Critical Mass Analysis for U-235 and Pu-239 Systems Moderated and Reflected by Deuterium Oxide

Author(s):
David Loaiza
William Stratton

Submitted to:
American Nuclear Society
1998 Winter Meeting
and the Meeting of the Americas

November 15-19, 1998
Washington, DC

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Critical Mass Analysis for 235U and 239Pu Systems
Moderated and Reflected by D$_2$O

By
David Loaiza and William Stratton
PO Box 1663 J562
Los Alamos National Laboratory
Los Alamos, NM 87545

1. Introduction

Criticality dimensions for highly enriched 235U(93.5) and 239Pu(95.5) systems mixed with D$_2$O were studied. The objective of this work is to investigate the minimum critical mass and concentration of uranium and plutonium systems in a reflector-moderated arrangement. The present work demonstrates the critical instability of these systems that are moderated and reflected by D$_2$O and expands in previous unpublished work. These calculations were performed in a spherical geometry with the DANTS2 codes using the Hansen-Roach cross section library. Densities examined ranged from normal to very small, and are assumed to be uniform throughout the core. These spherical systems are reflected by 100 cm of D$_2$O.

2. Method

The calculations for this work were done using the ONEDANT deterministic transport code. Several input parameters were analyzed to adequately characterize the systems. Small, fine mesh points were used to ensure that all interactions in the fissionable material were accounted for. This means that the fine mesh points were smaller than the mean free path of neutrons in the material. The dependence in the order of quadrature was also analyzed. Because the systems investigated in this work are small, special attention was given to the order of quadrature. Parametric analysis showed that a Sn value of 8 was enough for our problem without compromising the results. Since the fissionable isotopes were mixed with neutron moderating material, the adequate potential scattering cross sections for resonance self-shielding were calculated.
3. Results

The results are presented in Figures 1 and 2. Figure 1 shows the critical mass curve for a sphere with pure 235U and the curve for a spherical 235U system mixed with D$_2$O. The fissile density is reduced from normal densities to gaseous densities. It is worth noting that as the density is decreased the critical mass decreases to a minimum value, but as the fissile material density continues to decrease, the critical mass of the system increases. This type of behavior is known as criticality unstable. The critical mass of the system will continue to increase until the external reflector becomes too thin due to the increase of temperature.

The minimum critical mass for a pure 235U system is 1.29 kg with a 100 cm D$_2$O reflector. For confirmation purposes the pure 235U calculations were compared to previously unpublished data and no differences were observed between the two computations. The critical mass for the D$_2$O mixed system is 0.43 kg with a 100-cm reflector. This shows that deuterium is an excellent moderator. The deuterium in the core serves as a trap for neutrons; consequently, the neutrons are held in the core until their main energy has been reduced to thermal energies by the elastic scattering process. Since deuterium has a very small thermal absorption cross section, neutrons diffuse into the region of fissionable material to sustain a chain reaction. In addition, the D$_2$O reflector acts as a reflector and moderator with almost zero absorption, thus increasing the probability of neutrons interacting in the core, and decreasing probability of leakage.

Figure 2 shows the critical mass curves for a pure 239Pu spherical system and for a system of 239Pu mixed with deuterium. This figure exhibits characteristics similar to the uranium system. It is a critical unstable system and the critical mass of plutonium decreases with the addition of deuterium in the core. The core densities range from normal to gaseous. The minimum critical mass for the pure 239Pu system is 0.86 kg while the plutonium-deuterium system has a minimum critical mass of 0.303 kg. Both systems have a 100-cm D$_2$O reflector.

4. Conclusions

Satisfactory results were obtained with the ONEDANT deterministic code for highly enriched systems. A tendency in the critical mass of uranium
and plutonium was observed with decreasing density. It was shown that deuterium is both an excellent moderator and reflector.

5. References

Density of U-235 Sphere (g/cm³)

Critical Mass of U(93.5) Sphere in Kg

U235 Sphere mixed in D2O with 100cm D2O reflector

min = 0.43 Kg
U235 and Pu-239 Sphere mixed in D20 with 100cm D20 Reflector

Critical Mass of U(93.5) and Pu(95.5) Sphere in Kg

Density of U-235/Pu-239 Sphere (g/cm3)

- Pure U-235 Sphere
- U-235 mixed wt D20
- Pu-239 mixed wt D20

min = 0.43 Kg
min = 0.303 Kg