Microstructure of Swift Heavy Ion Irradiated MgAl(Sub 2)O(Sub 4) Spinel

PDF Version Also Available for Download.

Description

Plan view and cross-section transmission electron microscopy was used to investigate the microstructure of magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) following room temperature irradiation with either 430 MeV Kr, 614 MeV Xe, or 72 MeV I ions. The fluences ranged from 1 x 10{sup 16}/m{sup 2} (single track regime) to 1 x 10{sup 20}/m{sup 2}. Destruction of the ordered spinel crystal structure on both the anion and cation sublattices was observed in the ion tracks at low fluences. At intermediate fluences, the overlapping ion tracks induced the formation of a new metastable crystalline phase. Amorphization with a volumetric expansion of ... continued below

Physical Description

6 p.

Creation Information

Matzke, H.; Skuratov, V. A. & Zinkle, S. J. November 30, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Plan view and cross-section transmission electron microscopy was used to investigate the microstructure of magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) following room temperature irradiation with either 430 MeV Kr, 614 MeV Xe, or 72 MeV I ions. The fluences ranged from 1 x 10{sup 16}/m{sup 2} (single track regime) to 1 x 10{sup 20}/m{sup 2}. Destruction of the ordered spinel crystal structure on both the anion and cation sublattices was observed in the ion tracks at low fluences. At intermediate fluences, the overlapping ion tracks induced the formation of a new metastable crystalline phase. Amorphization with a volumetric expansion of {approximately}35% was observed in spinel irradiated with swift heavy ions (electronic stopping powers >7 keV/nm) at fluences above 1 x 10{sup 19}/m{sup 2}. These results demonstrate that swift heavy ion radiation can induce microstructural changes not achievable with conventional elastic collision irradiation at comparable temperatures.

Physical Description

6 p.

Notes

OSTI as DE00003461

Medium: P; Size: 6 pages

Source

  • Fall Meeting of the Materials Research Society, Boston, MA (US), 11/30/1998--12/04/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ORNL/CP-101224
  • Report No.: AT 60 20 00 0
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 3461
  • Archival Resource Key: ark:/67531/metadc677449

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 30, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 11, 2017, 2:36 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Matzke, H.; Skuratov, V. A. & Zinkle, S. J. Microstructure of Swift Heavy Ion Irradiated MgAl(Sub 2)O(Sub 4) Spinel, article, November 30, 1998; Tennessee. (digital.library.unt.edu/ark:/67531/metadc677449/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.