Aspects of nitrogen surface chemistry relevant to TiN chemical vapor deposition

PDF Version Also Available for Download.

Description

NH{sub 3} is an important component of many chemical vapor deposition (CVD) processes for TiN films, which are used for diffusion barriers and other applications in microelectronic circuits. In this study, the interaction of NH{sub 3} with TiN surfaces is examined with temperature programmed desorption (TPD) and Auger electron spectroscopy. NH{sub 3} has two adsorption states on TiN: a chemisorbed state and a multilayer state. A new method for analyzing TPD spectra in systems with slow pumping speeds yields activation energies for desorption for the two states of 24 kcal/mol and 7.3 kcal/mol, respectively. The sticking probability into the chemisorption ... continued below

Physical Description

26 p.

Creation Information

Schulberg, M.T.; Allendorf, M.D. & Outka, D.A. August 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

NH{sub 3} is an important component of many chemical vapor deposition (CVD) processes for TiN films, which are used for diffusion barriers and other applications in microelectronic circuits. In this study, the interaction of NH{sub 3} with TiN surfaces is examined with temperature programmed desorption (TPD) and Auger electron spectroscopy. NH{sub 3} has two adsorption states on TiN: a chemisorbed state and a multilayer state. A new method for analyzing TPD spectra in systems with slow pumping speeds yields activation energies for desorption for the two states of 24 kcal/mol and 7.3 kcal/mol, respectively. The sticking probability into the chemisorption state is {approximately}0.06. These results are discussed in the context of TiN CVD. In addition, the high temperature stability of TiN is investigated. TiN decomposes to its elements only after heating to 1300 K, showing that decomposition is unlikely to occur under CVD conditions.

Physical Description

26 p.

Notes

OSTI as DE97050468

Source

  • Other Information: PBD: Aug 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97050468
  • Report No.: SAND--96-8580
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/415355 | External Link
  • Office of Scientific & Technical Information Report Number: 415355
  • Archival Resource Key: ark:/67531/metadc677131

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 4, 2015, 3:11 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Schulberg, M.T.; Allendorf, M.D. & Outka, D.A. Aspects of nitrogen surface chemistry relevant to TiN chemical vapor deposition, report, August 1, 1996; United States. (digital.library.unt.edu/ark:/67531/metadc677131/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.