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Abstract 

This paper considers the protein structure prediction problem for lattice and off-lattice 
protein folding models that explicitly represent side chains. Lattice models of proteins have 
proven extremely useful tools for reasoning about protein folding in unrestricted continuous 
space through analogy. This paper provides the first illustration of how rigorous algorithmic 
analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. We 
consider two side chain models: a lattice model that generalizes the HP model (Dill 85) to ex- 
plicitly represent side chains on the cubic lattice, and a new off-lattice model, the H P  Tangent 
Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the 
backbone and side chains of proteins with tangent spheres. We describe algorithms for both 
of these models with mathematically guaranteed error bounds. In particular, we describe a 
linear time performance guaranteed approximation algorithm for the HP side chain model that 
constructs conformations whose energy is better than 86% of optimal in a face centered cubic 
lattice, and we demonstrate how this provides a 70% performance guarantee for the HP-TSSC 
model. This is the first algorithm in the literature for off-lattice protein structure prediction 
that has a rigorous performance guarantee. Our analysis of the HP-TSSC model builds off of the 
work of Dan& and Hannenhalli who have developed a 16/30 approximation algorithm for the 
HP model on the hexagonal close packed lattice. Further, our analysis provides a mathematical 
methodology for transferring performance guarantees on lattices to off-lattice models. These 
results partially answer the open question of Karplus et al. (1994) concerning the complexity 
of protein folding models that include side chains. 

1 Introduction 

Lattice models of proteins have proven extremely useful tools for reasoning about protein folding 
in unrestricted continuous space through analogy [4]. Lattice models sacrifice atomic detail t o  
extract essential principles, make predictions, and t o  unify our understanding of ma.ny different 
properties of proteins. One of the important approximations made by lattices is the discretization 
of the conformational space. While this discretization precludes a completely aecurate model of 
protein structures, it preserves important features of the problem of protein structure prediction, 
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like the difficulty of the related search problem. Consequently, methods that predict the structure 
of proteins for lattice models provide insight into the exact structure of proteins. 

One common way to  discretize the structure of proteins is to  model the protein as a linear chain 
of beads in which each bead represents an amino acid. An example of this type of model is the 
hydrophobic-hydrophilic model (HP model) [9]. This model abstracts the hydrophobic interaction 
in protein folding by labeling the beads as hydrophobic (nonpolar) or hydrophilic (polar). Although 
a wide variety of methods have been proposed for predicting the structure of proteins in linear chain 
lattice models [4], none of these methods can guarantee that they can efficiently predict the native 
structure (which has the lowest free energy) for all proteins. 

Ngo, Marks and Karplus [lo] argue that an interesting approach to  protein structure prediction 
is the development of performance guaranteed approximation algorithms. Approximation algo- 
rithms might be of significant practial use if they can be used to  generate crude structures that 
are further refined with other techniques. We [6, 71 have recently described approximation algo- 
rithms for a variety of linear lattice models that have performance guarantees, including the linear 
HP model studied by Dill and his colleagues. In related work, Dan&k and HannenhaK [2] have 
demonstrated that performance guarantees of nearly 60% can be acheived for the HP model on the 
hexagonal close packed lattice. 

This paper describes approximation algorithms for HP lattice and off-lattice protein models 
that explicitly represent side chains. The lattice model we analyze represents the conformation of a 
protein using a subclass of branched polymers called “branched combs.” This model was proposed 
by Bromberg and Dill [I], who argue that linear lattice models fail to  capture properties of protein 
folding such as side chain packing that affect the stability of the native protein structure. The HP 
side chain model that we consider treats the backbone of the protein as a linear chain of beads. 
Connected to  each bead on the backbone is a bead that represents an amino acid, and each of these 
beads is labeled hydrophobic or hydrophilic. The off-lattice model generalizes the lattice model by 
representing the backbone and amino acids as tangent spheres. 

