This document was retrieved from the Boeing ISEARCH System.

Accession #: D196069762

Document #: SD-WM-TP-211

Title/Desc:
TANK 241C108 TANK CHARACTERIZATION PLAN
ENGINEERING CHANGE NOTICE

2. ECN Category
(mark one)
Supplemental ☒
Direct Revision ☐
Change ECN ☐
Temporary ☐
Standby ☐
Supersede ☐
Cancel/Void ☐

3. Originator's Name, Organization, MSIN, and Telephone No.
C. S. HOMI, 75320, R2-12, 373-1097

3a. USR Required?
[] Yes [X] No

4. Date
10/04/95

5. Project Title/No./Work Order No.
TANK 241-C-108 TANK CHARACTERIZATION PLAN

6. Bldg./Sys./Fac. No.
C-108

8. Document Numbers Changed by this ECN
WHC-SD-WM-TP-211 REV 2

10. Related PO No.
N/A

11a. Modification Work
[] Yes (fill out Blk. 11b)
[X] No (NA Blks. 11b, 11c, 11d)

11b. Work Package No.
N/A

11c. Modification Work Complete
N/A
Cog. Engineer Signature & Date

11d. Restored to Original Condition (Temp. or Standby ECN only)
N/A
Cog. Engineer Signature & Date

12. Description of Change
Complete revision.

13a. Justification (mark one)
Criteria Change [X]
Design Improvement []
Environmental []
Facility Deactivation []
As-Found []
Facilitate Const []
Const. Error/Omission []
Design Error/Omission []

13b. Justification Details
Format change.

14. Distribution (include name, MSIN, and no. of copies)
See attached Distribution Sheet

OFFICIAL RELEASE
BY WHC
DATE OCT 05 1995

A-7900-013-2 (11/94) GEF095
18. Change Impact Review:
Indicate the related documents (other than the engineering documents identified on side 1) that will be affected by the change described in Block 12. Enter the affected document number in Block 19.

<table>
<thead>
<tr>
<th>Document</th>
<th>Engineering</th>
<th>Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDDDD</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Functional Design Criteria</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Operating Specification</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Criticality Specification</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Conceptual Design Report</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Equipment Spec.</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Const. Spec.</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Procurement Spec.</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Vendor Information</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>OM Manual</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>FSAR/SAR</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Safety Equipment List</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Radiation Work Permit</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Environmental Impact Statement</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Environmental Report</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Environmental Permit</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Seismic/Stress Analysis</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Stress/Design Report</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Interface Control Drawing</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Calibration Procedure</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Installation Procedure</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Maintenance Procedure</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Engineering Procedure</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Operating Procedure</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Operational Safety Requirement</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>IEFD Drawing</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Cell Arrangement Drawing</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Essential Material Specification</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Fac. Proc. Samp. Schedule</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Inspection Plan</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Inventory Adjustment Request</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Tank Calibration Manual</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Health Physics Procedure</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Spares Multiple Unit Listing</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Test Procedures/Specification</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Component Index</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>ASME Coded Item</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Human Factor Consideration</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Computer Software</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Electric Circuit Schedule</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>ICRS Procedure</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Process Control Manual/Plan</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Process Flow Chart</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Purchase Requisition</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Tickler File</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

19. Other Affected Documents:
(Note: Documents listed below will not be revised by this ECN.) Signatures below indicate that the signing organization has been notified of other affected documents listed below.

<table>
<thead>
<tr>
<th>Document Number/Revision</th>
<th>Document Number/Revision</th>
<th>Document Number Revision</th>
</tr>
</thead>
</table>

20. Approvals

Operations and Engineering

- Cog. Eng. C. S. Konishi
 - Signature: [Signature]
 - Date: 10/4/95
- Cog. Mgr. S. J. Eberlein
 - Signature: [Signature]
 - Date: 10/4/95
- QA
 - Safety
 - Design
 - Environ.
 - Other

Architect-Engineer

- PE
 - Signature: [Signature]
 - Date: [Date]
- QA
 - Signature: [Signature]
 - Date: [Date]
- Safety
 - Signature: [Signature]
 - Date: [Date]
- Design
 - Signature: [Signature]
 - Date: [Date]
- Environ.
 - Signature: [Signature]
 - Date: [Date]
- Other
 - Signature: [Signature]
 - Date: [Date]

Department of Energy

- Signature or a Control Number that tracks the Approval Signature
 - Signature: [Signature]
 - Date: [Date]

