2n 
x V = E bn cosnk,z - sinh nk,y with kz = - . 

n=odd 

In order to simplify matters, we drop the sum, and re-introduce it at the end. 

The effects of lateral ends are equally periodic in z, thus nkz + kz, and 

Where g(z, y) is valid only in the vacuum region of the {x, y} space. 

Further, we have that 

where g is the Fourier expansion coefficient as a function of z,y, 

At the pole surface, for integer p, z = pX/2 and y = h = half gap, B, = By = 0. We 
expand g in a Fourier series in y. We have that g N sinmkyy for ky = n/h,  and 

9 = am sin mkyy - cosh kmx , 

with kk = ki +m2ki. We use am = bob,/ cosh k m W ,  where W is half the pole width, 
and we expect b, to be only weakly dependent on W. 

- rl-2 Under most circumstances, - < .5.  For n = 1, knm M mk,. ky - 
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In the region of interest, only the case of m = 1 is of importance. That is, the 
dominant term is 

(5) 

We may now proceed to conclude that 
(6) 

From (6), we expect brim < 0, and -1bnmI mky to be in the order of 1, but probably 
nk, 

less than 1. 

Suggestions for Magnetic Measurements. 
Make all mezkurements as function of z, filter out random errors, and then do the 
harmonic analysis by measuring the quantities derived from sinh nkz y + gn. To mea- 
sure field components, measure By at y = 0 for a number of values of 2 close enough 
to the lateral edge to get values of bnl and bn2. Then measurements of B, close to 
the lateral ends are made, at y N h/2, to check the validity of V(x, y, z). If agree- 
ment is reached, an investigatation of whether brim are more easily obtained from 
B, measurements is to be done. To verify the model, compare the measurements at 
individual points, without the harmonic analysis, to the model calculations. 
After sufficient measurements, make a table that lists the brim coefficients as functions 
of two dimensionless products (i.e. h/X and W/h) ,  and possibly find a practical 
formula to represent the data. A possible complication may result from saturation in 
the iron which may dominate the behavior of the field as a function of x. 
Examination of experimental data shows that decay of field errors as one moves away 
from the lateral edge of the insertion device can be much slower than this description 
indicates. A possible cause of this may be H, at pole surface caused by saturation. 
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Gradient Measurement in Insertion Device 

The beam is in the z direction. The midplane is the ( 5 , ~ )  plane. We use a vibrating 
coil to measure dB,/dz. 

As a general mechanical design principle, make the wanted resonance frequency and 
its harmonics different from the resonance frequencies of other vibrating modes. 

We want to measure dB,/dz. We move a B,-coil in the x direction that is "long" in 
z and short in x. The problem arises that this motion may excite vibration in the y 
direction, adding a dB,/dy signal. A better way to collect the same information is 
to measure dB,/dy, by vibrating a &-coil in the y direction such that it is "long" 
in z and short in y. Possible contamination due to dB,/dz drops out in the Fourier 
analysis in z. 

February, 1992. Note 0120u-w. 
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Undulator Trajectory and Radiation 

We begin with the following definitions: 

Zym = e i B  = esA!. i. 

gym = € A ( Z ) ,  

BO 
I; 

A = Bo J cos kzdz = -sin kz 

Thus, 

where 

1 1 
- + 1 =  
XI2 €2 sin2 kz' 

J = / i e ipd t ,  

1 
7- 

and furthermore, 

March, 1990. Note 0101u-w. 



and 

y = ~ / ( 1 + I C 2 s i n 2 k z ) d z =  
2Pcr2 

-/(l+yj--- w 
2Pcr2 

where, for P M 1, 

' Therefore, 
W 

C 
J = / x'dz . eiy, with - = kL, 

where 

* k =  (3 (1 + $) -t) , 

Thus, 

Further, from 

- (2n + 1)k = 0, kL(1+ IC2/2) 
2Y2 

kL 
k and solving for -, we have 

(n + 1/2)IC2/2 
1 + K 2 / 2  - U =  
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Mat hemat ical Represent ation of Undulat or and Wiggler Fields 

Undulator and wiggler fields that are not uniform in the transverse direction are 
usually derived from 

V = V cosh klz  sinh k22y cos z with k; + kg = k2. 

Starting with V2V in cylindrical co-ordinates, we have 

v = 0. 

Assuming, without loss of generality, midplane symmetry, we write 

thus getting 

and therefore, 

V = Fn sin ncp COS kz, 

An interesting consequence is that whether one uses (1) or (2), one would get the 
same fields and pole shapes for a sufficiently small kr. 

, xanIn(kr )  sinncp = cosh(k1r cosy) sinh(k2rsincp), (4) 

and, in particular, this means that 

unIn(kr)7r = & cosh(k1r cos cp)  sinh(k2r sin 9) sinnydv. 7 0 

This must hold in particular for kr << 1, i.e. by comparing the lowest order term in r 
and executing the trivial integrations, one gets a, which then leads to an extremely 
interesting integral representation of In(kr). 

July, 1986. Note 0055u-w. 
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Charge deposition on 3D steel surfaces of V-Q model by magnetic 82 
charge and dipole 
Force, torque on rotatable ring in VSHQ 82 
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01 18csem 
01 19csem 
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0126csem 
0 127csem 

0128csem 
0129csem 
0130csem 

013lcsem 

0132csem 
0133csem 
0134csem 
0135csem 

0136csem 
0137csem 
0138csem 
0139csem 

0140csem 
014lcsem 
0142csem 

A simple method to correct harmonics of segmented quad with 
trapzoidal pieces 
A method to correct excitation errors of poles of adjustable strength 82 
quads 
Comment on notation in notes in this file 82 
“Proper” design of p = periodic wiggler pole 82 
Flux-potential matrix for hybrid quad 82 
Correction of excitation errors in variable hybrid quad 82 
Gm8 comer fields, potentials 82 
Permanent REC (or ferrite) dipole with all REC touching steel (for 82 
H.W.) 
Hybrid quad design numbers (1) 82 
Hybrid quad design formulae and program (2) 82 
Program for design (analysis) of adjustable hybrid quad, with prog 82 
and sample 
Splitting of VSHQ-excitation into midplane - symmetric and 
antisymmetric part 
Optimization of REC in corner of dipole 