The algorithms we describe generate structures that approximate the native folded state by 
creating compact, low energy structures that are near-optimal. Furthermore. these algorithms 
compute these structures in a number of computational steps that is linear in the length of the 
sequence. We describe approximation algorithms for the 2D and 3D cubic lattices as well as the 
face centered cubic (FCC) lattice. We also describe how any performance guaranteed algorithm for 
the FCC lattice can be used to  provide performance 

2 Preliminaries 

2.1 The HP Side Chain Model 

The protein folding model analyzed in this paper is a hydrophilic-hydrophobic model (HP 
model). HP mQdels abstract the hydrophobic interaction process in protein folding by reducing 
a protein to  a heteropolymer that represents a predetermined pattern of hydrophobicity in the 
protein; nonpolar amino acids are classified as hydrophobic and polar amino acids are classified 
as hydrophilic. A sequence is s E {0,1}+, where 1 represents a hydrophobic amino acid and 0 
represents a hydrophilic amino acids. A HP model on 2D and 3D cubic lattices was proposed by 
Dill 133. In this model, the protein is represented by a self-avoiding path on the cubic lattice, where 
each vertex on the path represents an amino acid. This is one of the most studied lattice models, 
and despite its simplicity the model is powerful enough to capture a variety of properties of actual 
proteins [4]. 

We consider a HP model that uses the model studied by Bromberg and Dill [l] to explicitly 
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represent side chains. In this model, a conformation C of a protein sequence s in a lattice L is an 
embedding of a catepillar graph where vertices are mapped one-to-one to  lattice points, and protein 
bonds are mapped to  the corresponding lattice edges (see Figure la). The legs of the catepillar 
graph represent amino acids, and they are labeled either hydrophobic or hydrophilic. The spine of 
the graph is labeled as the backbone of the protein. The energy of a conformation of the protein 
sequence s in L is defined as the sum of the energies of the hydrophobic-hydrophobic contacts, each 
of which contributes -1 to the total energy. A contact is defined as an edge between two amino 
acids in the embedded catepillar graph. 

2.2 The HP Tangent Sphere Models 

We introduce new off-lattice models that provide an off-lattice analogue to  the HP model and 
the HP side chain model. In these models, the graph that represents the protein is is transformed 
to  a set of tangent spheres of equal radius. Every vertex in the graph is replaced by a sphere, and 
edges in the graph are translated to  constraints that force spheres to  be tangent in a conformation 
(see Figure lb).  Spheres are labeled hydrophobic or hydrophilic, and contact between hydrophobic 
amino acids is when the spheres for these amino acids are in contact. 

Figure 1: IIlustration of conformations in (a) the HP side chain model (on a cubic lattice) and (b) 
the HP tangent spheres side chain model (black lines represent connections between spheres). 

2.3 Computational Complexity 

According to  the Thermodynamic Hypothesis the native conformation of a protein is the con- 
formation with the minimum energy among the set of all conformations. Thus we algorithmicaly 
formulate the problem of predicting the native conformation as finding an efficient algorithm that 
computes the native conformation of a sequence s in a lattice L.  A protein folding algorithm is 
eficient if for every sequence it determines the native conformation in polynomially many steps in 
the length of the sequence. 

It is unknown whether any well studied protein structure prediction problem can be solved 
efficiently, including the HP side chain model. Hart and Istrail [$I have recently shown that a 
broad class of protein structure prediction problems are NP-complete, which means that they are 
practically intractable [ 5 ] .  Although they consider is a broad class of side chain models: their results 
are not immediately applicable to the HP side chain model. 

This paper presents performance guaranteed approximation algorithms for the HP side chain 
model. Two standard types of performance guarantees are [5]: the absolute performance ratio 
and the asymptotic performance ratio. Let Z L ( S )  be the energy of the conformation generated for 
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protein instance s on lattice L with by algorithm Z L ,  and let OPTL(S)  be the energy of the optimal 
conformation of s on L.  Recall that both Z L ( S )  and OPTL(S)  are nonpositive integers for every s. 
The absolute performance ratio R ( Z L )  of algorithm ZL is given by 

R(2L) = SUP{T 2 1 I 'ds, R Z L ( S )  2 r } ,  

where Rz,(s) = ZL(S)/OPTL(S).  Given N E Z ,  let Sk = {s I OPTL(S)  5 N } ,  and let R!& = 
inf{Rz,(s) I s E Si}. The asymptotic performance ratio R"(ZL) is given by 

If R ( Z L )  = 7 for a fixed constant 7, then the value of solutions generated by algorithm ZL 
are within a factor of T of the optimum. If R m ( 2 ~ )  = T, then as Z L  is applied to larger protein 
instances, the value of solutions generated by ZL approaches a factor of T of the optimum. Here, 
"large" protein instances have low conformational energy at  their native state, which may be 
independent of their length. Since Z L ( S )  2 0 and OPTL(S) 2 0, both of these ratios are scaled 
between 0 and 1 such that a ratio closer to 1 indicates better performance. 

