ICRF heating of deuterium-tritium plasmas in TFTR

PDF Version Also Available for Download.

Description

The first experiments to heat D-T plasmas in the ion cyclotron range of frequencies (ICRF) have been performed on the Tokamak Fusion Test Reactor (TFTR). These experiments have two major objectives: to study the RF physics of ICRF-heated D-T plasmas and to enhance the performance of D-T discharges. Experiments have been conducted at 43 MHz with out-of-phase current strap excitation to explore n{sub T}/n{sub e} concentrations up to approximately 40%. In these experiments n{sub T}/n{sub e} was limited by D recycling from the carbon walls. The location of the T resonance was varied by changing the toroidal magnetic field, and ... continued below

Physical Description

13 p.

Creation Information

Taylor, G.; Murakami, M. & Adler, H. March 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The first experiments to heat D-T plasmas in the ion cyclotron range of frequencies (ICRF) have been performed on the Tokamak Fusion Test Reactor (TFTR). These experiments have two major objectives: to study the RF physics of ICRF-heated D-T plasmas and to enhance the performance of D-T discharges. Experiments have been conducted at 43 MHz with out-of-phase current strap excitation to explore n{sub T}/n{sub e} concentrations up to approximately 40%. In these experiments n{sub T}/n{sub e} was limited by D recycling from the carbon walls. The location of the T resonance was varied by changing the toroidal magnetic field, and the RF power was modulated (f{sub mod}=5-10 Hz) to elucidate competing heating mechanisms. Up to 5.8 MW of ICRF heating has been coupled into D-T plasmas. The addition of 5.5 MW of ICRF heating to a D-T supershot resulted in an increase in central ion temperature from 26 to 36 keV and an increase in central electron temperature from 8 to 10.5 keV. Up to 80% of the absorbed ICRF power was coupled directly to ions, in good agreement with computer code predictions. These results extrapolate to efficient T heating in future devices such as ITER.

Physical Description

13 p.

Notes

INIS; OSTI as DE95008719

Source

  • International Atomic Energy Agency conference, Vienna (Austria), 19-21 Sep 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95008719
  • Report No.: PPPL--3055
  • Report No.: CONF-9409247--2
  • Grant Number: AC02-76CH03073
  • Office of Scientific & Technical Information Report Number: 32510
  • Archival Resource Key: ark:/67531/metadc677684

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1995

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 15, 2016, 5:32 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Taylor, G.; Murakami, M. & Adler, H. ICRF heating of deuterium-tritium plasmas in TFTR, article, March 1, 1995; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc677684/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.