82 

82 

82 
Methods to avoid or correct skew quad component in variable 
strength hybrid quad 
Fields in Gm9, especially “exponential decay” 
Box CSEM dipole magnet 

82 

82 
82 

Thoughts on determining and then correcting field errors caused by 82 
CSEM tolerances 
Magnetic field between 45” line and points on a straight side of pole, 82 
with CSEM touching pole 
VSHQ issues, problems, solutions 82 
Force, torque, to rotate ring in VSHQ 82 
Temperature compensation of hybrid permanent magnet 82 
Pattern of harmonics produced by direct and indirect error fields in 82 
VSHQ 
Excitation of exponentially decaying fields by I,  Q 82 
VSHQ implementation ideas 82 
Excitation variation, and Bmax at outer boundary of poles, of VSHQ 82 

82 23, Bi between 45” line and points on straight side of pole, with 
CSEM (easy-axis perpendicular to x-axis) touching side of pole 
HDIP printout rotation 

-- 

1/8 box hybrid clipole magnet - with program and sample run 
Stored energy in CSEM 

82 
82 
82 
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0163csem 
0164csem 
0165csem 

0 166csem 
0167csem 

0168csem 

0169csem 
0 17Ocsem 

017lcsem 
0172csem 

Hux distribution symmetry theorem 
Design of hybrid wiggler pole for “perfect” cosine field 
Equivalent circuit analysis of hybrid wiggler with midplane 
symmetry 
List of work by Nestle 
LBL hybrid wiggler members 
Effectiveness of CSEM in “unused corner” of 2D box magnet, and 
in a 3D magnet 
Behavior of F, Fdz, F’in vicinity of a comer 
Optimization of PM wiggler for max intensity of light received by 
small receiver at h 
Thoughts and comments to wiggler optimization 
Optimization of PM wiggler for max light into receiver small in 
bend plane and integrating in dir. perp bendplane 
Variation of undulator h,K with gap for fixed K,h 
3D off axis pot. and fields for 1/0 periodic array of dipole rings 
3D fields on axis from dipole ring magnet 
3D off axis potential from 3D on axis potential for ring dipole 
Necessary 1-1 of ring dipole to get given field quality in 2D 
Matrix representation of ladder network with coupling across 2 
rungs 
Correction of hybrid dipole field strength by changing gap 
Execution of dipole with anomalously small overhang 
Suggestions for execution of stack design for low overhang dipole 
Triplett, with kl = k2, cp1= a, hard edge, with given L, 1 / f 
Design of cos 2 9  quadrupole 
Hard edge solenoid as objective, and comparison of mass with that 
of hard edge triplett 
Steering magnet 
Linear model of outer pole circle of VSHQ, to calculate strength 
range, field on pole surface, torque, field in CSEM for split-ring 
strength adjuster 
Suitability of matrix, from harmonics pattern from 3 sources, for 
inversion 
Excess flux in GmlO 
Representation of gap between CSEM and steel on sloping side of 
VSHQ, for use in POISSON-tolerance run 
Summary of excess flux formulae 
Extraction of absolute tolerances of VSHQ from POISSON runs 

- 
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01 83csem 
0184csem 

0185csem 
0 186csem 
0 1 87csem 
0188csem 

01 89csem 
019Ocsem 
0 19 lcsem 
0192csem 
0 193csem 
0194csem 
0195csem 

0196csem 
0197csem 
0198csem 
0 199csem 
0200csem 
0201csem 
0202csem 

0203csem 

Fraction of charge deposited on several surfaces on V= 0 82 
''DNA-ProjectYy (Vachette) 82 
Investigation of possible geometries for dipoles and quadrupoles 82 
suitable as elements of an e-storage ring 
Reprints left at Orsay 82 
Use of HDlP2, vHYBQ6,7; LEFF 82 
Optimum operating point of CSEM 83 
Effectiveness of CSEM in "unused" comer of 2D box magnet, and 83 
in a 3D magnet 

'calculation of Jl_,T v(x)dr for Gmll 83 

84 calculation of j - = T  v(x)dr for Gml 1 (more concise) 

Excess flux into comer in Gm12 
Excess flux into Gm13 
Conceptual design procedure for hybrid wiggler with superimposed 
"uniformyy field 
Charge deposition in wiggler excited as a dipole 
Excess flux in Gm14 and Gm15 
Hybrid undulator with superimposed quadrupole field 
Practical approximations for flux deposition from charge sheet in 
Gm16 
SC transf. of Gm17, and excess flux, for POLE 
Design procedure for a hybrid-hybrid wiggler (ELF #93) 
2D hybrid-hybrid design formulae (ELF #94) 
Hybrid wiggler with l/O-thin pole 
H* and F produced by trapezoidal block of CSEM 
Calculation of H* and F produced by "polygonal" block of CSEM 
Measurement of magnetic properties of trapezoidal block of CSEM 
for multiple magnet 
Estimate of Leff of hybrid quad without field clamp 
Mmmuation of excitation errors in hybrid quads 

Design of CSEM damping wiggler - (for DWl program) 
Summary of excess flux formulae and copies 
Calculation of gradient off axis from gradient on axis 

. .  . 
B2 dx - deficiency in midplane of Gm8 

83 
83 
83 

83 
83 
83 
83 

83 
84 
84 
84 
84 
84 
84 

84 
84 
84 
84 
82 
84 

Formulae for optimization of volume of ring magnet to produce 
given field 
Program for development of balloon magnet 