3 The HP Side Chain Model on Cubic Lattices 

This section describes performance guaranteed approximation algorithms for the HP side chain 
model on the 2D and 3D cubic lattices. N7e begin by describing bounds on the optimum for these 
models. Following Hart and Istrail [6], we decompose a protein sequence into a series of 2- and 
y-blocks, 21y122 . . . z,y,. Within each block, hydrophobic amino acids are seperated by an odd 
number of hydrophilic amino acids, and between blocks there are an even number of hydrophilic 
amino acids. For a protein sequence, N z ( s )  is the number of hydrophobics in 2-blocks and Ny is 
the number of hydrophilics in y-blocks. We say that X = N X ( s )  and Y = N g ( s )  and assume that 
the labeling of blocks guarantees that X 2 Y .  

Let OPT.o(s )  be the value of the optimal conformation of s in the 2D model, and let OPT3o(s) 
be the value of the optimal conformation of s in the 3D model. In the 2D model, every 1 in each 
2-block can be a topological neighbor of at most three other 1s. Thus the optimal energy is at 
most O P T ~ D ( S )  2 -3X. In the 3D model. every 1 in each 2-block can be a topological neighbor 
of at  most five other 1s. Thus the optimal energy is at most O P T ~ D ( S )  2 - 5 X .  

3.1 Approximation Algorithms 
We begin by describing Algorithm A, an approximation algorithm for the 2D HP side chain 

model. Algorithm A selects a single folding point (turning point) that divides a protein instance 
into subsequences B' and B", such that Xy(B') is balanced with NX(B") .  The conformation for 
these two halves of the protein sequence are constructed such that the y hydrophobics in B' and 
the 2 hydrophobics in B" are configured face-to-face to form a hydrophobic core. 

The folding point is selected using "Subroutine 1" from Hart and Istrail [6]. Subroutine 1 selects 
a folding point that balances the hydrophobicity between the 2-blocks and y-blocks on each half 
of the folding point. The following lemma describes the key property of the folding point that is 
selected . 

Lemma 1 ( [6], Lemma 1) The folding point selected by Subroutine 1 partitions a protein instance 
s into two subsequences B' and B" such that either . 

Xg(B')  2 [(Y + 1)/21 and NX(B")  2 [S/21 or N,(B') 2 [Y/21 and N,(B") 2 [(X + 1)/2] . 
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Figure 2 illustrates the conformations generated by Algorithm A for different types of folding 
points. Decomposition into 2- and y-blocks requires a single pass through the protein instance. 
Subroutine 1 requires a single pass through the sequence of blocks, which is no longer than the 
length of the protein instance. The construction of the structures for B' and B" also requires linear 
time. Thus the computation required by Algorithm A is linear. The performance of Algorithm A 
can be bounded as follows. 

0 0  

Figure 2: Illustration of the different folding points used for different block separators z; at the 
folding point, for (a) Z(z;) = 0, (b) Z(zi) = 2, and (c) Z(z;) 2 4. Gray blocks represent the backbone, 
white blocks represent hydrophilic amino acids and black blocks represent hydrophobic amino acids. 

Lemma 2 A(s) 5 - rX/41. 

The following proposition presents the asymptotic and absolute performance guarantees for 
Algorithm A. 

Proposition 1 1/6  2 R"(A) 2 R(A) 2 1/12. 

We now describe Algorithm B, a performance guaranteed approximation method for the 3D HP 
model with side chains. Algorithm B selects a single folding point that divides the protein instance 
into two subsequences B' and B", such that N,(B') is balanced with N,(B"). The conformation 
generated by Algorithm B places the y hydrophobics in B' and the 2 hydrophobics in B" to  form 
a hydrophobic core that is a solid block of hydrophobic amino acids with dimension 2~2x1; (for 
some k). Each edge of this block is formed by interleaving the hydrophobics from B' and B" This 
interleaving allows each hydrophobic amino acids to  form contacts with four other hydrophobic 
amino acids. 

Figure 3 illustrates how the structures for B' and B" are interleaved to  form a single column 
of the hydrophobic core, including an illustration how the folding point is formed. Figures 4a 
and 4b provide high level illustrations of the structures used for B' and B". Figure 5a illustrates 
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Figure 3: Illustration of how a single column of hydrophobics is formed by Algorithm B. This figure 
also illustrates the conformation of the folding point. 

