Enhanced electro-magnetic energy transfer between a hot and cold body at close spacing due to evanescent fields

PDF Version Also Available for Download.

Description

Theoretical studies have demonstrated that the energy transfer between a hot and cold body at close spacing (on the order of the radiation wavelength) can greatly exceed the limit for black body radiation (ie, Power = {sigma}T{sup 4}). This effect, due to the coupling of evanescent fields, presents an attractive option for thermo-photovoltaic (TPV) applications (assuming the considerable technical challenges can be overcome). The magnitude of the enhanced energy transfer depends on the optical properties of the hot and cold bodies as characterized by the dielectric functions of the respective materials. The present study considers five different situations as specified ... continued below

Physical Description

14 p.

Creation Information

Raynolds, J.E. October 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

  • Raynolds, J.E. Lockheed Martin Corp., Schenectady, NY (United States)

Sponsor

Publisher

  • Knolls Atomic Power Laboratory
    Publisher Info: Knolls Atomic Power Lab., Schenectady, NY (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Theoretical studies have demonstrated that the energy transfer between a hot and cold body at close spacing (on the order of the radiation wavelength) can greatly exceed the limit for black body radiation (ie, Power = {sigma}T{sup 4}). This effect, due to the coupling of evanescent fields, presents an attractive option for thermo-photovoltaic (TPV) applications (assuming the considerable technical challenges can be overcome). The magnitude of the enhanced energy transfer depends on the optical properties of the hot and cold bodies as characterized by the dielectric functions of the respective materials. The present study considers five different situations as specified by the materials choices for the hot/cold sides: metal/metal, metal/insulator, metal/semiconductor, insulator/insulator, and semiconductor/semiconductor. For each situation, the dielectric functions are specified by typical models. An increase in energy transfer (relative to the black body law) is found for all situations considered, for separations less than one micron, assuming a temperature difference of 1,000 C. The metal/metal situation has the highest increase vs. separation while the semiconductor/semiconductor has the lowest. Factor-of-ten increases are obtained at roughly 0.1 microns for the metal/metal and roughly 0.02 microns for the metal/semiconductor. These studies are helping to increase the understanding of the close-spaced effect in the context of a radiator/TPV context.

Physical Description

14 p.

Notes

OSTI as DE99001618

Source

  • 4. National Renewable Energy Laboratory (NREL) conference on thermophotovoltaic generation of electricity, Denver, CO (United States), 11-14 Oct 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99001618
  • Report No.: KAPL-P--000112
  • Report No.: K--98151;CONF-981055--
  • Grant Number: AC12-76SN00052
  • Office of Scientific & Technical Information Report Number: 307940
  • Archival Resource Key: ark:/67531/metadc677174

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 16, 2016, 6:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Raynolds, J.E. Enhanced electro-magnetic energy transfer between a hot and cold body at close spacing due to evanescent fields, article, October 1, 1998; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc677174/: accessed November 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.