84 

84 
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0227csem 

0228csem 
0229csem 
023Ocsem 
023 lcsem 
0232csem 
0233csem 

0234csem 

0235csem 

Program and printout of optimum dipole ring magnet for given field 
Tolerances that lead to field errors in hybrid U/W 
“Simple flux” into conical surfaces in cyl. geometry 
Ring-magnet design program LA1 
Antisymmetric Undulator to make vertically polarized or circularly 
polarized light 
Hybrid pole width optimization (neomax) 
CSEM “no center piece” septum magnet 
Thoughts on the design of antisymmetric hybrid W/U 
Antisymmetric hybrid W/U analysis/design 
mIP5 
Field produced by rectangular charge sheet (87 - Zylin note) 

Representation of hybrid W/U by ladder network 
V, A in Gm19 
SC transformation and fields in Gm20 
Scheme to achieve cancellation of net flux into beam region of U 
due to change gap 
Flux load on V-bus due to statistical fluctuations in CSEM flux 
deposition on poles 
Direct flux to midplane due to half-gap change of one pole 
Flux deposition on V =  constant surface from magnetic charges, 
with anisotropic medium 
Even vs. odd number of poles in U/W 
New approximation for flux deposition from charge sheets in Gm16 
Explicit expansion of fields for x + = in Gm16 
Charge deposition from coil on pole in 2D 
An apparent paradox associated with charge deposition from coil on 
pole in 3D 
“Excess” flux at inside corner of Gin3 
Flux into end of hybrid quad 
End flux in VHBQ (for HQ1) 
VHBQ end flux formulas for comp. progr. 
2D hybrid UTW that is equivalent to helical hybrid U/W 
“Hux” seen by straight trajectory under one CSEM block pair in 
pure CSEM undulator 
Measurement of properties of CSEM block to be used in CSEM- 
iron circuit 
Fields in Gm16 

Vhin  Gm18 comer 
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026Ocsem 
026 lcsem 
0262csem 
0263csem 
0264csem 
0265csem 
0266csem 
0267csem 
0268csem 
0269csem 
0270csem 

Ideal helical U/W fields 
Lin. hybrid U that is equivalent to helical hybrid U (details) 
Pure CSEM dipole fields 
Antisymmetric hybrid undulator 
Performance limit of antisymmetric helical U 
EM vibrator for Earth Sciences project 
A = I B .  Br ‘v,IB,I * for some geometries between two circular 
cylinders 
Excitation for helical U/W 
Flux equation for helical U 
Helical U/W excitation patterns 
Effect of finite slice thickness in helical U/W 
1 / y for Gm21 
Optimization of flux into circular cylinder next to 1/0 plane 
V-bus with varying circular cross-section 
Flux density in PM assisted V-bus for hybrid quadrupole 
I V&No in field of circular cylinder next to infinite plane 
Correlation functions associated with (lkosh x), (xlcosh x) 
Fourier transforms of (l/cosh x), (xlcosh x) 
V-surface to orient homogeneously a block of CSEM 
V-surfaces for homogeneous orientation of 2D CSEM ellipse 
V-surfaces for homogeneous orientation of 2D CSEM circle 
Formulas for calculation of flux induced on surfaces by CSEM in 
Gm16 geometry 
Microtron magnet (for Louis A) (M/Cl) 
e trapping with PM in ALS pump (ALS 1) 
Laterally long pure CSEM “quadrupole” 
Field on t = constant line in Gm16 (HW4) 
Harmonics for CSEM ring with a = my, but externally centered 
Multiple aperture hybrid quadrupole system 
Bmax in pole of hybrid quad 
mQ1 
Field inside homogeneously magnetized CSEM rotational ellipsoid 
PM assisted electromagnets + laced em 
Field lines in Gm22 
Program for expansion of F in Gm16, and V@)dy, V(x)dx 
Hybrid buckets 
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029Ocsem 
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0293csem 
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0295csem 
0296csem 
0297csem 
0298csem 
029 9csem 
0300csem 
030 lcsem 
0302csem 
0303csem 
0304csem 

0305csem 

Design of bucket system (Physics) 
Thoughts on CSEM and iron solenoid magnet for Ed Rowe 
Excess voltage in Gm16 
Excess voltage in Gm16 (see work of 10/86 note) 
Ideas on producing strong solenoidal fields with a hybrid CSEM 
system (for Aladdin user) 
Execution of strong hybrid solenoid design 
Excitation of cylindrical box magnethybrid solenoid 
CSEM ring dipole assembled with square blocks 
Analysis of low field performance of PM assisted em 
HQ1, Bmax for HQ1 
Laud quad 
V = constant surfaces inside CSEM multipole (n 2 2) 
Solenoid fields from CSEM cylinder, axially magnetized (for Ian 
Brown) 
Stan Ruby's problem 
New version of bitter map for Gm17 
An important theorem, and a new map for Gm17 
Manageable integrals for map of Gm17 
3'01 and F12 for small n for Gm5 

Some excess flux geometries that are very easily analyzed 
Fields, flux, etc. in 2D hybrid wiggler with 0 thickness poles 
Calculation of flux entering p = 03 surfaces 
AB* due to displacement of rectangular 2D CSEM block in vacuum 
Use of 2D excess flux formulae in cylindrical geometry and for 3D 
edges 
Excess flux into pole in Gm34 
Excess flux into Gm35 

B'dz for CSEM quad with conical ends 

Preliminary design of hybrid orange spectrometer 
Orange spectrometer ray tracing in midplane 
Excess flux in Gm2 
Efficiency of use of CSEM in Ian B.'s magnet 
Hybrid U/W design in dipole geometry 
Excess flux in Gm36 
Excess flux coefficients/calculation for the end of hybrid multipoles 
H* at edge of CSEM block, with recipe for 9 In= 2-22 