D C  B C  

Figure 4: A graphic illustration of the general structure of the subsequences B' and B" in (a) and 
(b) respectively. The gray planes illustrate the position of the backbone of the loops of nonhy- 
drophobics. The labels A, B, C and D indicate the order of the labels, starting from the folding 
point between the A planes of B' and B". 
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Figure 5: Illustration of the entire conformation generated by Algorithm B: (a) a view from the 
side and (b) a view from the top highlighting the hydrophobic core. 

the application of Algorithm B to a protein sequence, and Figure 5b provides an end-view of this 
conformation that illustrates the core formed by Algorithm B. 

Each step of Algorithm B is linear, so Algorithm B requires linear time. The performance of 
Algorithm B can be bounded as follows. 

Lemma 3 Let x = [X/21. If X 2 8 then 

B ( s )  < -4X + 28. 

The following proposition presents the asymptotic and absolute performance ratios for Algo- 
rithm B. 

Proposition 2 R," = 4/10 and 4/10 2 Ra 2 1/12. 

3.2 Related Results 

Embedded Algorithms for the 3D HP side chain model Conformations for the 2D HP side 
chain model can be trivially embedded in 3D to generate conformations for the 3D HP side chain 
model. Similarly, a conformation from the 2D HP model can be used to construct a conformation 
in the 3D HP side chain model as follows: (1) embed the conformation on any 2D plane, (2) create 
side chains for each monomer, all of which are placed on the same adjacent planes, and (3) label the 
side chains with the hydrophobicities of their corresponding backbone monomers, and unlabel the 
backbone monomers. It is possible to show that performance guaranteed approximation algorithms 
for the 2D HP model and the 2D HP side chain model can be used to provide performance guarantees 
for the 3D HP side chain model. 
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Variable Length Side Chains A natural extension of the side chain model that we have con- 
sidered is to include notions of volume into the side chain formulation. One way of doing this 
would be to mode1 the volume of a side chain by varying the length of the legs of the catepillar 
graph. All of the vertices in the legs are labeled hydrophobic or hydrophilic, but not necessarily 
uniformly within a given leg. If we assume that this chain has a bounded length, ,f3, then a simple 
modification of Algorithm A leads to a performance guarantee in terms of 1/p. The blocks in this 
modified algorithm are based on the amino acid vertices adjacent to the protien’s backbone. The 
structures for B’ and B“ are expanded to allow side chains of up to length j3 to  fit into each “zero 

to either side of the hydrophobic core, and the side chains within the core turn immediately 
to form hydrophobic contacts. The analysis of this algorithm gives a performance guarantee of 

also provides a performance guarantee for the 3D HP side chain model. 
- Following arguments similar to those mentioned in the previous paragraph, this algorithm 

4 The HP Side Chain Model on the FCC Lattice 

We now describe Algorithm C ,  a performance guaranteed approximation method for the H P  
model with side chains on the face centered cubic lattice. Algorithm C builds upon the analysis of 
Dancik and Hannenhalli [2] that describes an approximation for the HP model on the FCC lattice. 
Figure 6 illustrates the packing of vertices in a FCC lattice. The center of each sphere represents 
the location of a single vertex, and contacts between spheres represent edges between vertices. The 
gray spheres illustrate a Zuyer of the FCC lattice, which is composed of two adjacent horizontal 
planes of vertices. The bold spheres illustrate a vertical column of this lattice. 

Figure 6: Illustration of the general structure of the FCC lattice, highlighting a layer (in gray 
a column (bolded spheres). 

and 

Let N ( s )  equal the number of hydrophobics in a sequence s. Algorithm C divides s into eight 
subsequences such that each subsequence contains approximately N ( s ) / 8  hydrophobics. Each sub- 
sequence Bi is configured such that all of the hydrophobics in Bi are placed together in a single 
column. Consecutive hydrophobics in B, are in contact within this column. These eight columns 
are configured to  form a 2x4 solid hydrophobic core that contains no hydrophilics (see Figure 7). 

To form these columns of hydrophobics, we configure the loops of hydrophobics such that they 
never intersect. Figure 7a illustrates the structure of these loops for half of the conformation (the 
other half can be constructed symmetrically). Note that the structure of the loops differs for each 
of the four columns; Figure 7b illustrates the structure of the bottom column in Figure 7a for 
hydrophilic loops of all lengths (the last structure can be extended for loops of length six or more). 
The structure shown in Figure 7a illustrates how a single layer of the columns is configured. Each 
column is constructed by forming loops of hydrophilics that lie within a single layer. The hydrophilic 
loops for subsequent hydrophobics are disjoint because each hydrophobic along a column utilizes a 
disjoint layer to form its loop. 
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Figure 7: Illustration of (a) the general structure of Algorithm C for a single layer of the FCC lattice 
and (b) the structure of all loops of the bottom column. The points on this figure represent columns 
on the lattice. The loops of hydrophilics for four of the columns are illustrated in (a); the other four 
columns have a complementary structure. Solid lines represent the path of the backbone within a 
single layer, and dashed lines represent the path of the backbone between adjacent. The curved 
lines represent the positions of the side chains. The interact,ions between the eight hydrophobic 
columns are highlighted with either one or two dark lines, indicating the number of contacts each 
hydrophobic makes between a pair of columns. 

