Radiation effects in materials for accelerator-driven neutron technologies. Revision

PDF Version Also Available for Download.

Description

Accelerator-driven neutron technologies use spallation neutron sources (SNS`s) in which high-energy protons bombard a heavy-element target and spallation neutrons are produced. The materials exposed to the most damaging radiation environments in an SNS are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. In addition, some materials will be damaged by the spallation neutrons alone. The principal materials of interest for SNS`s are discussed elsewhere. The target should consist of one or more heavy elements, so as to increase the number ... continued below

Physical Description

Medium: P; Size: 33 p.

Creation Information

Wechsler, M.S.; Lin, C. & Sommer, W.F. April 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Accelerator-driven neutron technologies use spallation neutron sources (SNS`s) in which high-energy protons bombard a heavy-element target and spallation neutrons are produced. The materials exposed to the most damaging radiation environments in an SNS are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. In addition, some materials will be damaged by the spallation neutrons alone. The principal materials of interest for SNS`s are discussed elsewhere. The target should consist of one or more heavy elements, so as to increase the number of neutrons produced per incident proton. A liquid metal target (e.g., Pb, Bi, Pb-Bi, Pb-Mg, and Hg) has the advantage of eliminating the effects of radiation damage on the target material itself, but concerns over corrosion problems and the influence of transmutants remain. The major solid targets in operating SNS`s and under consideration for the 1-5 MW SNS`s are W, U, and Pb. Tungsten is the target material at LANSCE, and is the projected target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten.

Physical Description

Medium: P; Size: 33 p.

Notes

INIS; OSTI as DE97004760

Source

  • Radiation materials science and technology applications symposium, Anaheim, CA (United States), 4-8 Feb 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97004760
  • Report No.: LA-UR--97-144-Rev.
  • Report No.: CONF-970251--2-Rev.
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 464290
  • Archival Resource Key: ark:/67531/metadc677671

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • Feb. 29, 2016, 7:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wechsler, M.S.; Lin, C. & Sommer, W.F. Radiation effects in materials for accelerator-driven neutron technologies. Revision, article, April 1, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc677671/: accessed December 9, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.