Laced cylindrical electromagnet 
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0329csem 
033Ocsem 
033 lcsem 
0332csem 
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0334csem 
0335csem 
0336csem 
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Continuously laced cylindrical magnet 
Ian Brown’s cylindrical hybrid 
WeberNrakking magnet 
Some points that help to visualize/calculate the force between coil(s) 
and block(s) of CSEM 
Determination of b for mapping of Gml onto Gm37 
Tuning block efficiency 
Maximum achievable field in hybrid (CSEM and iron) quadrupole 
Further work on hybrid quadrupole performance 
Shorting ring in hybrid quadrupole 
Flux between cylinder next to infrnite plane, and that plane 
Proper placement of CSEM in adjustable hybrid quadrupole 
Cylindrical magnetic bucket system with 1 “must” hole 
Direct flux from round block of CSEM with Br = constant, in 
general, and in Gm38 
Ellipse with pi inside medium with p2 
Effect of hole through yoke of spectrometer on field in business 
region 
Generalization of flux calculation with reciprocity theorem 
By cos kxdx from individual (error free) CSEM blocks in iron- 

free M’ = 4 insertion device 
Steering and displacement of electron beam from individual (error 
free) CSEM blocks in iron-- M’ = 4 insertion device 
Summary of steering, displacement, and By cos kzdz 
Shaped bucket pole 
Excess flux coefficient for Gm39 
Excitation of hybrid quadrupole 
Excess flux on 0-thickness pole 
Torque and force on uniformly magnetized CSEM cylinder in H 
Periodic pole structure SC map 
Excess flux formulae for Gm30 
Summary of excess flux formulae for Gm3, Gm18, and 
GO208cm30 
Flux induced by rectangular and horizontal CSEM block between 
three circles 
Cyclotrino magnet 
H* at end of CSEM block 
Integral for excess flux calculation 
Comments and background for EXCESFL 
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0023ctr 
0024ctr 
0025ctr 
0026ctr 
0027ctr 
0028ctr 
0029ctr 
003octr 
003 lctr 
0032ctr 
0033ctr 

Fields from charge sheet in xy-plane at z = 0 
Field perturbation of homogeneous field by sphere 
2K = 1 B(Bo-B)dz for Gm24 

2K = B(Bo-B)d~ for Gm42 

Flux and EFB for corner magnet (Gm24) 
At least one focus for any hard edge magnet 
First order optics for swap magnet without space charge 
First order matrices for bending magnet 
Bend magnet with two EFBs parallel to each other 
Some optical properties of reflection sweep magnet 
Extrapolated penetration for exponential field 
Achromatization condition for displacement in reflection magnet 
Continuation of 001 lctr 
Two-step field distribution to give minimum of extrapolated 
penetration 
Results of transmission magnet and various notes 
How to deal with multiple beams in bendplane 
Space charge effects on a straight line in phase space 
Effects of constant E on phase space point 
Space charge effects in band beam 
Scraping of beam at walls parallel to the midplane (two versions) 
Minimum spot size and maximum density in bend magnet 
Production of second half of reflection matrix 
Analytical bend plane matrix properties 
Actual numbers for power deposition normalization 
First order matrix in bend plane for B,(x,y) = B(y) 
Matrix perpendicular to bendplane (two versions) 
Trajectories in strip magnet III 
Trajectories in strip magnet II (Reference trajectory in midplane) 
Trajectories in strip magnet I 
Fluxes in Gm25 for three stacked dipoles 
Three stacked dipoles with three power supplies 

Eddy currents effects from cylinder excited by multipole field 
Conducting cylinder in time dependent homogenous field 
perpendicular to axis 

Bo2 

Bo2 

summary of optics formulae 
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005octr 
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0054ctr 
0055ctr 
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0057ctr 
0058ctr 
0059ctr 

0060ctr 
0061ctr 

0062ctr 
0063ctr 
0064ctr 
0065ctr 
0066ctr 
0067ctr 

Eddy currents in cylinder in time dependent field parallel to axis 
Strip magnet orientation 
Power density perpendicular to reference trajectory 
New method to calculate power densities, including Gaussian 
distributions 
Eddy currents in ferromagnetic spherical shells and balls 
Summary of eddy currents formulae 
Transmission through two apertures 
C = B A  
Aperture projection for curved source and drift I 
Aperture projection for curved source and drift 11 
Aperture projection 
Transmission through two half apertures 
Transmission through apertures with general mi 1 and mi2 
General aperture projection 
Flux exclusion from Gml 
Superconducting circular pipe in multipole field . 

Thoughts on eddy current problem 
A potentially useful conformal transformation 
Superconducting and p = 
Approximation to S-C transform of outside of Gml to outside of 
Gm37 
Eddy current distribution in a special box 
Phase space transform 
Field perturbation by superconducting box 
Shielding bar optimization results 
Steel grid with maximum pumping 
Aperture projection for curved source and drift space, and 
application 
Absolute duct protection program 
Projection of general duct into starting phase space, for general 
transform matrix 
Eddy current fields from 0 3 ,  neutral beam boxes (and other notes) 
Pressure distribution in neutralizer tube 
Properties of molecular flow in general duct 
Probability treatment of molecular flow in general duct 
Optimization of flow role through neutralizer 
Chevron transmission coefficient 

elliptical pipe 
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0087ctr 
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009octr 
009lctr 
0092ctr 

0093ctr 
0094ctr 

0095ctr 
0096ctr 
0097ctr 
0098ctr 
0099ctr 
Olooctr 

Transmission of fields through shielding bars 
Field penetration through shielding bars 
Duct with changing cross-section A and circumference U 
Temperature rise in insertion device, two layer structure 
Transmission numbers through duct, with absolute protection 
Angular distribution for 2D flow, if 3D distribution follows 
Lambert's law (Original and Corrected version) 
Absolute protection of tilted duct 
what is 7 for mil = i3 d2T 

am1 1 

Transmission through aperture with general mi 1, m12, for 2759 
Simple representation of "streaming" into duct 
Behavior of eddy current caused power dissipation 
Eddy current power dissipation in thin walled, infinitely long 
cylinder with field parallel and perpendicular to axis 
Eddy current - energy deposition 
Eddy current - energy deposition 
Working formulas for eddy current energy deposition 
Power density perpendicular beam 
Extreme location of full energy 
Eddy current energy deposition in whale bone pipe structure 
2759 program for shielding bar calculations 
Pressure changes due to change of conductance or pumping speed 
Summary of formulas of interest for 2D-shielding 
Two shielding problems 
Magnetic field inside eddy current shielded box 
Loss of beam on poleface 
Feasibility of decreasing power density at calorimeter at the expense 
of some transmission loss at symmetric collimator down, by 
choosing appropriate focal point 
Calorimeter power density and collimator transmission versus FP 
Calorimeter power density and collimator transmission versus Fp 
for various Z(-JO 