The construction of the conformations for each column can proceed sequentially, so Algorithm C 
requires linear time. Note that unlike the approximation algorithms for the cubic lattice, Algo- 
rithm C does not require a global calculation of the folding point. The only global information 
needed for this algorithm is the computation of the total number of hydrophobics in the sequence. 
The following lemma describes the performance guarantee for Algorithm C. 

Lemma 4 C(s) 5 -3 lN(s ) /8  + 69. 

We consider a bound on the value of OPT(s).  A trivial bound of OPT(s )  2 - l l N ( s ) / 2  is 
easy to  establish by noting that each hydrophobic side chain can make at most 11 hydrophobic 
contacts, each of which must be shared. We can improve this bound by observing that there are 
four contact points with a side chain that also form contacts with the backbone at the side chain. 
The implies that each hydrophobic side chain forces four conjicts [a].  If a contact point is empty or 
contains a backbone or hydrophilic, then the current side chain does not make 11 contacts. If the 
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contact point contains a hydrophobic then that hydrophobic side chain cannot make 11 contacts. 
This observation can be used to prove the following lemma. 

Lemma 5 O P T ( s )  2 -9N(s)/2. 

Combining Lemmas 4 and 5, we get the following performance guarantee for Algorithm C. 

Proposition 3 R,“ 2 31/36. 

5 Algorithmic Performance for Off-Lattice Models 

The class of tangent spheres models (with or without chains) has the property that it can be 
analysed rigorously by transferring algorithmic analyses from various lattice HP-models to the off- 
lattice setting. In this section we focus on the tangent spheres model with side chains and show 
how a conformation created by Algorithm C on the FCC lattice provides a performance guarantee 
for this model off-lattice. The linear chain tangent spheres model can be similarly analysed. Using 
the hexagonal close packed lattice algorithm of Dandk and Hannenhalli [2], one can prove that it 
has at least 46.7% of optimal off-lattice performance. 

To analyze the performance of the off-lattice tangent spheres side chain model, we begin by 
deriving lower bounds on the number of possible contacts that each hydrophobic side chain can 
make. It is well-know that for a set of identical spheres in 3D the maximum number of spheres that 
can be tangent to a single fixed sphere is 12. This is the so called the kissing number. From this 
we can conclude that a hydrophobic side chain can be tangent to only 11 other hydrophobic side 
chain, since one position is taken by the backbone sphere connected to it. As contacts are binary 
(between two spheres), each side chain can contribut at most 11/2 contacts by reasoning abstractly 
in the worst case. 

Our tangent spheres side chain model generalizes the HP model in the sense that for any 
lattice a conformation in that lattice represents a possible off-lattice conformation. To provide a 
performance guarantee for the off-lattice, we apply Algorithm C to generate a conformation on the 
FCC lattice, which is guaranteed to have and energy of no more than - 3 1 N ( s ) / 8  + 69. Using the 
lower bound of - l lN(s ) /2  on the value of the optimum) we can show that Algorithm C provides 
an asymptotic performance ratio of 31/44 > 70%. 

Our analysis of the lower bound is actually quite optimistic. We conjecture that a stronger 
analysis can improve the performance guarantee to over 77% of optimal. This conjecture is based 
on our belief that if an amino acid has 11 contacts then there is at  least one contact that is 
sufficiently close to  the backbone of the side chain to form a “conflict)’ that prevents that sphere 
from making 11 contacts itself. If this is true then each side chain contributes at most 5 contacts, 
thereby giving the stated performance guarantee. Furthermore, we suspect that the notion of a 
conflict can be extended in this fashion to provide even stronger performance guarantees. 
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A Protein Sequence Structure on Cubic Lattices 

This section summarizes key definitions concerning the structure of protein instances from Hart 
and Istrail [6]. Let s = SI , .  . . , s, be a protein instance, s, E (0, l}, where 1’s correspond to  
hydrophobics and 0’s correspond to  hydrophilics. Let Z(s) equal the length of the sequence s. Let 
Mm,,(s) equal the length of the longest sequence of zeros in s, and let M,in(s) equal the length 
of the shortest sequence of zeros in s. 

