Preface to foundations of information/decision fusion with applications to engineering problems

PDF Version Also Available for Download.

Description

In engineering design, it was shown by von Neumann that a reliable system can be built using unreliable components by employing simple majority rule fusers. If error densities are known for individual pattern recognizers then an optimal fuser was shown to be implementable as a threshold function. Many applications have been developed for distributed sensor systems, sensor-based robotics, face recognition, decision fusion, recognition of handwritten characters, and automatic target recognition. Recently, information/decision fusion has been recognized as an independently growing field with its own principles and methods. While some of the fusion problems in engineering systems could be solved by ... continued below

Physical Description

6 p.

Creation Information

Madan, R.N. & Rao, N.S.V. October 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

  • Madan, R.N. Office of Naval Research, Arlington, VA (United States)
  • Rao, N.S.V. Oak Ridge National Lab., TN (United States)

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In engineering design, it was shown by von Neumann that a reliable system can be built using unreliable components by employing simple majority rule fusers. If error densities are known for individual pattern recognizers then an optimal fuser was shown to be implementable as a threshold function. Many applications have been developed for distributed sensor systems, sensor-based robotics, face recognition, decision fusion, recognition of handwritten characters, and automatic target recognition. Recently, information/decision fusion has been recognized as an independently growing field with its own principles and methods. While some of the fusion problems in engineering systems could be solved by applying existing results from other domains, many others require original approaches and solutions. In turn, these new approaches would lead to new applications in other areas. There are two paradigms at the extrema of the spectrum of the information/decision methods: (i) Fusion as Problem: In certain applications, fusion is explicitly specified in the problem statement. Particularly in robotics applications, many researchers realized the fundamental limitations of single sensor systems, thereby motivating the deployment of multiple sensors. In more general engineering applications, similar sensors are employed for fault tolerance, while in several others, different sensor modalities are required to achieve the given task. In these scenarios, fusion methods have to be first designed to solve the problem at hand. (ii) Fusion as Solution: In many instances (e.g., DNA analysis), a number of different solutions to a particular problem already exist. Often these solutions can be combined to obtain solutions that outperform any individual one. The area of forecasting is a good example of such paradigm. Although fusion is not explicitly specified in these problems, it is used as an ingredient of the solution.

Physical Description

6 p.

Notes

OSTI as DE96014689

Source

  • Workshop on foundations of information/decision fusion, Arlington, VA (United States), 7-9 Aug 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96014689
  • Report No.: CONF-9608144--2
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 391705
  • Archival Resource Key: ark:/67531/metadc677680

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Jan. 25, 2016, 2:15 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Madan, R.N. & Rao, N.S.V. Preface to foundations of information/decision fusion with applications to engineering problems, article, October 1, 1996; Tennessee. (digital.library.unt.edu/ark:/67531/metadc677680/: accessed December 10, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.