Absolute duct protection geometry in vertical direction 
Ellipse made of superconductor, or steel, or both 
Cylindrical shielding with conductors, steel, conducting steel 
Tapered shielding finger system with maximum conductance 
Realistic p = = finger shielding factor 
Shielding of inside of Gm40 against dipole field 
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0001u-w 
0002u-w 
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0004u-w 
00051.1-w 
0006~-w 
OOO~U-W 
0008u-w 
0009u-w 

001ou-w 

00 1 lu-w 

0012u-w 

001311-w 
0014~-w 

0015~-w 

T-measurement in plate 
A useful procedure for measurement of total power in an isolated 
ion species on D3 injector beam dump 
Point on inclined plate where power density is independent (to 1st 
order) of 
Thermistor location procedure 
Temperature rise in solid insertion device plate 
Temperature distribution on ion dump resulting from non-uniform 
energy deposition 
Summary of TI59 runs to determine best location for thermistor 
array on beam dump 
Aperture projection program for 7759 
Effect of collimator on power density in beam dump 
Beam dump sensors problem 
Insertion device power density on axis perpendicular to beam for 
ZEPHYR 
Analysis of bus system 
Analysis of undulator with V-busses 
Formulas for new POL= progr. 
Summary of formulas for new POLEMM progr. 
Optimization of wiggler coil area 
Flux into pole Gm23 from end of CSEM block 
Design of pole of EM wiggler with rectangular coil 
2nd optimization of EM wiggler pole shape 
Trajectory displacement due to a single pole (above and below 
midplane), and k pairs of poles, of an iron wiggler array 
Design of wiggler taper adjustment system that avoids trajectory 
displacement 
Trajectory displacement due to y-change in wiggler consistency of 1 
-2 1 modules 

J+:~(z)z~z for ~(-2) = ~ ( z )  from ELF wiggler 

Steering strategy for ATA wiggler: definition of problem 
Summary of work on displacement in EM w, and methods to avoid 
it (chronologically) 

78 
78 

78 

78 
76 
78 

79 

79 
79 
79 
80 

85 
85 
85 
85 
85 
85 
85 
85 
85 

85 

85 

85 

85 
85 

Translation of excitation patterns in EM WAJ into CSEM needed for 85 
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Focusing in planar undulator with curved poles 
Trajectory of electron in wiggledundulator with strong field in 
midplane parallel to midplane 
Thoughts on effect of field errors in U on radiated spectrum 
Synchrotron radiation3iom sinusoidal trajectory in arbitrary 
direction 
Thermal noise from general passive linear electric system in thermal 
equilibrium 
3rd order errors inside quadrupole 
2nd order kick at entrance of dipole 
Lowest order nonlinear kick in fringe field region of multipole 

I = /  b f ( x ) h  
al/x-adZZ 

Some notes on electrical circuits 
Shortest twilight 
Map of circular disk on “nearly” eliptical disk (W) 
Weighted interpolation with N= 1 parabolas and equidistant 
intervals 
Large y electron buncheddebuncher 

K = ~ome-zcosh~coshntdt = K(z,n) 

Satisfying an incomplete set of linear equations Mr = by and 
CWni-: =  in. 
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0247misc 
0248misc 
0249misc 
0250misc 
025 lmisc 
0252misc 
0253misc 
0254misc 

0255misc 

0256misc 
0257misc 

0258misc 
0259misc 
0260misc 
0261misc 
0262misc 
0263misc 
0264misc 
0265misc 

0266misc 
0267misc 
0268misc 

0269miSc 
0270misc 

Multilayer mirrors 1) basics 
Multilayer mirrors 2) periodic structures 
SLUWEU-Y of multilayer design formulae and procedures 
Some thoughts on design of multilayer mirrors 

u; u: 
Jacobian J = [ u; u;) in complex notation 

Determination of circle that connects three points 
Map of straight line segment 21,22 with W =  kz2 
Necessary condition for conformality 
Reflection magnet with achromatic zero offset 
Location and size of waist in driftspace from p2, pi,  4 
Achromatic spots 
[Jock) - J1(k)I2 

Decay of error fields in (ideal) t (not all is correct) symmetrical 
iron dominated quad 
Malcolm’s mechanism, note #1 
Mechanism for Malcolm H., note #2 (on airplane from SFO to 
JFm 
Synchrotron light phase shifter 
Trajectory in gradient magnet 
Least square fitting of function 
Design of quadrupole system with Mx + My = 0 
Twister condition (re-write of 197 1 note, for SSRL) 
Twister condition 
Letter-Herman/Heinz (some notes) 
Expansion of Taylor series, raised to some power p, into a Taylor 
series (for Bozoki) 
Inversion of a Taylor series, with recursion formulae 
Analog integrator dynamics 

F(x) = ~ ~ ~ ( X C O S  9)dq 

New bumps 
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0273misc 
0274misc 
0275misc 
0276misc 
0277misc 
0278misc 

0279misc 
0280misc 
028 lmisc 
0282misc 

0283misc 

0284misc 

0285misc 

0286misc 
0287misc 

0288misc 
0289misc 
0290misc 

0291misc 
0292misc 
0293misc 
0294misc 
0295misc 
0296misc 

0297misc 
0298misc 
0299misc 
0300misc 
030 lmisc 

Chromaticity correction with sextupole 
Simple proof for “amusing geometry theorem” 

90 
90 

An amusing geometry theorem 90 
Radiative energy loss by accelerated charge 
Analysis of analog integrator 90 
Analysis of analog integrator (Milan) 
p function in unstructured focusing quadrupole 

90 

90 
90 

Dimensional analysis of trajectory of non-relativistic charged 92 
particles in stationary electric and magnetic fields 
Gravity drive ‘’train” 92 
Map of interior of unit circles with centers at z = 0, o = 0) 92 
Simpler map of interior of circular disks onto each other 92 
Map of circular unit circles onto each other, with given maps of two 93 
points on circumferences 
Mathematical framework for production of achromatic spot, using 77 
only quadrupoles and/or solenoids 

77 
consisting only of quadrupoles and solenoids 

77 
systems at LASL, November 34,1977 

A simple derivation of the Lorentz transformation without talking 
about light 
General map of circular disks onto each other 

Production of achromatic spot with a beam transport system 

Memo to participants of the discussion on linear beam transport 

Fringe fields ?? 
92 

92 
93 Math for MATROPT (document, programs and assorted notes) 

J = J+”[F(x) - F(x - 
-00 

93 

Multipole fields 
statistics 
statistics 
Mother-Daughter Detection 

67 
67 
67 
67 

Statistics for decay time measurements 
Application of generating function of two variables to specific 
problem 
Generating Function with several variables 
First order matrix-differential equation for relativistic particle 
Field in twisted symmetrical multipole 

67 
67 

67 
67 
69 

Beam optics for long, twisted quadrupole 
1; calculations 

67 
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Spline function 67 
Radial stability for constant guide field 67 
Electron ring acceleration in guide field B, with RF mode that has 67 
only E$r, Bz fields 
Asymptotic injection 68 
Space charge blow-up of beam 68 
Dimensional analysis and partial differential equation 68 
Heat conduction for septum 67 
Compton scattering 68 
Particle trajectory in B 68 
Superinsulation 68 
Solutions z2 - 2zb + 1 = 0 for complex b 69 
Dependence of maximum of absorption signal after low frequency 69 
demodulation on modulation amplitude 
Derivation of hrentz transformation 70 
Space travel with constant acceleration in moving cycle 70 
Correlation matrix and best weight matrix for past least square 70 
evaluation of parameters 
-- expansion 
Hx 
Bump size test 
Thoughts on elimination of 6 pole components resulting fiom 
saturation 
Thoughts on how to specify desired field 
Sliding intersection between “centered ellipse” and “displaced” 
hyperbola 
Magnetic field energy calculations 
Skin effect in Fe 
Penetration of fields into iron (transients) 
Curvature of field lines in a quadrupole 
Absolutely necessary width of pole of magnet 
Solid conducting sphere in homogeneous AC field 
Effect of eddy currents in strap coils on field distribution in 
omnitron synchrotron magnet 
&pole field with added higher multipole components 
6-pole run as 4-pole 
Rotating fields 
Basic symmetries of magnets 
Consequences of field symmetries for editing purposes 

65 
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65 
66 

66 
66 
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66 
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0033thry 
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0035thry 

0036thry 

0037thry 
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0039thry 

Fields at center and on center of pole tip in 3-pole case 
Ideal quadrupole 
Perfect 6-pole 
Sheet current ellipse and p = = shield for production of 
homogeneous field inside ellipse 
Current filaments in circular p = 00 iron shell with r = ro 
Septum problem 
Field perturbation in septum magnet 
Errors from non-uniform current distribution in return path (near 
yoke) of septum magnet 
Numerical solution of algebraic equations 
Measurement in 6-pole of second order contribution to signal 
measured with pick up coil 
Field perturbation produced by bump 
Effective length of a magnet 
Field produced by two superconducting current sheets 
Magnetic field inside of ellipse with uniformj over its total area 
Field energy for B = H 
Summary of formulas for energy, force and torque 
General force formula for cylindrical geometry 
Two-dimensional field produced by “odd”-shaped conductor with 
constant current density 
Vector potential measured by bundle of wires with polygon as 
boundary 
Pick up coil system for harmonic analysis with suppression of all 
harmonics up to n 
Experimental zero-field point determination in sextupole 

66 
66 
67 
67 

67 
67 
67 
68 

68 
67 

68 
68 
67 
68 
68 
67 
68 
68 

68 

68 

68 
The number of zero-field points in the aperture region of a multipole 68 
magnet 
Octupole component produced by a sextupole run as a quadrupole 68 
Sextupole with one pair of poles having different excitation or 68 
different spacing 
Better method to drive error fields produced by error excitation of 68 
one pole of a symmetric 4-pole 
Symmetrical 4-pole with only one pole excited 
Amplitude and phase errors in harmonic analysis 
Current distribution and power dissipation in conductors in two- 
dimensional fields 
1/4 of Panofski quadrupole with non-constant current densities 

68 
68 
68 

68 
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007othrY 
0071thry 

0072thry 
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0074thry 

1/4 of Panofski quadrupole with unequal current densities 
1/4 of Panofski quadrupole 
Application of trim to a cavity problem 
Quadrupole with filaments to give sextupole 
End of septum magnet 
Field distribution in shielding plate (SLAC problem) 
Multipole expansion of the sector potential in a circular aperture 
Schwarz’s formula 
Calculation of fields, gradients and multipole coefficients by 
contour integrals over circle 
Qualitative considerations concerning field corrections with special 
coil windings and “chunks” of iron, using the 2D current flow or 
fluid flow analogue 
More details about the “vane-skim” 
Minimization of stray fields of magnet by optimizing “steel shield” 
Fourier analysis of numerical data 
Fields in Gm8 
Combined skew 4-pole and normal &pole 
12-pole with straight slots for combined skew 4-pole - “normal” 6- 

Transformation of curvature under conformal map 
Methods to eliminate or reduce long time dynamical drift of systems 
(“creepy magnet”) 
Optimization of a function of more variables than number of 
restraints plus one 
Heating of kicker magnet “coils” 
Integrated multipole strengths for skew axis 
Power with eddy currents in sheet 
optimization of coil slot for combined 6-pole and skew 4-pole 
Multipole components with respect to displaced axis 
Sensitivity of solution of linear equations to change of an individual 
matrix element 
Change of determinant for small changes of one element of the 
matrix that describes a system that is least squares optimized with 
restraints and has least squares limitations on parameters 
Allowable relative errors of the elements of matrices describing 
system to be optimized 
Error analysis for parameters obtained from least squares 
optimization with restraints and least squares bound on parameters 