An instance s can be decomposed into a sequence of blocks. A block b; has the form b, = 1 
or b; = lZ;, 1 . . . Z;, 1, where the Z;, are odd-length sequences of 0’s and h 2 1. A block separator 
zi is a sequence of 0’s that separates two consecutive blocks, where Z(z;) 2 0 and Z(z;) is even for 
i = 1, . . . , h - 1. Thus s is decomposed into zoblzl . . .bhzh. Since Z(z;) 2 0, this decomposition 
treats consecutive 1’s as a sequence of blocks separated by zero-length block separators. Let N(b;) 
equal the number 1’s in b;. Thus the sequence 

can be represented as 1(z) = (1,0,0,0,4,0) and N(b) = (3,1,1.3,4). 
Note that two 1’s can be endpoints of a contact edge only if there is an even number of elements 

between them [6]. It follows from our definition of blocks that two 1’s within a block cannot be in 
contact. Further, any pair of 1’s take from blocks bk and bJ may be in contact only when Ik - j l  is 
odd. 

Since 1’s from a block can only be in contact of 1’s from every other block, it is useful to  divide 
blocks into two categories: 2-blocks and y-blocks. For example, let 2; = bz; and let y; = b2i-1. This 
makes it clear that 1’s from an z-block can only be in contact with 1’s from an y-block. Let B, and 
By be the number of 2-blocks and y-blocks respectively. Further) let X = X(s) = Czl N ( z ; )  and 
Y = Y ( s )  = C z l N ( y i ) .  We assume that the division into 2- and y-blocks is such that X 5 Y .  
For example) the sequence 

0 ~ ~ ~ ~ 0 0 0 0  ;010_10; 
YO I O  Y1 I 1  Y2 

can be represented as zO~O~lso~2ylz32lz4~2~5,  where Z(z) = (1,0,0,0,4,0), N ( z )  = (173), and 
N(Y) = (3,174). 

B Proofs of Lemmas, Propositions and Theorem 

B.l PROOF OF LEMMA 2 

Proof. From Lemma 1 we know that Ny(B‘) 2 [X(s)/21 and N,(B”) 2 [X(s)/21. Conse- 
quently the number of contact edges is at  least 

The folding point does not eliminate any of these contact edges, so the final energy is at  least 
- rx(s)/41. 

B.2 PROOF OF PROPOSITION 1 

Proof. The middle inequality follows from the definitions of RA and R”(A). We know from 
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Lemma 2 that A ( s )  5 - rX(s)/41. Now OPT(s )  5 -3X(s), so 

X ( S )  A(s) - [%q -- 
= 1/12. O P T ( s )  -3X(s) -3X(s) Rd(s) = 

To show that R"(d) 5 1/12, consider instances sk which are represented as 

= (0,4,4,0) 
N ( b )  = (k,6k,k) 

w n a z ( b )  = Mnin(b )  = (3,193) 

Figure 8a illustrates how a protein instance sk can be folded to  get the optimal energy of -6k. 
Now d(sk) = -k  (see Figure 8b). Given N ,  srWNi61 E SN.  Thus R"(d) 5 limN7wRN(d) = 
-r-N/6i N = 1/6. 

rn 

B.3 PROOF OF LEMMA 3 
Proof. Algorithm B selects a folding point using Subroutine 1. We know from Lemma 1 

that the folding point selected by Algorithm B splits the protein instance into two sequences that 
have at least [X/21 hydrophobics that can be used to form the hydrophobic core. Consequently, 
the structure generated by Algorithm B contains a 2x2x1i' block of hydrophobics, where I< 2 
2 [(X - 4)/4]. The -4 term accounts for contacts that can be lost at the folding point and turns. 
Thus the energy is 

-161<+4 < -16 [ x L 4 J + 4 < - 4 X + ~ 8 .  - 

w 

B.4 PROOF OF PROPOSITION 2 

Proof. To show the lower bound on R r ,  we may assume that [X/21 2 8 (since we are 
considering the asymptotic performance ratio). From Lemma 3 we have B ( s )  5 -4 [X/21 + 28. 
Thus 

B ( s )  -4 [X/21 + 28 > 2X - 28 
- 5 x  - 5 x  - R d s )  2 O P T ( s )  L 

For s E SN,  -5X _< OPT(s) 
X 2 0 ,  it follows that 

- < N ,  so x 2 - ~ / 5 .  Since is monotonically increasing for 

-2N/5 - 28 - 2N + 140 - 
-N  5N ' 

