\bar{p} and $\bar{\Lambda}$ Production in Si+Au Collisions at the AGS

Yuedong Wu

Nevis Laboratories,
Columbia University, South Broadway 196, Irvington, NY 10533, USA

for the E802/E859 Collaboration:
ANL–BNL–UCBerkeley–UCRiverside–Columbia–Hiroshima–INS

ABSTRACT

\bar{p} and $\bar{\Lambda}$ production in central Si+Au collisions has been measured by E859 at the BNL-AGS. Preliminary m_\perp spectra are presented for \bar{p}'s and $\bar{\Lambda}$'s. The dn/dy distribution for \bar{p}'s is also presented. Based on the \bar{p} and $\bar{\Lambda}$ measurements, $\bar{\Lambda}/\bar{p}$ ratios are calculated in the rapidity range of 1.1-1.5.

1. Introduction

Heavy ion collisions at BNL-AGS energies are considered to be in the full stopping regime. In central Si+Au collisions with a beam momentum of 14.6 $A\cdot GeV/c$, the projectile nucleus is stopped by the heavy target nucleus in the center of mass system. It is believed that a region of very high baryon density could be created in such collisions. QCD predicts that in such an extremely hadron-dense condition, ordinary hadronic matter may be transformed into a new phase, the Quark Gluon Plasma (QGP), with an accompanying phase transition [1]. Regardless of whether or not such a phase transition takes place, antibaryon and strangeness enhancement have been expected in AGS heavy ion collisions [2]. On the other hand, because of the large annihilation cross sections of antibaryons [3], \bar{p}'s and $\bar{\Lambda}$'s serve very well as sensitive probes of baryon density and formation time. Some early studies [4] also found that in the QGP phase, the ratio of \bar{s}/\bar{q}, the number of light antiquarks to the number of strange antiquarks, could be as much as two orders of magnitude higher than that in the hadronic state, so that a large $\bar{\Lambda}$ enhancement could be expected. This makes the combined study of \bar{p} and $\bar{\Lambda}$ production even more interesting. The additional tracking and sophisticated on-line PID second level trigger of E859 made such a study possible.

2. Experiment and Data Set

The E859 apparatus has been described in previous publications ([5], [6]). Briefly, the E859 apparatus was an extension of the E802 spectrometer. By adding additional tracking...
chambers and, more importantly, a new second level on-line PID trigger, E859 had the capability to study the production of rare particles such as \bar{p}, Λ, $\bar{\Lambda}$, and ϕ. For the data presented here, the second level trigger was set to select only those events in which at least one \bar{p} candidate track passed through the spectrometer. Such an on-line trigger selection substantially enriched the number of \bar{p}'s in the event samples. As a result, E859 collected about 10 times more \bar{p}'s than that E802 collected. The improved data samples not only produced a better \bar{p} measurement but also made it possible to measure the m_\perp spectrum of the Λ, a first in any BNL-AGS heavy ion experiment.

The data were collected during the 1991 and 1992 runs at the BNL-AGS, the beam was ^{28}Si at 14.6 A·GeV/c and the targets were Au with thickness of 1% and 2% of an interaction length. The \bar{p} data were taken primarily at the 5°, 14°, and 24° spectrometer settings, but only at the 14° setting were enough data collected for analysis because of the limited acceptance of the larger angle settings and the limited statistics of the 5° setting. In this presentation only central events taken at the 14° spectrometer angle setting (covering the polar angle range from 14° to 28°) were analyzed. Central events were selected with a Target Multiplicity Array (TMA) on-line hardware trigger and off-line software cuts. The qualifying events corresponded to the top 15% of the charged particle multiplicity distribution as measured by the TMA (Fig. 1). The \bar{p} data covered the rapidity range from 0.9 to 1.5, and the Λ data covered the rapidity range from 1.15 to 1.75 (Fig. 2).