Pole 
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0097thry 
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0099thry 
Oloothry 

OlOlthry 
0102thry 

Efficient method to solve homogeneous system of linear diff. equ. 
with const coefficients 
Data analysis of stripping cross-section measurements 
Comer saturation 
Transmission of rotation angles through universal joint 
Summary of integrator roles from Dec. 63 
Fields in magnet with midplane symmetry in r, q z  
2D fields in slab (no iron or singularities) in region of description 

'B and H variation in direction of center of curvature of V= constant 
and A = constant lines in 2D isotropic, homogeneous, nonlinear 
iron 
B and H variation in direction of center of curvature of V= constant 
and rAq = constant lines in cylindrical geometry for isotropic, 
homogeneous, nonlinear iron 
Reduction of B(H) measurements on torus 
Capacitor stray field (for Bob Smith). 
Power dissipation in tape wound quadrupoles 
Field quality criterion 
Field error criterion for non-circular aperture 
Some general field relations expressed in complex form 
Effective length of quadrupole 
Comparison between L1= [B]/Bo and L2 = 24- for 
several B(x) 
Better formulation of effective length of 4-pole for first order optics 
Force between HlLAC quadrupoles 
Total extinction lines produced by magneto-birefringent material 
between crossed Polaroid jitters multipole magnet 
Weights for calculating potential from potentials at surrounding 
points if pot. satisfies Laplace's equation 
Resistance of specific 2D sheet structure 
Computation of upper and lower limits of impedances of 2D 
structures with variational principle 
Relation between Hx at pole face and Hy in midplane of magnet 
Measurement of Fourier coefficients of field between two p = = 
plates 
Calculation of Fourier coefficients of H* 
Representation of fields between two parallel plates of p = 

Logarithmic spiral 
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012lthry 

0122thry 
0123thry 

0124thry 

0125- 

General relationships of fields in linear, location independent, 
anisotropic medium 
Effect of nonlinearity of iron on the effect of small perturbations in 
3D 
Scalar potential and pole face for p = OQ bending magnet with 
cylindrical symmetry, and given inhomogeneous field in midplane 
Scalar potential and p = 00 poleface for inhomogeneous field with 
midplane symmetry in cylindrical magnet with axis outside field 
region 
Scalar potential and p = 03 poleface to get given inhomogeneous 
field with midplane symmetry in cylindrical magnet with axis far 
outside of field region 
Correct POISSON equation for cylindrical geometry 
Effect of current sheet in midplane of windowframe magnet 
Additional effective “force” length and “field” length of comers 

Orthogonal 2D analogue for 2D and cylindrical geometry magnetic 
fields 
Energy in magnetostatic field, and derivation of field equations from 
variational principles 
Derivation of TRIM equ’s from variational principle 
TRIM equ’s for anisotropic medium 
Evaluation of b(H) curve from flux measurements on “washer”- 
shaped iron ring 
Evaluation of b(H) curve fiom flux measurements on ‘‘washer”- 
shaped ring (without Fourier transform) 
Feeding of 4-poles 
Eddy current loss in Fe for E = 
Eddy current loss in Fe for 
Rise time of magnetic field and eddy current - energy deposition in 
pulsed magnet (old version) 
Power dissipation and ‘‘&j$’ of Cu conductor in pulsed magnet 

coscot with Pryntig reactor 
= sin cot 
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73 

Energy dissipation in vacuum vessel 71 
Eddy current effects for ramp excitation (one pulse) 71 

Eddy current effects in pulsed magnet 71 
Eddy currents (does not take nonlinearity-induced apparent 70 
anisotropy into account) 
Rotating E quadrupole and DC magnetic field as mass filler 71 
RF Bar 71 
Matrix for cylindrical lens for q(z)  = qo + & 71 

Effect of gap above HT-conductor 71 
Effect of horizontal gap on Ht-distribution produced by Ht-filament 7 1 
(reformulation of 317 1 notes) 
Eddy current time constants in Fe-magnets 70 
Beneficial effects of saturation in yoke-connected field clamp 71 
Eddy currents for cylindrical geometry 72 
Turn-on procedure of magnet to avoid “overdriving” B(H) curve 7 1 
B(H) measurement with two rings; cancellation of contributions 71 
B’, B‘,B”’ 
Normal TRIM-equation 71 
Simultaneous compensation of two time constants 71 

Important eddy current formulae 74 

Procedure to make small changes of field level in large magnet so 
that inhomogenieties in gap decay as fast as possible, and to reach 
new field level in shortest time 
Dynamical system to drive ‘cloudspeaker” 
Coating of steel with Cu to reduce eddy current losses 
SLAC - bubble chamber eddy current problem 
Power loss in coil in limit of “small” cross section 
Eddy current power in the limit of “small” losses 
Losses in ‘cloudspeaker” coil (SLAC) 
Qualitative considerations for SLAC bubble chamber - 
“IoudspeakeP 
Numbers for bubble chamber ‘loudspeaker” 

71 

71 
71 
71 
71 
71 
71 
71 

71 
Convergence test (originally done spring 1970; notes lost; this 72 
written in spring 1972) 
Windowframe tolerances 71 
Slit effect for p = 00 71 
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Purcell gap: necessary accuracy of field level in gap and allowable 
n = 3 in gap 
Matrix method to calculate effect of Ht at one boundary of Purcell 
gap ori field in working gap 
Expansion of field from conductor in Gm24 geometry in e& 
Model for necessary height of slit 

71 
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71 
71 

Slit, necessary height 
B calculation in ellipse of different p 
B2 calculation for cylindrical POISSON, and differential equation 
Effect of turns at ends of 4-pole (letter to Bohm) 
Slot in windowframe: elimination of e-m perturbation term for 
p=eO 
Slit in windowframe: compensation of e-m perturbation with 
geometry for p = = 
Slot in windowframe: elimination of e-*z perturbation with fdament 
f o r p = =  
Effective width of pole; original, working version 
Operating point of naked permanent bar magnet 
Symmetrical comer/curtain 
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Square box with rounded box inside that has IEl = constant on 
S u r f a c e  
Field error criteria for non-circular aperture 