Rt?(s) 2 
Thus 

Rf 2 (2N + 140)/(5N) 

Rg = sup{r I R f  2 T,  N E Z }  2 lim (2N + 140)/(5N) = 2/5. 
and 

N+" 

To show the upper bound for R r ,  consider instances sk which are represented as 

L ( z )  = (0,474,O) 
N ( b )  = (8k  + 4,4Sk + 24,8k + 4) 
M ( b )  = m(b) = (3,1,3), 
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Figure 8: Conformations of s3: (a) optimal conformation, and (b) conformation generated by 
Algorithm A. 
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k 2 12. An instance sk can be folded to get the optimal energy of -80k-40, while the conformation 
generated by Algorithm B has an energy of B(sk)  2 -32k. Given N ,  ~ r - ( ~ ~ ~ ~ ) / ~ ~ 1  E SN.  Thus 
Rg 5 -32 r - (N + 40)/801 / N .  It follows that RF 5 limN+.oo Rg = 2/5. 

Now Ro 2 1/12 if OPT(s)  2 12B(s) for all protein instances s. If [X/21 < 8, then Algorithm B 
applies Algorithm A, so OPT(s )  2 12B(s). If [X/2) 2 8 then from Lemma 3, we have B(s )  5 
-4 [X/21 + 28. Thus 

izqS) I -48 r ~ - / 2 1 +  336 5  OPT(^). 
Consequently Ra 2 1/12. 

Finally, the upper bound on &(s) follows from the fact that Ra(s )  5 Rg(s) .  H 

B.5 PROOF OF LEMMA 4 

Proof. Let K = L(N(s) - 6)/8J, which represents the height of each column of hydrophobics. 
The -6 term accounts for the fact that a single hydrophobic might need to be sacrificed to  connect 
the columns on each side of the core. Now within each column there are K - 1 hydrophobic contacts. 
There are 10 interactions between columns in the core that contribute 21C - 1 contacts and there 
are 3 interactions between columns that contribute K contacts. Thus we have 

C ( S )  5 -8(K - 1) - lO(21i - 1) - 31i = 
= 
>_ -31N/8+69. 

-31K + 18 
-31 ~ ( N ( S )  - 6)/8] + 18 

B.6 PROOF OF LEMMA 5 

Consider a hydrophobic side chain. The hydrophobic on this side chain can make at  most 11 
hydrophobic contacts. Four of these contact points form conflicts. Each of these conflicts removes a 
single hydrophobic contact from the set of all possible hydrophobic contacts. Since a conflict can be 
“shared” between two hydrophobic side chains, this means that OPT(s )  2 -(11-4/2)/2 = -9/2. 

B.7 PROOF OF PROPOSITION 3 

Proof. Lemma 4 we have C(s) I -31N(s)/8 + 69. Thus 

C ( S )  -31N(~) /8  f 69 - 31N(s) - 522 
- 

R c ( 4  2 OPT(s )  2 - 9M ( S )  /2 36W(s) . 

is monotonically 31 N (  S )  - 522 
36(s) 

For s E S N ,  N 2 OPT(s)  2 -9N(s)/2, so N ( s )  2 - 2 N / 9 .  Since 
increasing for N ( s )  2 0, it follows that 

31( -2N/9) - 522 - 31N f 2484 - 
36( -2N/9) 36N Re@) 2 

Thus 

and 

2 (31N f 2484)/(36N) 

Rg = sup{r 1 RF 2 T ,  N E Z} 2 Em (31N + 2484)/(36X) = 31/36. 
N-CC 
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C Embedded Conformatioils in the 3D HP Side Chains Model 

In this section we show how performance guaranteed approximation algorithms for the 2D HP 
model (which represent amino acids as bead along a chain) and the 2D HP side chain model can 
be used to provide performance guarantees for the 3D HP side chain model. Conformations for the 
2D HP side chain model can be trivially embedded in 3D to generate conformations for the 3D HP 
side chain model. To generate conformations in the 3D HP side chain model using conformations 
from the 2D HP model, simply 

1. Embed the conformation on any 2D plane 

2. Create side chains for each monomer, all of which are placed on the same adjacent planes. 

3. Label the side chains with the hydrophobicities of their corresponding backbone monomers) 
and unlabel the backbone monomers. 