3. Data Analysis and Preliminary Results

To reduce the systematic error contributed from background subtraction, small m_\perp bins (0.025 GeV/c²) and y bins (0.1 unit) were used in the \bar{p} data analysis. The number of \bar{p}'s in each m_\perp-y bin was obtained by fitting the δ(TOF) distribution (Fig. 3), which was the difference between the measured time of flight (TOF) of a track and the expected value of TOF assuming that the particle was a \bar{p}. The reason for fitting the δ(TOF) distribution instead of fitting the mass distribution was that the δ(TOF) is a constant hardware parameter that does not depend on the particle's momentum so that a single gaussian function can be
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use-fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
employed to fit δ(TOF) spectrum.

For the Λ data a relatively large m_\perp and y bin had to be used because of the limited statistics available (see Fig. 2). The number of Λ's in each bin was obtained by fitting the invariant mass spectrum for all $\bar{p}\pi^+$ pairs with a gaussian-shaped peak function plus a background. The resolution of the Λ invariant mass did not depend on m_\perp or rapidity. This was confirmed by Λ data from the same spectrometer setting but with much better statistics. The peak could therefore be fitted with a single gaussian distribution even if the bin size was large (Fig. 3). To reduce the background under the Λ mass peak a reconstructed vertex position cut was applied. Only the $\bar{p}\pi^+$ pairs with reconstructed vertex positions in the range of 5cm to 75cm away from the target were considered. Because of the high Λ momentum, the average decay distance is greater than 20cm away from the target. Thus the vertex cut reduces background by more than a factor of three but cut out less than 10% of Λ's.

Because of the limited solid angle (25 msr) of the E859/E802 spectrometer, the acceptance in different m_\perp-y bins could be very different. The acceptance correction became very important for data analysis especially for Λ data. The acceptance, track reconstruction efficiency and trigger performance calculations were done by using a full GEANT-based Monte-Carlo simulation of the E859 apparatus. More than 50,000 Λ's and more than 100,000 \bar{p}'s inside the spectrometer acceptance were put into GEANT-based Monte-Carlo simulations. The statistical errors on the \bar{p} and Λ yields due to acceptance correction were negligible compared with the statistical errors on the data. The resulting \bar{p} and Λ yields in each bin were then corrected for experimental acceptance and track reconstruction efficiency. Fig. 4 shows the m_\perp spectra of the \bar{p}'s and Λ's after the corrections.

The dn/dy and inverse slopes were obtained by fitting with a single exponential function in m_\perp of the form:

$$E \frac{d^3n}{dp^2} = \left(\frac{dn}{dy} \right) \frac{1}{2\pi(m_\pi T + T^2)} e^{-(m_\perp-m_\pi)/T}$$

where T and dn/dy are the two free parameters. The inverse slopes obtained by the method above are listed in table 1. The table shows that the inverse slopes for \bar{p}'s are more or less
the same in the y range of 0.9 to 1.5, which is about 180 MeV/c. The inverse slope for $\bar{\Lambda}$'s is about 10 MeV/c higher than that of the \bar{p}'s.

As mentioned above, because of the limited statistics for $\bar{\Lambda}$'s, the m_\perp spectrum for only a single y bin could be obtained. It was not possible to get a $\bar{\Lambda}$ dn/dy distribution directly from the integration of measured m_\perp spectra in small y bins. Nevertheless we were very interested in estimating a $\bar{\Lambda}$ dn/dy distribution to compare with the \bar{p} dn/dy distribution in the same y range. An alternative method was therefore applied to obtain the $\bar{\Lambda}$ dn/dy. We divided the $\bar{\Lambda}$ data into 4 smaller y bins in the rapidity range of 1.15 to 1.55, then calculated the integrated number of $\bar{\Lambda}$'s in each bin. We assumed that in each such y bin the $\bar{\Lambda}$ m_\perp spectrum had the same inverse slope which was measured with the larger y bin (which was reasonable considering that the inverse slopes for \bar{p} did not change much in the same y range), then the $\bar{\Lambda}$ dn/dy in each of the smaller y bins could be calculated by using the following formula:

$$
\left(\frac{dn}{dy} \right) = \frac{\Delta n}{N \Delta y} \int m_\perp \varepsilon(m_\perp) e^{-m_\perp/T} dm_\perp
$$

