An elastic-viscous-plastic model for sea ice dynamics

PDF Version Also Available for Download.

Description

The standard model for sea ice dynamics treats the ice pack as a viscous-plastic material that flows plastically under typical stress conditions but behaves as a linear viscous fluid where strain rates are small and the ice becomes nearly rigid. Because of large viscosities in these regions, implicit numerical methods are necessary for timesteps larger than a few seconds. Current solution methods for these equations use iterative relaxation methods, which are time consuming, scale poorly with mesh resolution, and are not well adapted to parallel computation. To remedy this, we have developed and tested two separate methods. First, by demonstrating … continued below

Physical Description

25 p.

Creation Information

Hunke, E. C. & Dukowicz, J. K. October 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 193 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The standard model for sea ice dynamics treats the ice pack as a viscous-plastic material that flows plastically under typical stress conditions but behaves as a linear viscous fluid where strain rates are small and the ice becomes nearly rigid. Because of large viscosities in these regions, implicit numerical methods are necessary for timesteps larger than a few seconds. Current solution methods for these equations use iterative relaxation methods, which are time consuming, scale poorly with mesh resolution, and are not well adapted to parallel computation. To remedy this, we have developed and tested two separate methods. First, by demonstrating that the viscous-plastic rheology can be represented by a symmetric, negative definite matrix operator, we have implemented the faster and better behaved preconditioned conjugate gradient method. Second, realizing that only the response of the ice on time scales associated with wind forcing need be accurately resolved, we have modified the model to reduce to the viscous-plastic model at these time scales; at shorter time scales the adjustment process takes place by a numerically efficient elastic wave mechanism. This modification leads to a fully explicit numerical scheme which further improves the computational efficiency and is an advantage for implementations on parallel machines. Furthermore, we observe that the standard viscous-plastic model has poor dynamic response to forcing on a daily time scale, given the standard time step (1 day) used by the ice modeling community. In contrast, the explicit discretization of the elastic wave mechanism allows the elastic-viscous-plastic model to capture the ice response to variations in the imposed stress more accurately. Thus, the elastic-viscous-plastic model provides more accurate results for shorter time scales associated with physical forcing, reproduces viscous-plastic model behavior on longer time scales, and is computationally more efficient. 49 refs., 13 figs., 6 tabs.

Physical Description

25 p.

Notes

OSTI as DE96014654

Source

  • International symposium on representation of the cryosphere in climate & hydrological models, British Columbia (Canada), 12-15 Aug 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96014654
  • Report No.: LA-UR--96-2784
  • Report No.: CONF-9608159--1
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 390619
  • Archival Resource Key: ark:/67531/metadc677137

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Aug. 8, 2020, 2:21 a.m.

Usage Statistics

When was this article last used?

Yesterday: 1
Past 30 days: 2
Total Uses: 193

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hunke, E. C. & Dukowicz, J. K. An elastic-viscous-plastic model for sea ice dynamics, article, October 1, 1996; New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc677137/: accessed March 18, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen