Computational modeling of on-demand solder delivery for fluxless MCM packaging applications

PDF Version Also Available for Download.

Description

The development of smaller circuit volumes in microelectronic applications, particularly Multichip Module (MCM) technology, entails deposition of minute quantities of solder, with volumes on the order of nanoliters. We propose a system for fluxless solder deposition which uses on-demand solder jetting for deposition of 200 micrometer diameter solder droplets onto aluminum pads. This work details the computational modeling performed to provide design parameters for a magneto-hydrodynamic solder jetter (MHD). A dimensionless analysis was used to relate the fluid properties, the orifice length and width, and the droplet size to the amplitude and duration of the pressure pulse. These results were ... continued below

Physical Description

6 p.

Creation Information

Essien, M.; Sackinger, P.A. & Peebles, H.C. October 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The development of smaller circuit volumes in microelectronic applications, particularly Multichip Module (MCM) technology, entails deposition of minute quantities of solder, with volumes on the order of nanoliters. We propose a system for fluxless solder deposition which uses on-demand solder jetting for deposition of 200 micrometer diameter solder droplets onto aluminum pads. This work details the computational modeling performed to provide design parameters for a magneto-hydrodynamic solder jetter (MHD). A dimensionless analysis was used to relate the fluid properties, the orifice length and width, and the droplet size to the amplitude and duration of the pressure pulse. These results were used as the initial inputs for the fluid dynamics model, and subsequent iterations were performed to determine the operational parameters that lead to the formation of stable, single droplets. Results show that a maximum pulse amplitude on the order of 0.5 Mdynes/cm[sup 2] is necessary to dispense molten solder from a 200 micrometer diameter orifice. The size of the droplet was found to vary linearly with the applied pressure pulse. The duration of the pulse ranged from approximately 0.6 to 0.9 milliseconds. A theoretical description of the relationship between the orifice diameter, surface tension, and `Pinch-off` time is given, and is in agreement with the results of the computational model.

Physical Description

6 p.

Notes

OSTI as DE96011720

Source

  • International Society for Hybrid Microelectronics conference, Minneapolis, MN (United States), 6-10 Oct 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96011720
  • Report No.: SAND--96-1590C
  • Report No.: CONF-9610172--1
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 402295
  • Archival Resource Key: ark:/67531/metadc677688

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 13, 2016, 1:12 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Essien, M.; Sackinger, P.A. & Peebles, H.C. Computational modeling of on-demand solder delivery for fluxless MCM packaging applications, article, October 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc677688/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.