where Δn is the number of measured $\bar{\Lambda}$'s in a y bin, N is the number of total events and $\varepsilon(m_\perp)$ is the spectrometer acceptance in a given y bin which depends on m_\perp and is calculated by the GEANT-based Monte-Carlo simulation mentioned above. Fig. 5 shows the dn/dy distribution of $\bar{\Lambda}$'s obtained by this method. For comparison, the \bar{p} dn/dy presented above is superposed on the same figure. The figure shows that in the y-range 1.15 to 1.55 the dn/dy are more or less flat both for \bar{p} and $\bar{\Lambda}$, which indicates that the large y-bin used in $\bar{\Lambda}$ data may not introduce severe systematic errors. On the other hand, the fact that the $\bar{\Lambda}$ measured with two ways has a yield comparable to that of the \bar{p} in the y range 1.15 to 1.55 suggests that a large fraction of the \bar{p}'s come from $\bar{\Lambda}$ decay ($\bar{\Lambda} \rightarrow \bar{p} + \pi^+$). In that case, it should be expected that the two particles have similar dn/dy distributions in this rapidity range.
Preliminary Results for the E859

Figure 4: The transverse mass spectra for \bar{p} (left) and \bar{A} (right) in Si+Au central collisions.

Figure 5: The dn/dy distributions for \bar{p} and \bar{A} in Si+Au central collisions. The curve is to guide the eye only, and the error bars are statistical only. The dash line is the dn/dy for \bar{A} measured from m_\perp spectrum by using large y (1.15-1.75) bin.
Table 1: \bar{p}, Λ inverse slopes in different rapidity bins measured by E859. The errors are statistical only.

<table>
<thead>
<tr>
<th>PID</th>
<th>Λ</th>
<th>\bar{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>y range</td>
<td>1.15–1.75</td>
<td>0.9–1.0</td>
</tr>
<tr>
<td>inverse slope(MeV)</td>
<td>188 ± 26</td>
<td>209 ± 50</td>
</tr>
</tbody>
</table>

Table 2: \bar{p}, Λ dn/dy and their ratios measured by E859. The rapidity range was from 1.15 to 1.55 for both \bar{p} and Λ data. The error on \bar{p} dn/dy is statistical only. The errors on Λ dn/dy and the ratios are statistical (first) and systematics

4. Summary and Conclusions

Table 2 summarizes the measured dn/dy for \bar{p}'s and for Λ's. The dn/dy for \bar{p}'s is for all experimentally measured \bar{p} which includes the Λ decay products. The dn/dy for Λ's is obtained by correcting the data for branching ratio of 64.2% for $\Lambda \rightarrow \bar{p} + \pi^+$ decay. We show two ratios in the table, the yield of Λ's to the all experimentally measured \bar{p} yield and, the yield of Λ's to the primordial \bar{p} after subtracted the \bar{p} decay products. In E859 apparatus the acceptance for \bar{p}'s from Λ decay are indistinguishable from primordial \bar{p}'s. One major contribution of systematic errors on the Λ dn/dy and on the Λ to \bar{p} ratios could be the inverse slope measurement of the Λ m_\perp spectrum because of the use of a large y bin. To estimate the systematic errors introduced by this, we gave an additional 10% uncertainty to the Λ inverse slope. The systematic error due to this uncertainty on estimate the Λ yield and the ratio of the yield of Λ over the yield of all experimentally measured \bar{p} are about 10%, and the systematic error due to this uncertainty on the ratio of the yield of Λ over the yield of primordial \bar{p} is about 17%. The systematic error on the \bar{p} measurement could come from the fitting of the \bar{p} dn/dy spectra. Since about 2/3 of the measured \bar{p}'s were from Λ decays the single exponential function may not be the best one to be used, because of the limited statistics of the Λ data we can not give a quantitative estimate here. Since the Λ and \bar{p} data were from the same data sets, most hardware related systematic errors should be canceled in the dn/dy ratio measurements.

5. Acknowledgements

6. References

6. Y. Wang et al., HIPAGS93.