Additional

- [Signature]
 - Date: [Date]
<table>
<thead>
<tr>
<th>RELEASE AUTHORIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Number:</td>
</tr>
<tr>
<td>Document Title:</td>
</tr>
<tr>
<td>Release Date:</td>
</tr>
</tbody>
</table>

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

WHC Information Release Administration Specialist:

Kara Broz

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy. Printed in the United States of America. To obtain copies of this report, contact: Westinghouse Hanford Company - Document Control Services P.O. Box 1970, Mailstop H6-08, Richland, WA 99352 Telephone: (509) 372-2420; Fax: (509) 376-4989
TANK 241-C-108 TANK CHARACTERIZATION PLAN

Key Words
CHARACTERIZATION, GENERAL SAFETY ISSUES, SPECIFIC SAFETY ISSUES, INFORMATION REQUIREMENTS, PRIORITY

Abstract
This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-C-108.
RECORD OF REVISION

Title
TANK 241-C-108 TANK CHARACTERIZATION PLAN

CHANGE CONTROL RECORD

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description of Change - Replace, Add, and Delete Pages</th>
<th>Authorized for Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>WHC-SD-WM-TP-211 REV. 0, EDT 605687, April 15, 1994</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Changed pages 2, 3, 4, 5, 9, 10, 11; ECN 610432</td>
<td></td>
</tr>
<tr>
<td>RS 2</td>
<td>Complete revision to new format, ECN 625717</td>
<td></td>
</tr>
</tbody>
</table>

A-7320-005 (08/91) WEF168
Tank 241-C-108
Tank Characterization Plan

C. S. Homi
Westinghouse Hanford Company

Date Published
October 1995

Prepared for the U.S. Department of Energy
Office of Environmental Restoration and
Waste Management

Westinghouse Hanford Company
P.O. Box 1970
Richland, Washington

Management and Operations Contractor for the
U.S. Department of Energy under Contract DE-AC06-87RL10930

Approved for Public Release
1.0 INTRODUCTION .. 1

2.0 PROGRAM ELEMENTS REQUIRING INFORMATION FOR 241-C-108 2

 2.1 GENERAL SAFETY ISSUES 2

 2.2 SPECIFIC SAFETY ISSUES 2

 2.2.1 Ferrocyanide .. 2

 2.2.2 Organic .. 2

 2.2.3 High Heat .. 2

 2.2.4 Flammable Gas ... 2

 2.2.5 Vapor ... 3

 2.2.6 Criticality ... 3

 2.3 CONTINUING OPERATIONS 3

 2.2.1 Compatibility/Stabilization 3

 2.2.2 Evaporator .. 3

 2.4 DOUBLE-SHELL TANK WASTE ANALYSIS PLAN 3

 2.5 DISPOSAL .. 3

 2.5.1 Retrieval .. 3

 2.5.2 Pretreatment/Vitrification 4

 2.6 HISTORICAL MODEL EVALUATION 4

3.0 HOW INFORMATION WILL BE OBTAINED 4

4.0 WHEN INFORMATION IS NEEDED 5

5.0 PRIORITY OF INFORMATION REQUIREMENTS 5

6.0 REFERENCES ... 6

LIST OF TABLES

Table 5-1: Integrated DQO Requirements 5
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-108</td>
<td>Tank 241-C-108</td>
</tr>
<tr>
<td>DQO</td>
<td>Data Quality Objective</td>
</tr>
<tr>
<td>DSSF</td>
<td>Double Shell Slurry Feed</td>
</tr>
<tr>
<td>NCPLX</td>
<td>Non-complexed</td>
</tr>
<tr>
<td>SST</td>
<td>Single-Shell Tank</td>
</tr>
<tr>
<td>SUMMA®</td>
<td>Trademark of Molectrics, Inc.</td>
</tr>
<tr>
<td>TCP</td>
<td>Tank Characterization Plan</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>USQ</td>
<td>Unreviewed Safety Question</td>
</tr>
<tr>
<td>WHC</td>
<td>Westinghouse Hanford Company</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

This Tank Characterization Plan (TCP) identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank 241-C-108 (C-108). It should be understood that the various needs and issues surrounding tank C-108 are evolving as new information about the tank is uncovered. As a result of this progression, this Tank Characterization Plan addresses only the issues that, to this date, have been identified. It is expected that deviations from this plan may occur as additional issues or needs arise which impact the management of SST C-108. As necessary, this Tank Characterization Plan will be revised to reflect those changes or deviations.