72 

70 
72 

Execution of expansion of into exponentids 72 

Best excitation of 8-pole to produce dipole 
Best excitation of %pole to produce dipole 
Best excitation of 12-pole to produce dipole 
Production of n = 3 or n = 4 in 12-pole 
Summary of harmonics produced by "abnormal" excitation of 
perfect symmetrical multipole magnets 
Field measurement with cylindrical coil 
Pole face windings 
Curvature of 3D V =  constant surface 
One-pole shimming of dipole with n = 3 component 
Axial motion of particle in cylindrical magnet with Bz = Bo = 
constant, and Br = B 'r 
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0217thry 

Reduction of bending length because of slit 
Harmonics production by symmetrical cut at pole ends of 4-pole, 
(a transcript of notes made during Dec 72-Feb 73) . 

Excitation loss for p = = laminations with finite insulation thickness 
Torque acting on ellipse with p = 
Single shim first and second order 
First and second order shimming of H-magnet with slot 
Coil position for 1st and 2nd order corrected fields 
1st and 2nd order shimming with two filaments 
Mapping of magnet with pole with slanted side 
Jim Walter’s lamination thickness 
2D eddy current distribution in lamination of anisotropic steel 
w = -$, map of circular pole of 4-pole 
Saturating yoke and poles in 4-pole 
Analytical B-H curve description 
Long coil to measure aBr / ay in 2D 
Coil system to measure aB, / az in 3D 
Coil system to measure aZ?‘ / ax in 3D 
Epics flux splitting 
Properties of magnetic line integrals 
Change of harmonic content of multipole due to change of width of 
(all) poles 
Pole shimming methods 
Shimming with knife edge pole and fdaments 
Shimming of pole with fdament at t = -a, strength rn 
Power in thick storage ring wall 
Finite thickness current sheet on poleface (for HAT) 
Eddy currents when driving magnet very hard into saturation 
(“charging” permanent magnet with coil) 
Field modification in ideal quadrupole by round pipe, to first order 
i n p - 1  
Seminar on 8/10/73 at LASL 
EFB - coil geometry - effect on EFB (done at LASL) 
Torque on vane in homogeneous field 
Ellipse in homogeneous field 
Evaluation of first vane run 
Position of vane in 2-vane correction system 

in homogeneous field 
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Multipoles produced by radial displacement of Fe-plate between 70 
poles of 4-pole 
Parameter to correct field errors h assembled 4-poles 70 
Force and torque calculations for vanes 70 
Q2 distribution 70 
Notes for measurements of 4-poles 70 
LASL 4-poles 70 
Arch’s “new” field quality normalization 70 
Achievable 4-pole quality 70 
Conclusions for ESCAR coil system 74 
Error analysis for dipole coil system 74 

74 

C zn over line perpendicular to k n t e r  74 
Stray field outside field clamp 75 
Effects of construction errors at the end of dipole magnets 75 
Field coil to test pick-up coil 75 
Quadrupole - pole width H dipole overhang 75 
Calibration of OAM 75 
Harmonics in dipole fringe field 75 
Harmonics to produce By = x in midplane of quadrupole 75 
Quadrupole with By = x in midplane 75 
Conventional dipole 75 
Recreation of “integrated multipole strengths for skewed axis” 75 
Eddy current energy deposition at yoke’s edge 75 
Possible solutions to 2D grid problem 75 
Correct POISSON equation for cyl. geometry 74 
Diff. equation for cyl. geometry - POISSON 75 
1/2 - windowframe - sextuple 75 
Windowframe sextuple with wedge-shaped coil 75 
Windowframe sextupole with finite and constant thickness coil 75 

75 
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zn over square 

Method to calculate 2D field outside convergence radius from 2D 
harmonic measurements (recreation of notes from - early 75 that I 
cannot find) 
Eddy current force between solenoid and thick Cu plate 
“Octupus” fields 75 
Penetration of high frequency fields into dipole 
AC fields in windowframe magnet 
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0284thry 

Measurement of pure quadrupole with displaced coil rotating about 
a skewed axis 

75 

2D field in homogeneity f) curvature and displacement of field line 
IAZ?l2 from allowed harmonics in symmetric quadrupole 
Magnetization data for Texas A&M magnet 
Multipole production by pole asymmetry of 4-pole 
Stored energy in permanent magnet assembly 
Alternate way to excite quadrupole with filaments on pole to give 
sextupole 

Production of sextupole field in quadrupole with current sheet on 
pole surface 

Measurements to give field quality outside "normal" convergence 
radius of quadrupole 
AC force on 2D conducting steel plate 
Eddy currents for fast permanent magnet magnetization 
Stored energy in cylindrical and 2D geometry and in cylindrical 
geometry with 
rA = constant surface 

75 
76 
76 
76 
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77 

77 
77 

Production of n = 3 in quadrupole with poleface filament 

PEP staircase 4-pole 77 
77 

Field errors because of parabolic segment cut from pole 
Effect of circular arc carved into pole of dipole 

77 
77 

Polynomials for edit in cyl. geometry 78 
SC transform of Gm26 with ellipse integral 78 
SC transformation of Gm27 78 

78 Munuation of correction coil current 
"Superconducting" kicker magnet 72 
Shimming of pole with filament model 78 
Eddy currents in cylindrical yoke-ring 78 

78 
Error analysis for Don Sorenson's measurement coil system 78 

Poleface for weak focusing bend magnet with cyl. symm. 78 
78 

Lee Heflinger's notes on coil system stability 78 
79 
79 
79 
79 

. .  . 

Eddy current summary for TPC 

Decay of Vin pipe 74 

through plate excited by two coils 

Current increase necessitated by hole in steel 
Flux through p = = bodies in uniform magnetic field 
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