Let O P T 2 ~ ( s )  be the value of the optimal conformation of s in the 2D HP model. The following 
theorem relates the values of oPT3D(S) to the values of both OPTZD(S) and o P T 2 ~ ( s ) .  This 
theorem shows that the energy of the optimal conformation in the 3D HP side chain model is 
within a constant factor of the energy of the optimal conformations in the 2D HP model and 2D 
HP side chain model. 

Theorem 1 min (0PT2D(S), O P T ~ D ( S ) )  2 O P T ~ D ( S )  2 max ( 2 0 0 P T 2 ~ ( s ) ,  1 0 0 P T 2 ~ ( s ) ) .  
Proof. We prove this result by proving the following inequalities: 

and 

The first inequality in Equation (2) is immediately obvious. Every conformation for the 2D HP 
side chain model is a conformation of the 3D HP side chain model. To prove the second inequality) 
consider Algorithm A. From Lemma 2 we know that Algorithm A generates solutions with an 
energy of at least - [X/41. Consequently, o P T z ~ ( s )  5 - rX/41. Now O P T ~ D ( S )  2 - 5 X ,  so 

The first inequality in Equation (3) follows from the fact that every conformation for the 2D 
HP model can be used to construct a conformation for the 3D HP side chain model with the same 
energy, using the method described above. Now consider “Algorithm 8” for the 2D H P  model 
described by Hart and Istrail [6]. This algorithm is guaranteed to generate conformations with an 
energy of at least - J(X + 1)/21. Consequently, 

. The upper bound on O P T ~ D ( S )  is tight. It is not clear whether the lower bound is tight, since 
the proof of the lower bound uses the absolute performance guarantees for the best known approx- 
imation algorithms for the 2D HP model and 2D HP side chain model (1/4 and 1/12 respectively). 

Using the bounds on OPT3D(S) provided by Theorem 1, we can demonstrate that performance 
guaranteed algorithms for the 2D HP model and the 2D HP side chain model provide performance 
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guarantees for the 3D HP side chain model. Let 2 2 0  (z3D) refer to the application of a generic 
Algorithm Z in the 2D HP side chain model (Algorithm 2 in the 3D HP side chain model), and 
let 2 2 0  refer to the application of a generic Algorithm 2 in the 2D HP side chain model. The 
following two propositions provide bounds on Rz,, and RED.  
Proposition 4 If 61 5 Rz,, 5 1t2 and 63 5 RED 5 6 4  

then tc1/20 5 Rz:, 5 ~2 and n3/20 5 RED 5 31c4/5. 
Proof. Let SkD = {s I o P T 2 ~ ( s )  5 N }  and s&D = {s I o P T s ~ ( s )  5 N } .  
We first prove the absolute performance guarantees for 230.  Suppose that Rz,, 5 4. Now 

OPT~D(S) 2 OPT30(s), so we have 

Thus Rz,,(s) 5 ~2 for all protein instances s, which implies that Rz,, 5 liz. Similarly, suppose 
that Rz,, 2 61. Now OPT~D(S) 2 ~OOPT~D(S) ,  so we have 

Thus Rz,,(s) 2 ~ 1 / 2 0  for all protein instances s, which implies that R z ~ ~  2 ~ 1 / 2 0 .  
We now prove the asymptotic performance guarantees for 231). From Theorem 1 we know that 

Now S$D 5 ShD since O P T ~ D ( S )  2 OPT~D(S). Further, we have 

in f (OPT2~(s )  1 s E SgD - SLD} 2 inf(OPTzD(s) 1 s E Si?} 

from the definition of S$D and Si?. It follows that 

so 

Now suppose that RF'D 5 Q. Then Rg2D 5 ~4 for all N .  Given E > 0, let s, be a sequence 
in SkD for which Z(S,)/oPT2D(S,) 5 ti4 + E. Such a sequence is guaranteed to exist from the 
definition of R?,,. Since SiD C S$D, we have 

Thus we have 
N RE, = sup RzzD 5 lim 4 + E = 1t4. 

E'O+ NE 

Proposition 5 If 1c1 5 Rz,, 5 ~2 and ~3 5 RF2, 5 ~4 

then ~ 1 / 1 0  5 RzZD 5 6 2  and ~ 2 1 1 0  5 RE,  5 4. 

S,,i 

-7 D Proof. Let Si; = {s I OPT~D(S)  5 N } .  Note that O P T ~ D ( S )  2 OPT~D(S).  It follows that 
C ShD. Given this observation, the proof of this proposition is analogous to the proof of -2 D 

Proposition 4. W 
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D Illustrations of the hydrophilic loops for Algorithm C 
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