Tank C-108 was constructed between 1943 and 1944 and was put into service in September 1947. Initially tank C-108 received first cycle, from the cascade overflow of tank C-107, waste from in September 1947 to March 1948 and, again, in 1952. During the second quarter of 1952, the entire contents of C-108 (which was first cycle waste) was transferred to B-106. In December 1952 it was discovered that the cascade overflow line to C-109 was plugged. During the first and second quarters of 1953, C-108 received uranium recovery waste. During the third quarter of 1957, tank C-108 received wastewater. During the third and fourth quarters of 1957, C-108 received in-tank ferrocyanide waste. During the second quarter of 1961, the tank received PUREX cladding waste. C-108 received strontium recovery waste during the second quarter of 1965. Between the second quarter of 1970 and the first quarter of 1973, C-108 received cladding waste, organic wash waste and ion exchange waste. From the second quarter of 1973 until the second quarter of 1976, the tank received various types of waste. Presently, the tank waste is classified as non-complexed. This tank currently contains waste with a total waste volume of 249.8 kL (66 kgal), which is equivalent to 49.4 centimeters (19.5 inches) of waste as measured from the baseline of the tank. The waste is comprised entirely of sludge with no pumpable liquid remaining (Brevick, 1994a).

The tank has been categorized as sound, was removed from service in 1976, declared inactive in 1977 and was interim stabilized in 1978 with intrusion prevention completed in December 1982. Tank C-108 is passively ventilated. The last photo was taken on December 5, 1974. The 1974 photographic montage is not currently available (Brevick 1994b). The last solids volume update was obtained on February 24, 1984 (Hanlon 1995).

Tank C-108 was sampled during June 1975. The sample was a clear light yellow liquid that contained no solids even when cooled to 5°C and held at that temperature for 35 minutes.

This tank is on the Ferrocyanide Watch list. The tank has an Unreviewed Safety Question (USQ) because of the potential consequences of a radiological release resulting from the ignition of the ferrocyanide constituents. Near-term sampling and analysis activities are focused on either verification of the watchlist tank status, identification of any new safety issues, changing the Watch List status, or resolving the USQ. Should any safety issues be identified additional analysis will occur consistent with the identified issue.

In addition to the resolution of the safety issues, it is intended that all tank waste will be subject to pretreatment and retrieval to prepare for final storage or disposal. Presently, these long-range plans have yet to be fully identified and are, therefore, not included in this document.
2.0 PROGRAM ELEMENTS REQUIRING INFORMATION FOR TANK 241-C-108

This section identifies the various program elements, and identifies which of these programs require characterization data from tank C-108.

2.1 GENERAL SAFETY ISSUES

The Tank Safety Screening Data Quality Objective (Babad et al. 1995) describes the sampling and analytical requirements that are used to screen waste tanks for unidentified safety issues. The primary analytical requirements for the safety screening of a tank are energetics, total alpha activity, moisture content, and flammable gas concentration.

2.2 SPECIFIC SAFETY ISSUES

2.2.1 Ferrocyanide

This tank is on the Ferrocyanide Watch List. Sampling and analysis requirements must be performed as per Data Requirements for the Ferrocyanide Safety Issue Developed through the Data Quality Objectives Process (Meacham 1995). The analyses employed will determine the total fuel concentration and moisture content. Total fuel concentration and moisture content are the primary data requirements. Also, further analyses will be employed to obtain secondary data such as temperature (data will be obtained from tank thermocouple(s)), nickel, total cyanide, TOC, 137Cs and 90Sr (Meacham 1995).

2.2.2 Organic

Tank C-108 is not on the Organics Watch List and; therefore, no information needs are currently identified for this program element.

2.2.3 High Heat

This tank is not on the High Heat Watch List and; therefore, no information needs are currently identified for this program element.

2.2.4 Flammable Gas

This tank is not on the Flammable Gas Watch List and; therefore, no information needs are currently identified for this program element.

2.2.5 Vapor

The tanks currently scheduled to be vapor sampled may be classified into four categories: (1) those tanks which are to be rotary mode core sampled (as a consequence of the rotary sampling system); (2) tanks on the Organic or Ferrocyanide Watch Lists; (3) tanks in C farm; and (4) tank BX-104, due to vapor exposure. Since tank C-108 is categorized in one of the above four groups, information needs must satisfy Data Quality Objectives for Generic In-Tank Health and Safety Vapor Issue Resolution (Osborne et al. 1995). Characterization of the tank headspace is needed to: 1) identify those tanks which can be sampled safely with intrusive equipment without risk of gas ignition; 2) identify and estimate concentrations of toxicologically significant compounds present in the tank headspace to establish worker safety precautions; and 3) support the startup and operation of the portable exhauster used during rotary-mode core sampling.
2.2.6 Criticality

No information separate from that for the general safety issue of tank C-108 are currently identified for this program element. However, if the general safety screening of tank C-108 identifies a potential criticality concern, analyses for fissile materials and neutron absorbers and poisons will be performed as identified in the safety screening data quality objective.

2.2.7 Screening Approach Evaluation

The safety screening approach is currently under review. Information is required from key tanks to determine if a revised approach to screening may be adopted, as proposed in Meacham, 1995.

2.3 CONTINUING OPERATIONS

2.3.1 Compatibility/Stabilization

No information needs are currently identified for this program element.

2.3.2 Evaporator

No information needs are currently identified for this program element.

2.4 DOUBLE-SHELL TANK WASTE ANALYSIS PLAN

This section does not apply because tank C-108 is a single shell tank.

2.5 DISPOSAL

2.5.1 Retrieval

Current retrieval needs (Bloom 1995) do not call for test samples to be taken from tank C-108.

2.5.2 Pretreatment/Vitrification

Tank C-108 has been identified as a bounding tank for pretreatment/disposal process development (Kupfer 1995).

2.6 HISTORICAL MODEL EVALUATION

Bounding tanks and data requirements for historical model evaluations are found in DQO Historical Model Evaluation Data Requirements (Simpson 1995). Tank C-108 has not been identified as a primary bounding tank.
3.0 HOW INFORMATION WILL BE OBTAINED

The safety screening DQO requires that a vertical profile of the tank waste be obtained from at least two widely spaced risers. This vertical profile may be obtained using core, auger (for shallow tanks), or grab samples. Vapor sampling and auger sampling events are required. Presently, the auger sampling has been completed and the vapor sampling has not been scheduled. The auger sampling type has been chosen over other sampling modes due to both the depth of the tank (C-108 is a shallow tank making rotary core sampling unnecessary) and the fact that the surface of tank C-108 is comprised saltcake.

The best current estimate of the water content in tank C-108 solids, as determined from the process records, is 69.7%; based on the HTCE (Brevick et al). Estimated (Toth et al 1995) water content in tank C-108 sludge is 48.2% (generated from a model based on sample data from similar tanks). If the variance of water in tanks already sampled and a statistical power curve is used then a minimum of two cores are needed to demonstrate a water content above 17% at 95% confidence. Should the measured mean be lower than anticipated or the measured variance higher, additional samples may be required. The TOC contained within the sludge is estimated (Toth et al 1995) to be 0.2% (wet basis) respectively, which is significantly lower than the level of concern. Two core samples will be requested for this tank and this should meet the requirements for the above parameters.

Presently, there is no information on the availability of tank C-108 risers. It is recommended that risers be chosen that are separated radially to the maximum extent possible and; therefore, will provide a larger amount of data about the vertical and horizontal waste layers within the tank. Initial information will be taken from 3 risers and assessed to determine if more samples are required. Alternate sampling methods, installation of a riser or removal of equipment from risers are possible future options.
4.0 PRIORITY OF INFORMATION REQUIREMENTS

Vapor sampling is required but, it has not been scheduled at this time. Auger sampling was completed in November 1994 (Stanton 1995).

Table 4-1: Integrated DQO Requirements

<table>
<thead>
<tr>
<th>Sampling Event</th>
<th>Applicable DQO</th>
<th>Sampling Requirements</th>
<th>Analytical Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Sampling</td>
<td>Health & Safety Vapor Issue Resolution DQO</td>
<td>3 SUMMA® canisters 6 Triple Sorbent Traps 8 Sorbent Trap Systems</td>
<td>Gas Flammability Gas Toxicity Organic Vapors Permanent Gases</td>
</tr>
<tr>
<td>Auger Sampling</td>
<td>Safety Screening DQO Ferrocyanide DQO</td>
<td>Core samples from 2 risers separated radially to the maximum extent possible</td>
<td>Energetics, Moisture, Total Alpha, SpG, Total Organic Carbon, Ni, CN</td>
</tr>
</tbody>
</table>

5.0 WHEN INFORMATION IS NEEDED

Data are required for Tank C-108 during FY 1996 for safety screening and to prepare a Tank Characterization Report.
6.0 REFERENCES

Stanton, G. A., 1995, Baseline Sampling Schedule, Revision 4.3, (internal memo 74320-95-04, to distribution, March 24), Westinghouse Hanford Company, Richland,